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Unifying the p.A and d E interactions in photodetector theory
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A new technique is introduced in which a canonical transformation is used to transform the
atom-radiation Hamiltonian to one without counter-rotating terms. As well as allowing an exact
treatment of a one-mode dipole-coupled photodetection model, the theory predicts the existence of
squeezing induced by the detector coupling. A feature of the canonical transformation used here is

that the resulting interaction Hamiltonian has a symmetric combination of the p-A and d.E in-

teractions. This allows the resolution of long-standing questions about the correct interaction Harn-

iltonian to use in photodetector theory. The new theory is able to handle dipole-coupled radiative
transitions over ultrafast time scales of the order of a single oscillation period, where the rotating-
wave approximation is invalid. The coupling of the detector to the radiation field is predicted to
vary as f '~ at high frequencies, and as f+'r' at low frequencies.

I. INTRODUCTION

The detection of quanta of the radiation field (or other
quantum fields) has an important position in the develop-
ment of quantum theory. The photoelectric effect is
perhaps the earliest example of photodetection, in the
sense that this effect was interpreted as resulting from
discrete quanta. ' Of course, at this stage it was not possi-
ble to detect individual photons. More recent develop-
ments have largely centered around Glauber's treatment
of photodetection, with its emphasis on photon statistics.
This has led to surprising predictions like that of photon
antibunching ' and squeezing, ' which were later ob-
served in resonance fluorescence experiments.

While Glauber's treatment is intuitively clear, it is also
perturbative. It is therefore less useful in treating efficient
photodetection, &n which essentially all the photons are ob-
serued. An obvious result of efficient photodetection is
that two photodetectors placed side by side will have the
same count rate in a plane-wave field; while a photodetec-
tor placed behind another one will have a near-zero count
rate. This effect is not allowed for in Glauber photodetec-
tor theory, but is true in practice for laboratory photo-
detectors. For this reason, the current paper will focus on
Heisenberg equation techniques which allow for efficient
photodetection, rather than on perturbative scattering
theory.

The problem of efficient photodetection or absorption
was treated by Mollow in a nonperturbative treatment of
a one-mode model, using the rotating-wave approxima-
tion. This approximation, which is not necessary in
scattering theory, has a strong effect in photodetection. It
essentially removes all of the detector-radiation coupling
from the ground state of the interacting system, when the
usual Hamiltonian is employed. The rotating-wave ap-
proximation therefore alters the treatment of time-varying
fields, in that counter-rotating terms (which are the terms
omitted) can significantly change the predicted excitation
rates on short time scales. Short-time-scale effects were
analyzed by Louisell and others in theories of the pho-

toexcitation of an isolated atom. The result obtained, us-

ing standard calculational techniques, is that counter-
rotating terms cause divergences in the photons counted
on short time scales. This effect is normally disregarded
by calculating the steady-state count rate rather than the
total excitation probability. The count-rate argument is
clearly less helpful when detecting an input of only a few
cycles duration, as produced in a ferntosecond laser.

Another problem in traditional photodetection theory is
the question of frequency dependence with a broadband
input, which is the subject of current debate in the litera-
ture. What is the frequency response of a
photodetector —to take the simplest case, with a one-atom
detector? The answer obtained apparently depends on the
form chosen for the Hamiltonian, which can be written ei-
ther using a p A interaction or a d E interaction. In the
first case the interaction term diverges at low frequencies,
scaling as (coo/co)'r, where coo is the resonant frequency.
In the second case the interaction diverges at high fre-
quencies, scaling as (co/coo)'r . This problem is to a large
extent related to the choice of physical input states. In
the usual Power-Zienau treatment' of the d.E interac-
tion, the E operator is the electric displacement, not the
transverse electric field. Accordingly, the field states cor-
responding to the vacuum, one-photon, two-photon, . . .
excitations obtained with this operator are different from
those obtained using the minimal-coupling annihilation
and creation operators. Another way of stating this is
that the free parts of the Hamiltonians obtained using
these two interactions, and hence the states corresponding
to the respective noninteracting vacuums, are distinct.
This implies that the term photon, as normally used, is
not unique when a detector atom is present. Unfortunate-
ly, in neither the p A nor the d.E Hamiltonian is the free
vacuum state identical to the ground state of the full
Hamiltonian, so neither form of interaction is preferable
from this point of view.

In this paper, a technique of unifying the two ap-
proaches to photodetection is presented. The technique is
extremely simple in principle, although nontrivial in prac-
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tice. It is an alternative to the Power-Zienau transform
used to obtain the multipolar form of a Hamiltonian. In
photodetection theory, the Power-Zienau transform is
only moderately useful: The alternative transform given
here alters the minimal-coupling Hamiltonian into a form
without counter-rotating terms. This allows the use of the
methods pioneered by Mollow, without requiring the
rotating-wave approximation. Photon-counting diver-
gences are also removed, since the free vacuum and the in-
teracting vacuum are identical in the new form of the
Hamiltonian.

Earlier treatments of radiative coupling using canonical
transformations include Heitler's technique, " and the
Davidovich-Nussenzweig theory of the natural line
shape. ' The canonical transformation employed here is
related to the Davidovich-Nussenzweig method, but is
more general, as it eliminates counter-rotating terms in
the self-energy as well as in all of the atom-field dipole-
coupled transitions. This is achieved through a combina-
tion of a squeezing transformation for renormalization,
and a recoupling transformation similar to that of Power
and Zienau. The final Hamiltonian is a hybrid form that
combines the p. A and d.E interactions symmetrically.

II. PHOTODETECTION PHYSICS

The usual model of photodetection ' is an ionizable

quantum system with a dipole coupling to the radiation
field. The ionizing transition can be regarded as involving
a set of levels, in a discrete approximation. Instead of
measuring the field, the measuring process takes place on
the ionizable system. Photodetection is thus reduced to
the detection of an electron in the excited states of the
detector quantum system, allowing an analysis of the cou-
pling of the detector to the radiation field.

For the present purpose, the detailed structure of the
upper levels in the detector system is relatively superflu-
ous. Instead, only one upper level really needs to be taken
into account. It is necessary to treat this case in a physi-
cal way. For this reason, as true two-level electric-dipole-
coupled detectors seem to be nonexistent, a harmonic os-
cillator model will be used. This does allow the oc-
currence of multiple photon absorption, but the model can
be extended to a large number of weakly coupled harmon-
ic oscillators in order to reduce multiple excitations. The
technique is also easily generalized to other multilevel
quantum systems with localized dipole interactions.

The photodetection Hamiltonian to be treated has the
standard, nonrelativistic, minimal-coupling form in the
Coulomb gauge:

H= —,
' f [POET(x) +B (x)/po]d x

+ g [p„—eA(q„)) + V(q~, . . . , q„) . (2.1)2'
This describes N scalar particles of mass m, charge e in-
teracting with the electromagnetic field. Throughout this
paper, the dipole-coupling approximation is used, in

which A(xo) replaces A(q„), where xo corresponds to the
center of mass of the (stationary) detector atom.

To a large extent, this formulation of interacting atoms

and radiation has been replaced in the recent literature by
formulations of quantum electrodynamics in terms of
gauge-invariant fields. ' The most cornrnonly used one is
the multipolar Hamiltonian of Power and Zienau, which
expresses the Hamiltonian as a series in terms of dipole
and higher-order rnultipole interactions with the radiation
field. More general formulations also exist, including ar-
bitrary integration paths and particle spin. ' The Power-
Zienau form of the Hamiltonian can be obtained from Eq.
(2. 1) by a unitary transformation on the Hamiltonian or
on the operators. The simplest way of treating the
transformation is by regarding it as a canonical transfor-
mation. According to Dirac, ' this is a unitary transfor-
mation on the dynamical variables (operators in the case
of a quantum theory). The Hamiltonian is then re-
expressed in terms of the new dynamical variables but is
itself invariant under the transformation, as are the physi-
cal states of the system. The alternative view, in which
the Hamiltonian is transformed, leads to the complication
that the same operators correspond to different physical
observables, before and after the transformation. In this
paper, Dirac's canonical viewpoint will be used
throughout.

For later comparison, H can be rewritten with the
transformed variables m. , D using the Power-Zienau
transformation. The new operators are still Hermitian
(and hence are observables}:

m„=Sp„S

D(x}=eoSET(x)S
(2.2)

Here S is a unitary transformation defined (for a detector
atom with its center of mass at xo ——0) by

S=exp P x Axd x

where

N
P(x)=e6' '(x) g (q„)+

n=1

(2.3)

The physical interpretation of the new operators &„,D(x)
is that m„ is the mechanical momentum of the nth parti-
cle [i.e., mv], while D(x) is the electric displacement
operator [i.e., eoET(x)+Pr(x)]. By comparison, in the
minimal-coupling case, the canonical momentum p„ in-
cludes an admixture of field properties; just as the
transformed operator D(x) now includes some of the par-
ticle position properties. The end result of the transfor-
mation is

H= f [D(x)—PT(x)] d x+ f B (x)d x
2&o 2pO

N

+ g &.„+V(q), . . . , q„)+
2m

(2.4)

In Eq. (2.1), interactions occur via the p A coupling. In
Eq. (2.4), interactions occur via the coupling of the polari-
zation to the electric displacement: Since the polarization
is proportional to the electric dipole moment in the dipole
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approximation, this is termed a d-E interaction. The
complete forms of Eq. (2.1) and Eq. (2.4) are equivalent.
However, the "free" and "interacting" parts of the Hamil-
tonian are not equivalent under this transformation.
Thus, when using approximations, it is possible to obtain
results that differ between the Hamiltonians of Eq. (2.1)
and Eq. (2.4), even though these describe identical physi-
cal systems. The reason for this difference is that the cou-
pling terms in the interaction part of the Hamiltonian
vary as (I/to)'~ in the p A Hamiltonian and as (to)'~ in

the d E Hamiltonian, where co is the mode frequency. It
is obviously desirable to write down the Hamiltonian in a
form that requires the least approximation.

where

COp

gk= —e
4ep Vm &uk

1/2

ek )

1/2

H/&= g tQka kak + g tQQb J b~
k J

+ g g gk uj ( b Jt+ bj )(a.k +a k )
k j

+ y gk(ak+ak ) tQQ

k
(3.2)

p= g (bj+b J ) uj )

III. MEASURING 6 AND A

Having written the Hamiltonian in two possible ways,
with different field operators, the question arises as to
which of these alternatives is relevant to photodetection.
Does a photodetector measure D, A, or some combination
of the two? In the case of resonant interactions on long
time scales, either formulation is equivalent, to lowest or-
der in perturbation theory. However, it is necessary to in-
clude nonresonant interactions when detecting photons on
fast time scales, in which case the frequency dependence
of the coupling becomes significant. In addition, the usu-

al approximation that D=epET is only correct to lowest
order in the coupling, and cannot be used in calculations
of a nonperturbative type. In fact, D and eQET differ by a
term equal to PT(x), which is localized at the detector in
the dipole approximation. This is obviously a problem:
after all, the detector is intended to measure the field at its
own location, which is exactly the place where t pET and

D are (nearly) infinitely different from each other.
In fact calculations exist in the literature which indicate

just how troublesome these questions really are. Using
standard techniques, it is straightforward to calculate
completely different photodetection probabilities using the
two forms of the Hamiltonian. Not surprisingly, the
differences —and the photodetection probabilities—
diverge as the ultraviolet cutoff of the theory is taken to
infinity.

In order to illustrate this, a harmonic oscillator example
will be used. The minimal-coupling dipole approximation
Hamiltonian is written after subtracting the free Hamil-
tonian ground-state energies, as

H =
& f:[ EeQT(x) +B (x)/pQ]:d x

+ —,:[p /m+mcoQq ]:——p. A(0)+ A (0) .
m 2m

(3.1)

Here colons indicate normal ordering. To simplify the
problem of a spherically symmetric three-dimensional os-
cillator as in Eq. (3.1), this can be rewritten, for oscillators
in the direction of unit vectors uj and for mode polariza-
tions ek as

A=+ 2' Vcok

1/2

(ekak+eka k)

1/2

q i=+ (bj. b i)—
26)pm

Uj

bj (t) =bi (0)e

[w Q
—lSkT (w Q )t l&k1 ]

—lQQ( Tt)ld
lgkj a ke + a k e e 7j

(3.4)

where ak(t) =a k exp( itokt)—
It is now possible to obtain the apparent photodetection

probability, I'z A(T), in a time T. This is .defined as the

The general situation is more complex, as there are
three independent harmonic oscillator operators, with
characteristic frequencies that could be different. The
Hamiltonian of Eq. (3.2) does take into account the dif-
ferent mode polarization directions through gk uj, which
for simplicity is taken to be real. It is obviously no worse
than two-level atom theory, and will be utilized here to
give an example of a photodetection divergence problem.

The normal procedure in published accounts of photo-
detector theory is to start with the detector in its free
ground state, which is then allowed to evolve in time. The
probability of photodetection is the excited-state popula-
tion after a defined interaction time T. The term corre-

sponding to A is dropped here, in order to compare
directly with calculations in the literature. Using the
Heisenberg picture, the time-evolution equations are

~
ak = icokak i g—gk, (bj—+b j),Bt

(3.3)

bJ —— i tQQbj i y—gkj(a—k+ a k ),
Bt

where gkj gk uj.
At this stage it is clear that the counter-rotating terms

severely complicate the solution of these equations. These
are the terms in the Hamiltonian of form a b and a b
which cause the mixing of annihilation and creation
operator terms on the right-hand side of Eq. (3.3). A
common procedure is to approximate the time evolution
of ak by its known free-field behavior. This gives the re-
sult
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expectation value of the Heisenberg operator b (T) b(T).
As a first step, suppose the field was initially in its free
vacuum state

~

0)„' here one might reasonably expect to
detect no photons. In fact, the probability of a photon be-

ing detected in time T is

P .&(T)= y &V(T)b, (T) &

J

41 gk I' . , (~p+~k)T
2

Sln
k (tPP+tPk )

(3.5)

Replacing the sum over discrete k's by an integral, which
gives the large mode volume limit of
+~V f cp dip/(m c ), gives

M tp (cpp+cp)T
Pz t, (T) ix: . sin

(cpp+cp )
(3.6)

Here the (trivial) angular integral is omitted, and use is
made of the fact that

~ gk ~

~ 1/cp. Despite this dimin-
ished coupling at large co, the overall photodetection prob-
ability is logarithmically divergent as A@M~~. In fact,
cpM has a natural limit: An ultraviolet cutoff at AM -c/r
is necessary owing to the use of the dipole approximation,
where r is an atomic radius. In summary, not only is
there an apparently nonzero photodetection probability,
but the calculation is divergent in the large cutoff limit.

It is possible to repeat this calculation using the alter-
nate Hamiltonian, Eq. (2.4). In this case the transformed
Hamiltonian is

H /fl = g Ci)k CX k Ctk + g Cpp p & pj
k J

—g g re(PJ PJ)«k ——ctk)
k j

2

g rk, (P j~ PJ)—
k j

COk (3.7)

where

COk

gkj ~7kj
COp

ak =Sak S '=ak+ ggk&(b j~ b~)/ci)p, —
J

f3~ =S b)S ' =bj + g gkj. (ak +a k )

/happ

.
k

For comparison with Eq. (3.4), the time evolution of
A

g
A

P(t) can be computed, without the self-energy (p —p)
terms. In this truncated form, the Hamiltonian is formal-
ly similar to Eq. (3.2), except for the coupling term signs.
Again, suppose the field has an initial vacuum state. This
time the photodetection probability is Pd. E(T), which is
defined as

pd. E(T)= g & p)~(t)PJ. (t) ) . (3.8)

An identical approximation to the earlier case is used.
The result is now, after replacing the sum over discrete
k's by an integral:

Pd.E(T) cc f ( Cpp +cp )T
2

Sln
cpp(Cop+ Cp )

dip . (3.9)

This expression is quadratically divergent, scaling as AM.
The presence of the sin term does not prevent this diver-
gence, as its average value is nonzero. The divergence
arises even for an initial free vacuum in the calculation; of
course other differences occur in fields of finite photon
number due to the different dependence of gk and yk on
~k

Thus while the two approaches give different results,
each causes divergences to appear in this type of calcula-
tion. The reason that this occurs is partly that the initial
free vacuum states are inequivalent in the two calcula-
tions: The "free Hamiltonians" in the two calculations
are physically distinct, and therefore have different
ground states. It is, of course, possible to force the two
approaches to give identical results by choosing the initial
and final states so that they are in fact physically identical
in the two calculations. ' These would no longer corre-
spond to free vacuum states in one of the formulations,
leaving the problem of which initial and final states to
choose still unresolved.

In addition, part of the problem outlined in this section
is due to the approximation of removing the self-energy
terms from the calculation. This was done to show the
difficulties inherent in the standard calculation of photo-
detection probabilies. Another approach is to attempt to
solve the Heisenberg equations of motion rigorously, in-
cluding the self-energy terms. This has been carried out
by Rzazewski, ' who finds some cancellation of the worst
part of the divergences when the self-energy term is in-
cluded in Eq. (3.7). The solutions obtained in this way
have the structure of inverse Laplace transform expres-
sions for the Heisenberg operators, and so do not have a
direct interpretation in terms of observables. Neverthe-
less, the problem of different definitions of initial states
remains. Both calculations still predict divergences in the
Heisenberg operator time developments. The actual pho-
todetection probability would then depend on the choice
of initial state for the detector atom. This choice is not
made by Rzazewski, leaving open the question of suitable
initial states and detector output states.

IV. SINGLE-MODE CANONICAL
TRANS FORMATIONS

The solution to the paradox outlined in Sec. III is sim-
ple. It is to use an initial state which does not depend on
an artificial splitting of the Hamiltonian into "free" and
"interacting" parts. An example is just the ground state
of the total Hamiltonian. Since this ground state is an
eigenvector of the complete Hamiltonian, it is time invari-
ant, and does not lead to any time-dependent photodetec-
tion probabilities in the case of a vacuum. States of finite
photon number should then be defined relative to this true
ground state.

In order to implement this, it would be advantageous to
have a Hamiltonian without the counter-rotating terms
that cause divergences. One approach, called the
rotating-wave approximation, is to omit these terms com-



35 UNIFYING THE p A AND d E INTERACTIONS IN. . . 4257

ak Uak U
(4.1)

pletely. Since this leads to an infinite (in the limit
coM ~ ao ) change in the results predicted, it scarcely seems
to be a good approximation to use in general. According-
ly, the normal rotating-wave approximation (RWA) will
not be used here. An alternative approach is to canonical-
ly transform the original operators to obtain a Hamiltoni-
an without counter rotating terms. In some cases, this
provides a simple way of computing the true (interacting)
ground state, as well as handling the time development.

Suppose that a harmonic oscillator detector is to be
treated, as before. A unitary transformation U is applied
to the operators:

ine how the usual Power-Zienau transformation [see Eq.
(2.2) and (2.3)] alters the functional form of H in Eq.
(4.3). In this case, the Power-Zienau transformation has
the form

S=exp[g(a+a )(b b—)/cop] .

Hence,

a=a+g(b b)/—cop,

P=b+g(a+a )/cop .
(4.6)

The Hamiltonian H from Eq. (4.3), written in terms of
operators a,P becomes

b~ ——Ub~ U

where

U —1

This transformation leaves the commutation relations in-
variant, i.e.,

Hlk=cocc cc+copPt f3 y(P —P t)(cc—cc t)—
(p t p)2

where

y=g(co/cop) .

(4.7)

[bk» J ]= [ak a j~]=4,
fak b, l=[ak b J]=0. (4.2)

H/A=coa a+copb b+g (a+a )(b+b )

+g'(a+a )'/cop,

and the required form, in terms of a and b, is

(4.3)

H/@=co a a+copb b+g a b t+g a b+Aco . (4.4)

Thus the transformed operators can still be regarded as
creating and annihilating elementary excitations in the
coupled quantum system of interest. In order that the
new operators are still identifiable as detector and radia-
tion operators, the transformation should be minimal, in
the sense that the transformed operators should differ
from the original ones by terms of O(g/cop). This rules
out the use of a diagonalization transformation, which
changes the operators by terms of O(1) on resonance. A
suitable transformation can now be evaluated for the case
of one mode coupled to a detector atom, with the require-
ment of no counter-rotating terms. The initial form of
the Hamiltonian is (with just one oscillator direction in-
cluded):

where (4.8)

a„=Ua U ', P„=Ub U

Here 2) defines the nature of the resulting operators a„,13„.
With g =0 these operators have a p. A interaction; with
q=g/coo they have a d.E interaction in the final Hamil-
tonian, and U has the Power-Zienau form. The Hamil-
tonian obtained by choosing 2) =g/(cop+co) has the fol-
lowing symmetric form:

H/R=coa qcc„+copP„Pq

+ (a„a„)(p„—p„)+—(a„+a—„)(8„+8„)

This transformation has the effect of producing a Hamil-
tonian with symmetrically interchanged terms relative to
Eq. (4.3). The self-energy now appears in the ()33 —P)
term. While the counter-rotating terms are still present in
the interaction, they have the opposite sign to those previ-
ously obtained. A hybrid transformation, midway be-
tween the minimal coupling and the Power-Zienau forms,
could be expected to eliminate these terms completely. A
transformation of a suitable type is

U(q, a, b ) =exp[g(a+a t)(b b)]—,

In this form it is clear that H =H —Ahcg is positive semi-
definite if G, BO)g )0. This follows since each of the fol-
lowing terms is non-negative:

—2 —2
(~~ +~~1)2 Y (f3 pt)2

4~ 9 9 4~ I (4.9)

(e iH
i
q ) =a[(a—g)(q i a'a

i
e)

+ (cop —g ) ( 4
~

b b
(

qi )

+g(P
(

( +b) ( +b)
~

q')] . (4.5)

The state
~
%p) =

~

0)—
~
0)b has a zero energy eigenvalue

relative to H. It is therefore the true ground state.
It is now necessary to evaluate a suitable transformation

that leaves H in the form of Eq. (4.4). This is a question
of rewriting H using new operators a, b instead of the old
set a, b. In order to achieve this, it is instructive to exam-

where

1 =2gco/(cop+co)

The obvious property of this Hamiltonian is the com-
bination of p. A and d.E interactions, together with self-
energy terms in (a„+a„) and (13„f3„). The p. A in--

teraction [i.e., (cz„+a„)(P„+f3„)]has an exactly equal
weighting to the d E interaction [i.e., (a„—a z)
X(P„—/3„)]. This means that, with this choice of rI, the
counter-rotating terms of order g—which have an oppo-
site sign in the two different types of interaction
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Hamiltonian —now cancel out of the Hamiltonian corn-
pletely.

It is possible to further improve on the Hamiltonian of
Eq. (4.9) by noting that one can also remove the self-
energy corrections, thus removing all of the counter-
rotating terms. This is a renormalization problem, which
could be treated by adding suitable counter terms to the
Hamiltonian in Eq. (4.3). Rather than using this pro-
cedure, it is more straightforward to keep the original
Hamiltonian and transform the operators. The frequency
coo is therefore the unrenormalized frequency, which is
later used to calculate an interacting frequency cop. The
interacting frequency includes the complete nonrelativistic
renormalization or Lamb shift of the ground-state energy,
provided m is regarded as the bare (unrenormalized)
mass.

The initial transformation required is a squeezing
transformation ' on a,P which produces additional self-
energy terms that are equal and opposite in sign to those
of Eq. (4.9). The recoupling transformation that alters the
interaction to the symmetric form then cancels these self-
energy terms. This leaves the final Hamiltonian without
counter-rotating or self-energy terms, as desired. In order
to achieve this result, define new operators a, b:

a=UR aR 'U

b=UR bR 'U
(4.10)

where

R —=exp[6[a —(a ) b+(b —) ]/2I,
U—:exp[g(a+a )(b b)], —

hence,

a =a cosh(6) —a t sinh(6)+g exp(6)(b b), —

b =b cosh(6)+b sinh(6) —q exp(6)(a+a ) .

The ground-state energy A'Ace is

fibco=fi(co+cuo) sinh(6) exp(6)

where

(4.11)

6= 4 ln 1+ 4cog

coo(coo+ co )

co/co =coo/coo ——exp(26),

g
g )

COp+ CO

2gco

COp+ 67

The result of rewriting the Hamiltonian of Eq. (4.3) us-
ing this transformation gives the required form specified
in Eq. (4.4), without counter-rotating terms. This is an
exact transformation. Apart from the frequency renor-
malization of the bare frequencies co, cop to the interacting
frequencies co, cop, the Hamiltonian has a similar form to
Eq. (4.9). The counter-rotating terms in the detector cou-
pling as well as the self-energy terms are all canceled by

the operator transformation. This exact canonical
transformation extends an approximate calculation pub-
lished previously. '

From Eq. (4.11), the true ground-state energy (in

~
0)

~
0)&) is ficog /[coo(co+~0)] for weak coupling. It is

instructive to compare this with the energy in either of the
two bare vacua. In the case of the p. A coupling, this en-

ergy is R(g /coo), which varies as I/co. Thus the p A
bare vacuum state

~
0),

~
0)& approaches the true

ground-state energy at high mode frequencies. With the
d E coupling, the energy of the bare vacuum state

~

0)
~

0)p is R(cog /coo), which varies as I/coo. This gives
a better approximation to the true ground-state energy at
low mode frequencies.

The above results demonstrate that it is possible to re-
move all the counter-rotating terms from the Hamiltonian
of a harmonic oscillator interacting with a single field
mode, with a nonresonant transformation having minimal
mixing between the "detector" and "radiation" operators.
It is still possible to distinguish atom and field observ-
ables, in the same way that the minimal coupling momen-
tum p is regarded as a particle momentum; even though it
includes some field properties. ' Here the transformed
momentum p is an operator with hybrid characteristics,
having a combination of minimal coupling (p) and
mechanical (&) properties.

The new Hamiltonian has an extremely simple time
development for its Heisenberg operators. The exact solu-
tion for an initial state

~

4 ), ~

0)& gives the photon detec-
tion probability:

P(t)=(b (t)b(t)) =[gsin(Qt)/0] (a (0)a(0)), (4.12)

where

A=g +4
b, = —,

'
[co —coo

f

Thus the detector excitation corresponds in a straight-
forward way to the input excitation. Completely efficient
photodetection is possible: This occurs only for exact res-
onance of the renormalized frequencies. In this case it is
necessary to observe for a known time interval,
T =n/(2g), in order . to complete the transfer of energy
from the mode to the detector. At the end of this time,
the mode is left in its ground state, with the excitation in
the detector system. This allows all the information
present originally in the state of the field to be transferred
to the detector state: thus higher-order correlations could
be inferred also. While this procedure is similar to the
pointer basis technique' developed recently in the
analysis of quantum measurements, it leaves the original,
measured field in a completely different state (i.e., its
ground state) from its initial one.

In this measurement, there is no reduction of the wave
packet in the usual sense. Nevertheless, an efficient mea-
surement of this type is different from the case of an inef-
ficient photodetection measurement. In inefficient photo-
detection the final state is never an eigenstate of the pho-
ton number operator. In the efficient case, the new state
of the field is a well-defined eigenstate of the number
operator, and can be used as the starting point for subse-
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The Hamiltonian generated by the canonical transfor-
mation is of the structure of Eq. (4.4). Since the a
operator is only a slight modification [i.e., of order
(g/coo)] of the original a operator, it is reasonable to
refer to it as creating photons. This terminology is just as
logical as the accepted practice of referring to the field
operator D(x)/ep in the multipolar Hamiltonian as being
an electric field operator. It too differs from the minimal
coupling operator Er(x) by terms of O(g/coo). In fact,
one usually regards the lowest energy state of the Hamil-
tonian as being the state of zero photon number. This is
clearly true of a, a, although not of a fa, since the bare
minimal-coupling vacuum state is not an eigenstate of the
fu11 Hamiltonian.

While it is simple enough to regard the operators a, a
as creating dressed photons, it is necessary to also recall
that the definition of a, a is not unique in terms of giv-
ing a Hamiltonian of the required structure. The idea of a
dressed photon does, however, provide a useful insight
into the effect that a detector has on the physical system
it is measuring. One unique property of any a operator as
defined according to Eq. (4.4) is its vacuum state: which
is the (unique) ground state of the full Hamiltonian. It is
useful to examine the difference between this and the
ground state of the free minimal-coupling Hamiltonian.

In order to do this, quadrature operators for the
minimal-coupling electromagnetic field will be defined as

X, =(a+a ),
Xq i (a —a ——) .

(5.1)

In terms of the bare vacuum (
I

'Pp&=
I
0&,

I
0&b) one has

& q'o
I

X i I
+o &

= ( +o
I

X 2 I
q'o & = 1 . (5.2)

In the interacting vacuum (
I

%p & =
I
0&,

I
0 &b ), the quad-

rature fluctuations can be calculated simply on re-

expressing X&,X2 in terms of the new operators a, b, using
the results of Eq. (4.11):

(q o I

X',
I

Wo& =exp( —2e),
( 0 p I

X p I
q p&: ( 1 +4g ) exP(2e)

(5.3)

In the limit of weak coupling (g «co, coo), this expression

quent measurements. Thus an efficient photodetection
measurement is a type of quantum nondemolition mea-
surement. ' '

This procedure justifies Mollow's treatment of single-
mode photodetection. The actual operators and fields do
not correspond to those used previously, however, except
in an approximation valid near the resonance frequency
Q)0. The measured creation and annihilation operators are
the transformed operators a, a. The canonically
transformed field operators, denoted A, E for simplicity,
couple to the detector symmetrically with frequency
weighted p. A and d.E interactions, respectively. These
fields can be regarded as interpolating between the
minimal-coupling and the multipolar forms of the opera-
tors.

V. SQUEEZING

can be expanded to order g, giving a result that agrees
with an earlier approximate expression. ' This allows the
frequency dependence of the squeezing ' to be directly
calculated:

2 2

(q, Ix',
I
q, &=

( COp + Cc) ) CO p

+O(g ),
(5.4)

VI. MULTIMODE THEORY

The single-mode, single-detector theory given above can
be readily extended to cover multimode cases as well as
more realistic detector energy levels. In these more gen-
eral cases, the transformations required for renormaliza-
tion are difficult to obtain exactly, although the recou-
pling transformation is still reasonably straightforward.
It is simpler to proceed with an approximate renormaliza-
tion, as is usual in quantum electrodynamics. This will be
taken to O(g ) as a first step. A complete calculation to
any higher order would also require the inclusion of elec-
tric quadrupole and magnetic dipole interactions. The
time evolution of the resulting equations can still be treat-
ed nonperturbatively, so this permits the treatment of effi-
cient photodetection. In order to demonstrate the pro-
cedure, the harmonic oscillator detector will be treated
here. More general cases will be treated elsewhere.

The harmonic oscillator Hamiltonian of interest has the
structure given by Eq. (3.2). Although this is a relatively
straightforward case, it is sufficient to illustrate the nature
of the multimode calculation. A similar technique to that
of Eq. (4.10) can now be employed with new multimode

2g (ci)+2')p)
(qoIX2I qo&= 1+, +O(g') .

(coo+co ) coo

It is notable that the dressed state
I

%o& is no longer a
minimum uncertainty state relative to the X~,X2 quadra-
tures. It is, of course, a minimum uncertainty state with
equal fluctuations relative to the X&,X2 quadratures.
With respect to the original quadrature operators, there is
a squeezing (uncertainty reduction) in the X& quadrature.
This was expected in view of the squeezing transforma-
tion used to obtain Eq. (4.10). The nature of the squeez-
ing is different from that occurring in recent calculations
of reduced quadrature fluctuations in nonlinear optics,
which usually occur in rotating frame quadrature opera-
tors. Here the squeezing is in a laboratory-frame quadra-
ture. By comparison, the squeezing calculated here would
oscillate at optical frequencies if rotating frame quadra-
ture operators were used. In fact, the quadrature with in-
creased fluctuations is a type of electric field operator, the
one with reduced fluctuations a type of magnetic field
operator. Thus a squeezed state of the electromagnetic
field in the laboratory frame is induced by the presence of
a detector atom. Since quadrature fluctuations change the
zero-point energy in the vacuum field, these results imply
a change in the energy of the interacting field due to vir-
tual transitions. Similar results to the above have been re-
cently obtained in calculations of the energy density of the
electromagnetic field near an isolated atom, ' using low-
order perturbation theory.
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transformations R, U:

ak ——UR akR 'U

2gk-gJ ~j~k
(a/k +~J )kJ ——

(6)k +COP)( COJ +Mo)COO

bi =UR biR 'U

where
r

R =exp —, g g (Bk&aka/ —BkJa k a /)
k j

(6.1)

hence,

I gk I

3COp Ct7k +Q)p

~k Igkl
~0(~k +~0)

2 (6.5)

——,
' e g [b,' —(b,')']

J

U=exp g Vkj(ak'+a k)(bJ b J)
k

ak ——g cosh(6)k/a/ —sinh(6)k/a /

I

+exp(B)k/ g rJ//(b/. b~.)—
J

(6.2)

b/ ——cosh(8)bJ+si hn(6)b /
—exp(6) g gkJ(ak+a k) .

k

Substituting this transformation into the Hamiltonian
gives, to order g, the following new expression:

~I&= g g ~ k", a ka, + g ~ob /b&
k J J

+ y y g/, J(a/, b/. +a /, bJ)+b, Q) .
k j

(6.3)

Here I have utilized rlkJ as in Eq. (4.10), so that

and

1
rIkJ = ( gk uJ )

COk +COP

~a/= g ~k'Bkk+3a/o~=)

&, +( + J)&, , (6.4)

coo ——coo(1+20),

2' k
gk, =(gk. u, )

COk +COp

Here [BkJ,OI are real, symmetric terms of O(g ), and

I gkJ I is of 0 (g). This transformation can be expressed
directly, on expanding the exponentials, as follows:

2 CO
m ~~od~

Q) dco-
CO+ COp

In Eq. (6.3), the term that corresponds to the ground-
state Lamb shift is positive, as it was in the one-mode
example. At first, this seems unusual: The standard
Lamb shift calculation gives a linearly diverging negative
energy shift ' for the ground state, to order ( g ). The
reason for this difference is that most calculations omit
the 3 term in the Hamiltonian. This does not alter rela-
tive energy levels, but it does increase the overall energies.
With this term added, the ground-state Lamb shift can
be checked using the minimal-coupling Hamiltonian and
perturbation theory. The result is as in Eq. (6.5), where
the first, quadratically diverging integral comes from the

term. The remaining integral can be further regular-
ized by mass renormalization. '

An obvious feature of this Hamiltonian that is not
present in the electric dipole (d E) Hamiltonian is the
presence of nondiagonal terms Okj, coupling plane waves
of different momenta. Similar terms are present in the
minimal-coupling Hamiltonian, where they give rise to
direct scattering processes. At high frequencies, these
cause Thomson (i.e., free electron) scattering. In the usual
theory of photodetection, these direct scattering terms are
not present, as they are included in the dipole-coupling
and self-energy terms of the multipolar (d E) Hamiltoni-
an. In the present treatment it is clear that these processes
result in a nonresonant scattering of the input field,
without any corresponding excitation of the photodetec-
tor. This direct scattering occurs at both high and low
frequencies in the present Hamiltonian, where it gives rise
to Thomson and Raleigh scattering, respectively. It clear-
ly presents a fundamental limitation on photodetector ef-
ficiency in the multimode situation. The natural emer-
gence of these processes out of a single, unified Hamil-
tonian is a distinct advantage of the canonical transforma-
tion used here.

Despite the scattering induced by the detector, it is sti11
possible to obtain a relatively simple expression for each
oscillator mode excitation. This is achieved using the
canonically transformed Heisenberg picture field opera-
tors, in a similar way to Eq. (3.4). In the Heisenberg pic-
ture each detector operator time development is

Equation (6.3) is only valid when the counter-rotating and
self-energy terms cancel to the given order. This results
in the following equations for the transformation parame-
ters:

b/(t)=b/ (0)e
' ' —g f. igk/ak(r)e

' 'dr .
k

This implies that the photodetection probability is

(6.6)
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T

g fo f gg kj gg, &~ k(+l)a (+2)&
J k m

where

4p(t, x)= g
k

1/2
2 ( CO k COP / V)

eke(t)e'"

(6.7)

2

p(T) = f f & @ o(&],xo) C p(Tp, xo) &

4neom

(6.8)

5.0 .

2.5—

-2.5

-5.0—

7 5 t

-5.0 0.0 2.5

(n(u/u, )

In order to compare this with the usual form of the pho-
todetection probability, it should be noted that in pertur-
bative treatments to lowest order, the interacting fields a~
can be replaced by the noninteracting (input) fields a k

To the same order, dipole-coupled operators n k could
also be used. Since the results obtained differ with respect
to the coupling of the nonresonant modes, it is clear that
the theory presented here predicts different results from
the usual dipole-coupled theory, for experiments on ex-
tremely fast time scales. An interesting result of these
time scales is that the photodetection probability has a
quadratic dependence on the time scale T for Tcoo && 1, as
opposed to the linear dependence assumed in axiomatic
theories of continuous measurement in quantum theory.

To simplify Eq. (6.7), define a new field operator
N o(t,x), which is the detectable photon amplitude relative
to the frequency coo ( =coo). Using this new field, the pho-
todetection probability in the time T, is

The above equation holds on a11 time scales. It is not
dependent on cycle averaging, and it includes effects due
to absorption and scattering. This requires that the fields
utilized are the interacting fields, and that the frequency
is the interacting (renormalized) frequency.

It can be noted that for near-resonant detection,
4 o(t,x) is approximately equal to one of the fields used to
describe photon dynamics. This shows that an atom
detects photons, not the vector potential or the electric
field. Equation (6.8) can be tested using a near-
monochromatic field of frequency cok, with a time of
T &(coo—cok) '. The theory predicts that the photo-
detection efficiency is frequency independent for coo=cok.
By comparison, the p. A and d.E photodetection theories
predict frequency-dependent efficiencies, proportional to
coo/cok and cok/coo, respectively. The theory presented
here interpolates between these two extremes, as shown in
Fig. 1.

VII. CONCLUSION

In summary, the new operators defined here allow a
natural treatment of photodetection in terms of a Hamil-
tonian without counter-rotating terms. This removes vir-
tual corrections from the calculation, without any need
for the rotating-wave approximation. Traditional
methods for calculating photodetection probabilities do
not give unique results when changing from the d E to
the p A forms of the interaction Hamiltonian, as the
rotating-wave approximation has different effects in the
two types of Hamiltonian, except on long time scales.
Unless care is taken in defining appropriate input states,
these traditional methods for photodetection theory also
give divergent results when the rotating-wave approxima-
tion is not employed. The unified or symmetric form of
the Hamiltonian utilized here is applicable on all time
scales, and gives finite results in the large cutoff limit.

The ground-state fluctuations can also be obtained from
the transformation used to generate the operators. The re-
sult that the ground state is squeezed is in general agree-
ment with field energy calculations of Persico and
Power. ' The point of interest is that a simple unitary
transformation of the system operators allows these fluc-
tuations to be included in a calculation of photodetection
probability. This transformation renormalizes the Hamil-
tonian, as well as altering the coupling to a form without
counter-rotating terms. These methods have a large po-
tential applicability in other areas of nonperturbative and
ultrafast-time-scale quantum electrodynamics.

FIG. 1. Cxraph of coupling (1n[g/go] ) vs frequency
(In[co/coo]) in the p A, d.E, and symmetric photodetection
Hamiltonians. The p. A interaction is denoted by the dotted
line, the d E interaction by the dashed line, and the solid line is
the symmetric interaction.
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