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Coexisting oscillation modes and optical chaos in a hybrid ring cavity
containing an induced absorber (Cds)
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We investigate the self-oscillations of an induced absorber (CdS, photothermal effects) in a hybrid
ring cavity. If the induced absorber is intrinsically bistable, we show that for a given set of system
parameters different oscillation modes may exist depending on the initial conditions. In contrast to
the behavior of an intrinsically bistable absorber, we find a bifurcation route to optical chaos if the
induced absorber is not intrinsically bistable.

I. INTRODUCTION

In a recent paper' we have presented the first experi-
mental investigation of the behavior of an induced ab-
sorber in a ring cavity. We use a hybrid ring cavity,
which converts the intensity transmitted by the sample
into a voltage signal which is delayed and fed back by use
of an electro-optic modulator. The reader is referred to
Ref. 1(a) for a description of the setup because we regard
the present paper as an extension of Ref. 1(a). In Ref. 1(a)
we characterized the optical bistability (OB) due to in-
duced absorption, and showed how to measure the third
normally unstable branch of the bistability with the help
of the ring cavity. We also presented experimental evi-
dence supporting the appearance of the Farey tree struc-
ture of oscillation periods as a function of the incident in-
tensity predicted theoretically by Lindberg et al. , and we
discussed the dependence of the oscillations on various pa-
rameters. In this paper"' we have concentrated on the
behavior of an intrinsically bistable induced absorber in
the ring cavity leading to the Farey tree structure in con-
trast to Ikeda instabilites, where generic routes to optical
chaos do exist.

In the present paper we want to discuss further the
properties of a ring cavity containing an induced absorber,
which can only be described by taking into account that
the system is infinite dimensional in the sense that an in-
finite number of initial conditions are necessary to
describe the behavior.

In Sec. II we present the effect of mode coexistence
both experimentally as we11 as theoretically for the case of
an intrinsically bistable induced absorber. This effect has
not been discussed in the theoretical papers. We will
show that in principle there exists an infinite set of coex-
isting modes.

Finally, in Sec. III a bifurcation route to chaos is ob-
served in the case of a not-intrinsically-bistable absorber.
This scenario is quite similar to Ikeda instabilities, which
are also the product of a not-intrinsically-bistable non-
linear medium in the ring cavity.

II. THE EFFECT OF MODE COEXISTENCE
A. Experiment

In Fig. l we show three different measured oscillation
modes for one fixed set of system parameters. The round

trip time ~z is 500 ms which is roughly 500 times the re-
laxation time constant ~ of the induced absorber and
therefore large compared to r The . polarization is E~~c
with c being the crystallographic c axis of the CdS
single-crystal platelet at room temperature. The thickness
I of the sample is I. =3 pm. The crystal shows intrinsic
OB due to induced absorption under these conditions.

In agreement with Refs. 1 and 2 we denote a steplike
oscillation where the transmitted intensity I, rises for n

round-trip times and decreases for m round trips as an
(n, m) mode. The oscillation in Fig. 1(a) is denoted as a
(2, 1) mode. In Figs. 1(b) and 1(c) all system parameters as
the reflectivity of the two semireflecting mirrors R and
the incident intensity Io are kept constant. The only
difference is that we have disturbed the system for a short
time by putting a hand into the cavity. After a short tran-
sient phase one of the three oscillations in Fig. 1 is always
obtained and remains stable. If Io is simply switched on
and the system is left alone the oscillation in Fig. 1(a) al-
ways appears, and which we therefore call the basic mode.
Only such modes are discussed in Refs. 1(a) and 2. A dif-
ferent way to excite one of the coexisting modes is to
modulate the constant incident intensity for a short time.
This is analogous to OB in that OB with two transmitted
intensities exist when using Io as the control parameter,
whereas in the present system multiple oscillation modes
in the transmitted intensity exist when using the modula-
tion of Io as the control parameter.

Looking at Figs. 1(b) and 1(c) or at Figs. 2(a) and 2(b),
which show an enlarged view of the same measurements,
one can see that in Figs. 1(b) and 1(c) one or two addition-
al maxima per round-trip time are obtained, respectively.
In the following we denote an oscillation as an (n, m)&
mode when having N additional maxima per round trip
compared to the basic (n, m )0——(n, m) mode. In Figs. 2(a)
and 2(b) it becomes obvious that the additional maxima
always have the same structure as the basic mode, i.e., the
plateaus of the steplike oscillations are situated at the
same transmitted intensities. The oscillation (2, 1)t [Fig.
2(b)] is self-similar in that sense, because the twice-
up —once-down structure is also present if one reduces the
time scale to the order of the additional maximum.

The effect of mode coexistence is also observed for all
other Io. Figure 2(c) shows one further example. Io is
smaller as compared to Fig. 2(b) and therefore a (4, 1)2
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oscillation is obtained corresponding to the basic (4, 1)
mode. Again the additional maxima show the same struc-
ture as the basic mode. If ~z is decreased we observe the
coexisting modes disappear at about ~z ——200 ms, while
the basic modes vanish at about rz ——2 ms. [See Ref.
1(a).]

B. Theory
As discussed in Ref. 1(a) the whole system can be

described by the two following equations:

I( t) =Ip+R I,(t r—g ),
d( b, T) ldt = —6T/r+ 3 ( 5 T)I( t) I(CL ),

with

A ( AT) = 1 —exp[ a(—6T)L ],
I, (t) =I(t) exp[ —a(b, T(t) )L ],

(2)
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FIG. 1 . Experimental appearance of coexisting modes for one
fixed set of system parameters CdS, E!!c,T= 300 K, Ip= 73%
Il A =75%, ~~ ——500 ms, L =3 pm, and Ace=2. 410 eV.
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FIG. 2. {a) and (b) show the same measurement as Figs. 1 (b)

and 1 (c) but on an enlarged scale. (c) is one coexisting oscillation
to the (4, 1 ) mode for Io =63% I, .
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and AT=T —To being the difference between the local
temperature T in the laser spot and the surrounding heat
bath To, C the heat capacity, I (t) the intensity in front of
the crystal, and a(b. T) being the temperature-dependent
absorption coefficient. In Eq. (1) we add intensities corre-
sponding to our hybrid system [see Ref. 1(a)].

We want to start the discussion with the limit ~z &&~.
In this limit hT can be eliminated adiabatically. In order
to simplify the situation further we use Eq. (1) and a
schematic hysteresis Eq. (3):

short while. This fact is in good agreement with our ex-
perimental result, where we find no coexisting modes for
rz &200 ms (see Sec. IIA). For every finite rR/r the
number of coexisting modes (infinite for rz »r) is re-
duced to a finite value and, e.g. , in the experiment we nev-
er find more than three [(2, 1)z 0 ~ q r~ ——500 ms].

I (r) =I,+R'I, [I(r —r~ )],
I: I & I, and higher branch,

ITL. I &I, and lower branch, (3)

~ ~

O

with TL the transmission of the low transmitting branch.
Note that I, (I) is bistable in the region I„&I &I, .

In Fig. 3 we show three coexisting modes obtained with
Eq. (3). In Fig. 3(a) the initial conditions are I(t)=0,
0&t &r~ obtaining the basic (2, 1) mode. In this case a
reduction of the delay equation (1') to a one-dimensional
mapping is possible, which is not the case in Figs. 3(b)
and 3(c). Here one or two additional maxima, respective-
ly, are taken into the initial state. Figure 3 corresponds
closely to our experimental findings in Fig. 1. If addition-
al maxima with a different position of the plateaus are
chosen, the final state (when transients have died out) is
always one of the types in Fig. 3.

In the present limit (rz »r) an infinite number of
coexisting modes exists, because the additional maxima
can be made infinitely short with N =0, 1, . . . , ~. The
frequency f of an ( n, m )~ oscillation is easily found to be
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(b)

f((n, m)~) =[1/(n +m)+N]Tg ', (4)

demonstrating that the coexisting modes can be regarded
as higher harmonics of the basic mode.

In order to be more realistic (rz lr finite) we have to
solve the coupled delay-differential Eqs. (1) and (2). As
performed in Ref. 1(a) we use a fit to the measured a(b. T)
(CdS, E~~c, To ——300 K) for the numerical calculation.
Now we are able to study the influence of a finite medi-
ums response time on the effect of mode coexistence.

Figure 4(a) again shows the simple (2, 1) oscillation for
rR ——100& [see Fig. 16(a) in Ref. 1(a)]. Figure 4(b) presents
the coexisting (2,1)~

mode which is obtained after prepar-
ing the system in a state like Fig. 3(b). After a short tran-
sient phase the oscillations become periodic, oscillating
with a higher frequency. Although the steplike structure
is smeared out a little it can clearly be seen that the
twice-up —once-down structure remains for ~z ——100~.
The line in Fig. 4(a) has a length of 3rR showing that the
oscillation period has increased due to the finite medium
response time. The period is increased a little further for
the (2, 1)& mode [in Fig. 4(b) the first line has a length of
3~+, the second line has a length of the (2, 1)0 period].

In Fig. 4(c) we have decreased rz by a factor of 10 to
r~ =10&. Under these conditions (the system is prepared
into the same state as done for rR ——100' [Fig. 4(b)]) the
coexisting mode is not stable and is damped out after a
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FIG. 3. Theoretical coexisting modes as obtained with Eq.
(3), TL ——0. 1, Io ——0.5 I„ I, =0.6 I„and 8 =75%. This
series schematically describes our experimental findings in Fig.
1.
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in the ring cavity, we find a bifurcation route to chaos if a
not-intrinsically-bistable induced absorber (CdS, El c,
To ——300 K, fico =2.410 eV) is taken.

In the polarization Elc the medium is not bistable be-
cause the 3 I ~ exciton, which is dipole forbidden for E~ ~c,
is allowed in the symmetry Elc. Therefore, the absorp-
tion edge is shifted into the fixed photon energy, the ini-
tial absorption cc(A T=0) increases, and the slope of
cc(b, T) is not steep enough for the appearance of OB due
to induced absorption. But the nonlinearity cc(AT) is still
strong enough to obtain a regime with a steep negative
slope of I,(IO). This measured dependence is shown in

Fig. 5 [the quadratic increase for small Io is explained in
Ref. 1(a) and is the result of the fact that we do not mea-
sure Io with a separate photodiode but take the voltage
signal applied to the Pockels cell modulating the incoming
laser beam].

In Fig. 6 we present that we have measured for I, (t)
when decreasing the constant incident intensity Io being
in the limit r~ ~&r (rz ——500 ms). For Io ——93% I, [I, is
defined as the arithmatic average of the two extrema of
the I, (Io) curve shown in Fig. 5 and is therefore roughly
situated in the middle of the steep negative slope of
I, (IO)], a constant I, corresponding to fixed points is ob-
served. For Io & 93% I„oscillations with a period of 2rii
appear. In Fig. 6(a) (Io ——54% I, ) such an oscillation can
be seen showing oscillations of higher frequency especially
at the end of the steps. For Io ——52% I, a bifurcation to
period 4rii is revealed. In Fig. 6(b) (Io —51% I, ) the
difference to period 2~& is much more pronounced. The
amplitude of the additional high-frequency components
has increased. Periods 8~& or higher were not observed.
For Io ~ 50% I, we obtain oscillations which are irregu-
lar and are attributed to deterministic chaos. In Fig. 6(c)
(Io ——37% I„note the changed time scale) we show one
example out of the chaotic regime, demonstrating that the
locking into multiples of ~z has totally vanished, the ir-
regular structures are of the order of the previous high-
frequency oscillations. We have analyzed the measured
signal in Fig. 6(c) (using 600 data points) with the method

0 I

8
tlat R

jo

FIG. 4. Numerical solutions of Eqs. (1) and (2) showing that
the coexisting (2, 1)& mode is damped out for ~z ——10~. 8'=1,
~=150ps, Io ——130 Wcm ~, and L =10pm.
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III. THE RING CAVITY CONTAINING
A NOT-INTRINSICALLY-BISTABLE ABSORBER

A. Experiment
0 l~(arb. units)

In contrast to the behavior of an intrinsically bistable
induced absorber (CdS, E~ ~c, To —300 K, A'co=2. 410 eV)

FIG. 5. I, as a function of Io measured under the conditions
CdS, Elc, To ——300 K, and L =3 pm.
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FIG. 7. K2 d as a function of the embedding dimension d, us-

ing the experimental data. The dependence is shown for various
values of l.
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K is the Kolmogorov entropy, K2 is the correlation entro-
py, Cd(1) is the correlation integral, d is the embedding
dimension, and ~, is the sampling time. For details see
Ref. 5. A plot of K2 d is shown in Fig. 7, leading to the
estimate of Kz ——(100+50)hatt . This positive value con-
firms our interpretation of the irregular signal as deter-
ministic chaos. The correlation dimension D2 [which is
the slope of ln( Cd ) as a function of ln( l)] is
D2 ——2.6+0.3.

B. Theory

t!tR
FICi. 6. Series of oscillations for decreasing Io using CdS,

Elc, To ——300 K, L = 3 pm, R = 1, and zz ——500 ms.

K2 ——lim, K2 d (K,
d~ oo
1~0

Kq d
———In[Cd(l)/Cd+~(l)],

1

S

(5)

of Grassberger and Procaccia, ' briefly summarized in
Eq. (5):

Again we want to start the discussion with the so-called
adiabatic limit rz ~~r which leads us to d(b T)/dt =0 in
Eq. (2). Then AT can be expressed in terms of I and I,
only becomes a function of I. If we know the dependence
I, (I) we can simply iterate Eq. (1').

In order to simplify things further we use a
phenomenological ansatz for I,(I), which consists of two
branches interpolated by a Fermi function:

I,(I)=I[TL+(1—TL) e/x [pS(I I/, —1)]+1)
with TJ ——0.05, S=15. The plotted dependence in Fig.
8(a) qualitatively describes the measured one in Fig. 5. In
Fig. 8(b) we have iterated Eq. (1') with the I,(I) depen-
dence in Fig. 8(a). This bifurcation diagram qualitatively
fits our experimental findings as described in the experi-
mental section. As is the case for all other maps follow-
ing the Feigenbaum bifurcation scenario the sequence
consists of an infinite number of period doublings. But as
can be seen in Fig. 8(b) the range of period 8&„ is very
small. If the noise level becomes comparable with the
width of this range it is clear that the bifurcation will not
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R = 0'/e

a finite number of bifurcations (with the parameters used
only 2rtt and then chaos) although they have looked very
carefully for further bifurcations. As is the case in our
experiments they find high-frequency components in the
2~& solutions and that the locking of the oscillations into
multiples of ~z disappears in the chaotic regime. They
suggest the high-frequency oscillations are responsible for
the termination of the period doubling sequence. It is
hardly possible to decide experimentally whether the dou-
bling sequence is finite or not because a certain noise level
will always be present.
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IV. CONCLUSION

In the present paper we have continued the discussion
of the behavior of an intrinsically-bistable induced ab-
sorber (CdS) in a ring cavity"' by presenting the effect of
mode coexistence, which is a result of the infinite number
of degrees of freedom of the system. Both experiments
and theory are done here for the first time. The effect is
analogous to optical bistability or multistability itself,
respectively.

In contrast to the bistable absorber where a Farey tree
structure of the oscillation period as a function of the in-
cident intensity is found, ""we find a bifurcation route
to chaos if the absorber is not bistable. We show experi-
mental indications that the adiabatic limit breaks down
because of high-frequency components arising from the
relaxation dynamics of the nonlinear medium.

FIG. 8. (a) R =0 (Io ——I), corresponding to the nonlinearity
of the medium itself. (b) R =95% shows the theoretical bifur-
cation diagram as obtain with the nonlinearity in (a).

be observable.
In a recent paper discussing Ikeda instabilities it was

found numerically that the adiabatic limit is singular.
When solving numerically a different set. of delay-
differential equations for a finite but great wit /r they find
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