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Evolution operator for a multilevel system in a continuous-wave laser field
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The assumed existence of a time-independent Kubo-type operator renders possible an analytic ex-
pression for the evolution operator of a quantized system. For a multilevel system dipole interacting
with a continuous-wave laser, the realization of a suitable Kubo-type transformation through an
algebraic algorithm may require that the Hamiltonian operator of the system be simplified through,
say, the imposition of the rotating-wave approximation and/or the appeal to transition dipole selec-
tion rules that validate the neglect of unimportant couplings. The resultant sparse Hamiltonian
operator is arbitrarily constructed on the basis of the near-resonant laser coupling of the ground
state to the excited states, but without direct appeal to the magnitude of the dipole coupling strength
parameters. The implementation and associated computational aspects of a resolvent method for
evaluating the evolution operator is discussed and illustrated through the calculation of the transi-
tion probabilities for the excitation of an anharmonic oscillator model of the CH stretch in CD3H.

I. INTRODUCTION

In this paper we are concerned with the laser-induced
multiphoton excitation of an isolated molecule under
collision-free conditions. Technological interest in the
development of isotope separation processes creates the
engineering design requirement for realistic simulations of
the underlying photoexcitation and photodissociation
dynamics of polyatomic molecules in coherent infrared
laser fields whose intensities range up to about 100
GW cm . The dynamical equation of motion is the
Schrodinger equation for the amplitudes of the various
states of the molecular system in a suitable basis, usually
the spectroscopic eigenenergy basis. With the field treated
classically, the Hamiltonian operator of the system is time
dependent. There is no analytic solution available for the
state amplitude equation of motion of a polyatomic mole-
cule in an intense coherent laser field, and one must resort
to the use of efficient computational schemes in simulat-
ing the multiphoton dynamical processes. Present day'
understanding of multiphoton processes in polyatomic
molecules distinguishes between laser intensity-dependent
coherent nonresonant excitation in the low-energy discrete
states and laser fluence-dependent incoherent resonant ex-
citation in the higher-energy quasicontinuum of rovibra-
tional states; eventually the molecule may acquire suffi-
cient energy to undergo unimolecular decomposition
through various dissociative channels. Isotopic selectivity
is attained by way of the laser power-dependent excitation
of a vibrational mode through several near-harmonic
molecular energy levels and results in the appearance of
multiphoton resonances and saturation behavior in strict
adherence to the prevailing selection rules; appeal is made
to such mechanisms as power broadening, rotational band
structure, and anharmonic splitting of vibrational levels in
order to compensate for the increasing detuning between
the molecule and the field until mechanical anharmonicity
gives rise to a quasicontinuum of rovibrational states
which have no significant isotopic dependencies. Due to

the low efficiencies of laser sources and the possible need
for large throughput, photon economics during the initial
stages of multiphoton excitation is important for achiev-
ing high isotope separation factors, irrespective of wheth-
er or not dissociation through desirable channels is ulti-
rnately attained. Here we discuss the application of a
resolvent method for calculating the multiphoton excita-
tion transition probabilities of the low-energy structured
spectrum of a vibrational mode up to the onset of the
quasicontinuum.

Dyson's formula for the evolution operator ' U(t)
which formally expresses the time development of a quan-
tized system from its initial

~

4(0)) to its final state
~

+(t) ) = U(t)
~

+(0) ) within the interaction picture and
in accordance with the Schrodinger equation

(la)

where H(t) is the time-dependent Hamiltonian operator,
does not represent a practical prescription for the con-
struction of U(t) for arbitrary times. , Of course if
[H(t'), H(t")]=0 then U(t) =exp[ i I ds H(s)].—One
can capitalize on this fact if somehow the time depen-
dence of H(t) could be eliminated. This was done by
Einwohner, Wong, and Garrison in their consideration of
the dipole interaction of a many-level system with multi-
ple lasers; after first invoking the resonance-constrained
global rotating-wave approximation (RWA), they em-
ployed a unitary transformation to eliminate all remaining
time dependence in the modified Hamiltonian operator,
the form of the transformation being justified on the basis
of a graph-theoretic argument. Whaley and Light intro-
duced a unitary rotating-frame transformation (RFT)
which defines a representation wherein H is time indepen-
dent if one applies the global RWA (Ref. 5) and neglects
the residual time-dependent couplings. It has recently
been pointed" out that the RFT is equivalent to the
quasiresonant approximation (QRA) introduced by
Quack. I I In an earlier paper, Freed also recognized the
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need for a transformation to an interaction picture which
results in a time-invariant dynamical equation of motion
that can be easily integrated. This was done in specific
applications to three-level double-resonance and eight-
level triple-resonance systems by appropriate choice of a
phase-factoring transformation (PFT).

This paper has a twofold purpose. First, to show how a
Kubo-type transformation can be determined through an
algebraic algorithm, thereby allowing one to define a
reference frame in which the Hamiltonian operator of a
multilevel system dipole interacting with an oscillating
field is time independent. This approach unifies the three
ostensibly different PFT, QRA, and RFT procedures. If
the approach presented were merely to reformulate
known —albeit equivalent —procedures then not much
would be gained. However, the unifying approach,
through its algebraic algorithm, reveals a common basic
weakness in these procedures through their sole reliance
on resonance detunings in the selection of the most prob-
able path for multiphoton excitation. A secondary intent
is to promote the usage of a resolvent method for evaluat-
ing the evolution operator in the Kubo picture.

The paper is organized as follows: In Sec. II A we show
how the assumed existence of a time-independent Kubo-
type operator governing the time development of the
Hamiltonian operator of an arbitrary quantized system al-
lows one to express the evolution operator as the product
of a pair of matrix exponentials. The uniqueness of the
Kubo-type operator is also discussed. A resolvent method
suitable for the evaluation of these matrix exponentials,
and hence the transition probability amplitudes, is
described in Sec. II B and its implementation and associat-
ed computational aspects are discussed in Sec. II C. In the
context of a multilevel system dipole interacting with a
continuous-wave (cw) laser, we show in Sec. III A how to
determine a suitable Kubo-type operator through an alge-
braic algorithm, subject to the imposition of the RWA
and/or the appeal to transition dipole selection rules that
validate the neglect of unimportant couplings. As an il-
lustrative application of both the algebraic algorithm for
the determination of the Kubo-type transformation and
the resolvent scheme for computing the evolution opera-
tor, we calculate in Sec. IIIB the transition probabilities
for the excitation of an anharmonic oscillator model of
the CH stretch in CD3H. There is a brief concluding
summary in Sec. IV. Atomic units are used throughout
the paper unless otherwise indicated.

II. FORMAL ANALYSIS

A. State amplitude equation of motion

The evolution of the state amplitude matrix c(t) of a
multilevel (N, say) system is governed by the Schrodinger
equation

representation of the system's Hamiltonian operator.
The Kubo-type operator A" is formally defined as

A"=—[A, ] and has the properties

and

A"8= [A,B] (2a)

exp(A"a)B=exp(Aa)B exp( —Aa), (2b)

where 8 is an arbitrary operator and a is an arbitrary sca-
lar.

Suppose there exists an operator A such that

C(t) = A"C(r), (3)

c(t)= [C(0)—A]c(t), (5)

from which it follows that c(t) =exp[[C(0) —A]t Ic(0).
Hence

c(t) =U(t)c(0),
where the evolution operator U(t) is given in terms of A
as

U(t) =exp(At)exp[[C(0) —A]t I . (7)

Thus, for the initial conditions c(0), the evolution opera-
tor U(t) for the first-order system in Eq. (lb) is given by
Eq. (7) provided the time-independent Kubo-type operator
A" exists and exp( A t) is itself the evolution operator of
C(t)= —iH(t) for the initial conditions C(0) in accor-
dance with Eq. (3). When H(t) is Hermitian,
C (t)= —C(t) and it is easy to show that if A is also
anti-Hermitian then U(t) as given in Eq. (7) is unitary for
all t. The existence of A permits one to factor U(t) into
the product of exponentials of time-independent operators.

Using Eqs. (2a) and (3) as necessary, the exponentials in
Eq. (7) can be united by the Baker-Campbell-Hausdorff
formula to give

U(t) =exp[ C(0)r + —,
' C(0)r'+ —,', C(0)r'

+—„[C(0),C(0))r'+ I .

The higher-order terms are available, ' but the expansion
is not unique due to the existence of various relationships
between nested commutators of operators.

For completeness we mention that the foregoing is
equally applicable to the Liouville equation "describing
the time development of an ensemble of iV-level systems,
namely,

where A" is independent of time. Thus, C( t )
=exp( A"t)C(0) which with Eq. (2b) allows one to rewrite
Eq. (lb) as

c(t) =exp(At)C(0)exp( —At)c(t) .

Under the transformation c(t) =exp( —At)c(t), Eq. (4) be-
cornes

c(r) =C(r)c(r) . (lb)

Here c(t) is an ¹ector whose components
ck(t)=(k

~

'P(t)) are the probability amplitudes for the
stationary eigenstates

~

k ), k = 1,2, . . . , N of the isolated
system and C(t) = —i H(t), where H(t) is an N X N matrix

p(r) = —i[L(t)+i R)p(t),

where p(t), L(t) =H"(t), and R are the N)(N matrix rep-
resentations of the density, Liouville, and relaxation
operators, respectively, in the eigenenergy basis; the
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Kubo-type operator A" governs the evolution of
L(t) +i R from its initial free-streaming value L(0) +i R

One of the difficulties in the application of Eq. (7) is
the assumed existence of A. We offer no existence cri-
teria for A, anymore than quantum theory supplies Harn-
iltonian operators. It may be that a Kubo-type operator
A governing the evolution of the Hamiltonian operator
of a quantized system in accordance with

c(s) =(sI—C)-'c(0) .

Formally inverting Eq. (12) gives

a+i oo

c(t) = f ds exp(st)(sI —C) 'c(0),
277$ cx —I oo

(12)

as follows by direct integration. Alternatively, one can
Laplace transform Eq. (lb) to s space to obtain

H(t) = A"H(t), (10) (13)

cannot be found unless H(t) is simplified in some physi-
cally justified way. Equation (10) is valid if and only if
H(t) converges to its Maclaurin expansion for all t; this
wi11 clearly not be so in the general case. In the context of
a multilevel system dipole interacting with a near-
resonant laser, we will discuss in Sec. III A how retaining
just the proresonant part of H(t) allows one to determine
a suitable Kubo-type transformation matrix. However,
we first give in the following the details of a resolvent
method which is well suited for evaluating the exponential
matrices appearing in Eq. (7).

B. Leverrier-Bateman resolvent method

Herein reference to argument free C will signify A or
C(0) —A, as necessary. If the coefficient matrix C in Eq.
(lb) were time independent then the solution for initial
conditions c(0) is simply

c(t) =exp(Ct)c(0),

where a is an arbitrary real number to be chosen so that
all singularities of the integrand lie to the left of s =a and
the integration is to be performed along the straight line
Re(s)=a parallel to the imaginary axis. From Eqs. (12)
and (13) one has the standard expression" for exp(Ct) as
the inverse Laplace transform of the resolvent (sI—C)
namely,

A+i oo

exp(Ct) = f ds exp(st)(sI —C)
27TI

(14)

N
(sI—C) '= g s 'ZI/det(sI —C),

l=1

where the Zl's are N XN matrices that are independent of
s and will be discussed further in what follows, and the
partial fraction expansion of s /det(sI —C) as given by

To evaluate the integral in Eq. (14) we make use of
Leverrier's expression' for (sI—C) ' as given by

n, ~nt —k

s /det(sI —C) = g
i=1 k=1 dS '

S N —l

+(s —A, )
m~i S =A, .

l

(s —A,; )"(n; —k)!, (16)

N r
exp(Ct)= g g g t" 'exp(A, ;t)akI(k;)ZI,

1=1 i =1 k=1
(17)

where A,;, i = 1, . . . , r are the distinct eigenvalues of C
with corresponding multiplicities n; so that g, , n; =N.
Substituting Eqs. (15) and (16) into Eq. (14) and evaluat-

ing the integral through use of the residue theorem gives

N

exp(Ct) = g exp(i, ,t)N, ,
l=l

(19)

N

w, =gxt" 'z; (20a)

where the N~'s are NXN Bateman coefficient matrices'3
given by

where

l

&kI(~;)=
n, —k

The Z s are generated through Faddeev's and Sominskii's
modification' '"' of Leverrier's algorithm' " and are
given recursively for i =2, . . . , N as

Z; =CZ; 1+0; 1I, (20b)
S N —l

+(s —A, )

m&i S=A, ~

t

(k —1)!(n;—k)! .

i8; = —Tr(CZ;) . (20c)

with Z1 ——I, and the scalar 0 s are given for i =1, . . . , N
as

If r =N then n; =1 for all i =1, . . . , N, and Eq. (17)
reduces to

Assuming that the time-independent matrices A and
C(0)—A have distinct eigenvalues, one can substitute the
form of Eq. (19) into (7), and for the imtial conditions
c(0), one obtains
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Pkk(t) =
1', m', r', s' = 1

exP[(k~+Am+At*+A, *
)t]Nkr tNkr IN„, N „*, c, (0)c,*(0) (21a)

as the transition probability
~
ck(t)

~

for excitation to state
~

k ). If the system is characterized by a uniform relaxation
time ~ then the Laplace time-averaged transition probability

Pkk =r ' I dt exp( t/~—)Pkk(t),

where Pkk~Pkk(0) as ~ 0+ and Pkk~Pkk( co ) as r~ ao, is given by

Pkk

1', m', r', s'=1

Nkr INkr', I'N s, N 's', 'Cs(0)Cs' (0)/[I 'r(~1 +~m +~I'+ ~ m') 1 (21b)

In Eq. (21) the quantities (eigenvalues and matrix ele-
ments of Bateman matrices) without tildes pertain to A
while those with tildes pertain to C(0) —A. Similarly, us-

ing the form of Eq. (17) in (7) one can generate the
unwieldy generalizations of Pkk(t) and Pkk which allow
for the confluence of eigenvalues of A and/or C(0) —A.
There follows a discussion of the numerical aspects of the
Leverrier-Bateman algorithm and its implementation.

C. Computational aspects

Implementation of the Leverrier-Bateman resolvent
scheme on either a mainframe machine or a personal mi-
crocomputer is easily accomplished; indeed the FoRTRAN
code used to perform the numerical applications discussed
in Sec. III contains less than 300 executable statements. It
is straightforward to generate the eigenvalues of A and
C(0) —A using the efficient routines available in the tMSL
(International Mathematical and Statistical Library)
package' "for both mainframe and microcomputer im-
plementations, or the equivalent routines in the EISpAcK
library' ' ' for mainframe machines. The precision with

I

which these eigenvalues are computed imposes a limita-
tion on the extent of the time scale over which the time-
resolved transition probability Pkk(t) can be accurately
evaluated. As given in Eq. (21a), Pkk(t) is a superposition
of X terms oscillating at incommensurate frequencies;
provided the Hamiltonian operator of the system is self-
adjoint and periodic in time, Pkk(t) is almost periodic' "
and returns' ' ' arbitrarily close to its initial value infinite-
ly often. The phenomenological relaxation time r is gen-
erally sufficiently short to mitigate the requirement for
Pkk(t) at long times where inaccuracies in the computed
eigenvalues begin to be manifested; the time-averaged
transition probability Pkk is more amenable to measure-
ment and its evaluation through Eq. (21b) is insensitive to
the precision of the computed eigenvalues.

The primary difficulty with the resolvent scheme lies
with the evaluation of the expansion coefficients a;kt(A. ;)
given in Eq. (18), in the event that the confluence of
eigenvalues is an underlying structural feature of A
and/or C(0)—A. To appreciate this we may rewrite Eq.
(18) as

1 r l

a;kt(k;)= g Q (X —A.k ) +(k —1) m~i t '~m I'=0

t' n, —k —I'

l t( k I ) t
s s —A.; n k t L s m ss=k;

c&
(22)

r
C = g [N'; '(0)+k; N;(0)]

i=1
(23a)

a form which highlights the numerical instability in
a;kt(k;), particularly if N is large and r is small. Thus,
for close or widely varying eigenvalues the product of
differences in eigenvalues in Eq. (22) will be subject to
large round-off error. Also, even after differentiation,
both s ' and (s —A.m ) are potentially problematic if
N and n are large; thus, if A.; « 1 then the former factor
is very small awhile if A, ; is close to A, then the latter fac-
tor is very large. However, from Eq. (17) one can easily
derive the sum rule

time. For m not too large so that C can be reliably
evaluated through matrix multiplication, Eq. (23a) serves
as a check on the accuracy of computed N;(t)'s. The Zt's
in Eq. (23b) can be calculated through use of Leverrier's
algorithm given in Eqs. (20b) and (20c).

In the absence of degeneracy among the eigenvalues of
A and/or C(0)—A, the N s given in Eq. (23b) become
time independent, reducing to the Bateman matrices given
in Eq. (20a), and are readily evaluated through use of
Leverrier's algorithm for the Zt's as given in Eqs. (20b)
and (20c). Furthermore, the sum rule in Eq. (23a) reduces
to

for m =0, 1, . . . , where the N;(t)'s are time-dependent
generalizations of the Bateman matrices given by

C =+At Nt
1=1

(24a)

N, (t)= g t" ' g a;kt(A, ;)Zt,
k=1 1=1

(23b)

and N'; '(t) is the mth derivative of N;(t) with respect to

for m =0, 1, . . . . As an additional check on the accuracy
of computed N1's one can test the extent to which their
projection and idempotent properties'"' are fulfilled, viz. ,
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and

NkN& ——0 if k~l, (24b)

Nk ——Nk for m any positive integer, (24c)

respectively.
The Leverrier scheme is used to evaluate the Z's re-

quired in Eq. (20a), defining the Bateman matrices in the
absence of confluent eigenvalues, or in Eq. (23b), defining
the time-dependent generalizations of the Bateman ma-
trices for the situation in which A and/or C(0)—A have
degenerate eigenvalues. Besides the implicit checks on the
computed Z's provided through Eq. (23a) or (24), the
condition'""

CZ~+ 0~I=0 (25)

affords a further and more explicit check on the perfor-
mance of the algorithm. Degeneracy among the eigen-
values of C is not a direct consequence of degeneracy
among the stationary eigenstates

~

k ), k = 1,2, . . . , N.
In Sec. III we will apply the Leverrier-Bateman resol-

vent method in evaluating the transition probabilities for
the excitation of a vibrational mode of a polyatomic mole-
cule, but before doing so we will discuss how one obtains
a suitable Kubo-type transformation for a multilevel sys-
tem dipole interacting with a cw laser.

III. DISCUSSION

A. Determination of the Kubo-type transformation

Formally ' ' the time-independent Kubo-type operator
A" is the infinitesimal generator of a one parameter (t)
group of strongly continuous operators exp(A r) associat-

ed with the evolution Eq. (3) for C(t)= —iH(t). For an
arbitrary N-level system A", through Eq. (3), defines a
reference frame in which the effective Hamiltonian opera-
tor of the system is —i [C(0)—A]. In the original repre-
sentation, the evolution operator U(t) is given in Eq. (7)
as the product of exponentials of time-independent opera-
tors involving A and C(0). No appeal was made to the
form of H(t) except for noting that if it is self-adjoint
then an anti-Hermitian matrix A guarantees the unitarity
of the evolution operator. In view of Eq. (8), the evolu-
tion operator, and hence the density matrix, are formally
independent of the explicit nature of A. Whereas Eq. (3)
formally defines A, it also constitutes an algorithm for
the determination of A; the X unknown matrix elements
of A are given unambiguously as the solution to the sys-
tem of N inhomogeneous linear algebraic equations

C(0)=[A,C(0)] . (26)

Consequently, Eq. (3) both defines a reference frame
where the Hamiltonian operator is rendered constant, and
supplies an algorithmic scheme for the determination of
the transformation matrix to that frame.

In order to illustrate the foregoing analysis we consider
the dipole interaction of an N-level system with a classical
electric field E(t)=E cos(cut), of constant field strength
E, frequency cu, and arbitrarily polarized in the z direc-
tion. Within the global RWA (Ref. 5) the interaction pic-
ture state amplitudes evolve in accordance with Eq. (lb),
where the proresonant coefficient matrix is given by

0

p2i exp(icoqit)
C(t) = —El O

2

pi2 exp( icopit)—p, iv exp( i ~, ir)— .

S z~ exp( i~~2r)—
(27)

VN 1 exp(i~x lr) px2exp(iii~x2r)

The reason for selecting only the proresonant part of the
total Hamiltonian operator will become clear from what
follows. In Eq. (27), coki=coki —~ii is the detuning fre-
quency from the level separation cokl ——cok —co~, where the
eigenstate

~

k ) has energy cok, and p, ki
——( k

~ p, ~

l ) is the
dipole transition matrix element coupling the states

~

k)
and

~

I ), p, being the z component of the dipole moment
operator. There are a number of implicit assumptions in
Eq. (27). First, the states ~' k) are of definite parity and
hence the absence of diagonal entries in C(t) since
(k ~iM,

~

k) =0 for an isolated freely rotating system.
Second, the R%'A demands that cu —cok~ and

~
pkiE

~
&&2' for all k, l =1,2, . . . , N; while the second

condition can be met by having a weak field strength
and/or a sufficiently small transition moment as dictated
by the prevailing selection rules, the first condition is gen-
erally valid only for the fundamental co-cuz]. This essen-

A'

( ~j k y kj akj Pj k )
j=1

N

(iikj pjl uj lpkj ) = i skip'ki —k & I = I » . »
j=1

N

y (+kjPjl +jlPkj ) i~lkPkl
j=1

(28a)

The compatibility condition and general solution of the

tially sets an upper limit on the number of levels X —2 to
be included in any discussion of the interaction of the
field E(t) in near resonance with coqi

If Eq. (27) is substituted into (26) one obtains
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linear system in Eq. (28a) are known ". However, here
we eschew this line of inquiry in favor of examining the
consequences of assuming A to be diagonal. With
a,j ——6;za;;, Eq. (28a) reduces to

akk ——aII+icgk~, k) l =1,2, . . . , X, (28b)

whereupon the system in Eq. (26) is now overdetermined
since it represents N(N —1)/2 equations in N unknowns.
Even a» is arbitrary. In the case of a three-level system,
for example, a33 —a ~, +iv@3~ or a»+i (A@3~ —co) according
to Eq. (28b). This ambiguity can be lifted by redefining
the proresonant C(t) to exclude the p&3 coupling, say, but
to include both the p, 2 and @23 couplings; if

~

1 ) and
~

3 )
are of like parity but

~

2) is of opposite parity then the
ambiguity is automatically removed since p &3 vanishes
whereas p&2 and p23 are nonzero. This strategy is inherent
in Freed's applications of the PFT scheme to double- and
triple-resonance interactions of few-level systems. There
are two additional approaches to the determination of the
diagonal matrix A. In the first approach Eq. (28b) is re-
stricted to the serial generation of the akk's through the
X —l relations

akk ak —1k —1+~ ~kk —1 (28c)

and the missing relation results in a
& ~ being arbitrary, say,

a» ——0. This approach is justified if in the proresonant
C(t) only the bidiagonal entries are retained, i.e., p, ;J =0 if

~

i —j ~

& 1. In the second approach the akk's are taken
for k =2, . . . , X as

+kk ~ (~kl ™k~) (28d)

where mk is an integer such that
~

akk
~

&co/2, starting
with a

~ ~

——0. The corresponding entries retained in C(t)
involve peak which is taken to be nonzero when

~ m~ —mk
~

~1; in this way one incorporates into the
proresonant Hamiltonian operator only the most nearly
resonant multiphoton transitions from the ground state to
all other states. With both of these approaches the entries
in A are obtained on the basis of the near resonance of
the field with pairs of coupled states

~

k ) and
~

t ) and
without appeal to the magnitude of the coupling strength

~

F. p, kl ~

relative to the laser frequency co —cok&. This
latter feature originates with the decoupling of the depen-
dence of the a's on the resonance off-sets cu's and the di-
pole transition matrix elements p's, as expressed in Eq.
(28a), when one assumes A to be diagonal. When co=0
and E =F.'/2 so that the 1V-level system is interacting
with a static field of strength E', there is no ambiguity in
determining the entries in a diagonal A through Eq. (28b)
even without having to resort to the omission of system-
field couplings in C(t). Both the QRA and the equivalent
RFT procedures select nonzero entries in the proresonant
matrix C(t) on the basis of Eqs. (28c) and (28d).

Thus, while Eq. (3) formally defines a reference frame
in which the Hamiltonian operator is constant, the reali-
zation of A through Eq. (26) may require that the given
Hamiltonian be simplified whether through appeal to the

RWA, selection rules, neglect of unimportant couplings,
etc.

B. CH excitation in CD3H

Quack and Sutcliffe have considered I' the excitation
of a truncated (to nine levels) anharmonic oscillator model
of the CH strength in CD3H within the QRA (or tridiago-
nal RFT) and for a range of intensities they compared
computed time-resolved spectra at near- and off-resonant
frequencies with those calculated within the Floquet ap-
proximation. ' In this section we adopt this model to
demonstrate the application of the Leverrier-Bateman
resolvent scheme in evaluating the evolution operator
given in Eq. (7) on the assumption that a suitable Kubo-
type transformation matrix has been determined. The en-
ergies and transition moments for the truncated anhar-
monic oscillator model are as reported by Quack and
Sutcliffe.

In selecting the Kubo-type transformation matrix we
applied Eq. (28a), assuming A to be diagonal. At laser
frequencies below about 2750 cm ' only first subdiagonal
transition matrix elements are included whereas at higher
frequencies one also incorporates coupling between the
uppermost energy levels by the inclusion of matrix ele-
ments that belong to the second subdiagonals of the dipole
transition matrix. Neglect of other couplings, in addition
to the RWA, amounts to a simplification of the Hamil-
tonian operator of the system such that one can determine
a diagonal Kubo-type transformation matrix A and hence
the evolution operator through Eq. (7). As previously
mentioned, this choice of A is independent of the laser
field strength. When co=0 as in a static electric field, the
complete transition matrix is retained and the diagonal
entries of A are given by Eq. (28b). With A diagonal,
Xk, I ——6,k6Ik and for the most interesting case wherein
the ground state is initially fully populated so that
c, (0)=5„, the time-resolved transition probability Pkk(t)
given in Eq. (21a) reduces to

Pkk(t)=exp[2Re(Ak)t] g exp(k t)Nk, ~
m=]

while the Laplace time-averaged transition probability
Pkk given in Eq. (2lb) reduces to

Pkk = g Nk ) Nk (, ~ /I 1 —w[ 2 Re(A.k )

m, m'=1

(29b)

The decay rate of the uppermost level
~

N ), whose energy
is complex (co& i y„/2) by a—scribing to it the
phenomenological radiative width y~, is y~P~&(t),
whence from Eq. (29),
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Pd;„(t)=l',v g Nx] ~N]v] (expI[2Re(k~)+A~ +A,
* ]t] —1)/[2Re(A, „)+A, +L* ]

m, m'=1
(30a)

and

N

P d ]~s rp v g N+ ] N v ] / [ 1 —r [ 2 Re( k ]v )

m, m'=1

(30b)

represent the time-resolved and Laplace time-averaged
dissociation probabilities, respectively. From Eqs. (29b)
and (30b) it follows that Pd;„ryJvP——~]v. The instantane-
ous average energy absorbed by the system is

k =1,2. . . ,X Bateman matrices Nk can be efficiently ex-
ecuted by parallel array processors. We go beyond
Quack's and Sutcliffe's "model calculations on the CH
Morse oscillator by computing frequency sweep spectra
with the inclusion of uniform relaxation, as well as time-
resolved transition probabilities and dissociation probabili-
ties in the presence of an oscillating or a static electric
field.

Figure 1 displays the time-averaged transition probabil-
ities for the first three levels of the CH anharmonic oscil-
lator over the frequency range 2910—2990 cm ' at a field
intensity of 100 GWcm and assuming a uniform relax-

N

(E}= g ~kPk„(t)+n]&Pd;„(t),
k=1

while its Laplace time-averaged analogue is

(31a)

1.0

0.9—
0.8- (~)

N

& E & = g ~kPkk+~~Pd ~

k=1
(31b)

Two comments are in order with respect to Eq. (30).
First, since Pd;„(t)= 1 —g& ] Pkk(t) then Pd;„( co ) = 1 as

, Pkk( ao ) =0 if there is leakage of population at a fi-
nite rate through the uppermost level. Second, Eq. (30b)
is valid for ~ ~&yN and of course Pd;„——0 if yN ——0 since
then there is no leakage of population out of the N-level
system.

To evaluate P~~ or Pd;„requires the eigenvalues of A
and of C(0)—A, where C(0) is the coefficient matrix in
Eq. (27) evaluated at t =0 but with the neglect of all di-
pole transition matrix elements other than those required
to define the diagonal matrix A. Using this simplified
version of C(0) one evaluates the Z s through the Lever-
rier algorithm given in Eqs. (20b) and (20c) and hence the
Bateman coefficient matrices through Eq. (20a) or (23b).
For the particular application considered here C(0) —A
has no degenerate eigenvalues. The performance of the
Leverrier-Bateman method was assessed through Eqs. (24)
and (25); generally these conditions were fulfilled to
within machine precision (for a 32-bit word, typically
2 in single and 2 in double) at least.

As a check on the code used here, the time-resolved
transition probabilities were calculated using both the
Leverrier-Bateman resolvent method and a complete spec-
tral decomposition scheme to evaluate exp[(C(0) —A)t].
The latter involves computing exp[(C(0) —A)t] as
Zexp(At)Z ', where A is the diagonal matrix containing
the eigenvalues of C(0) —A, and Z has the corresponding
eigenvectors as columns. The computation time required
to evaluate the Bateman matrices Nk = (N ~ k ) for
k =1,2, . . . , N is significantly shorter than that required
to evaluate Z=(z;~) and Z '=(z;1), the evaluation of A
being a task common to both approaches. The matrix ele-
ments of Nk are related to those of Z and Z ' by

Clearly evaluation of the independent
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FICs. 1. The transition probability Pkk with (a) k =1, (b)
k =2, and (c) k =3 for the CH anharmonic oscillator excitation
at a laser field intensity of 100 GWcm over the frequency
range 2910—2990 cm ', and with a relaxation time of 1 ns. The
average energy (E ) absorbed by the system, which was initially
in the ground state, is displayed in (d).
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ation time of 1 ns. The one-photon resonance occurs at
co-2979.2 cm ' and results in the near saturation of the
ground and first excited states of the system. The uni-
form relaxation time is long enough for the spectrum in
Fig. 1 to exhibit the two-photon resonance at co-2924. 6
cm ', which results in the saturation of the ground and
second excited state of the system. Also displayed in Fig.
1 is the average energy absorbed by the CH anharmonic
oscillator, the amount of energy absorbed reflecting both
the saturation of the system and the photon multiplicity
of the resonance. The time-resolved transition probabili-
ties at the one- and two-photon resonance frequencies are
shown in Fig. 2 as well as the instantaneous average ener-
gies absorbed. It is perhaps worthwhile mentioning that
only' ' I if the simplified version of C(t) remains periodic
in time will Pkk(t) be almost periodic. Retaining all di-
pole couplings in C(t) does not cause much population
leakage from the system in the presence of a static electric
field of strength 1.39X 10 Vcm ' as evident from Fig. 3
where the time-resolved transition probability for the first
excited state and the average energy absorbed by the sys-
tem are displayed. In contrast, we show in Fig. 4 the dis-
sociation probabilities for the system in the absence of
uniform relaxation, assuming a radiative width of 2&(10"
s ' for the uppermost level, in a laser field of frequency
2900 cm ' and of strength 2. 17&(10 Vcm ' and in a
static electric field of the same strength. Clearly the time
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FIG. 3. The time-resolved transition probability P»( t )(, left ordinate) and the average energy absorbed (E)
( ———,right ordinate) by the CH anharmonic oscillator i~ a
static field of strength 1.39&&10 Vcm

scales over which Pd;„(t) approaches unity are vastly dif-
ferent with the laser field being more effective in deplet-
ing the population within the truncated anharmonic oscil-
lator.
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IV. SUMMARY AND CONCLUSIONS

In this paper we have derived Eq. (7) as the form of the
evolution operator U(t) governing the time development
of the state amplitudes of a quantized system in accor-
dance with Eq. (lb), predicted on the assumption that the
evolution of the Hamiltonian operator H(t) of the system
is described by Eq. (10) in terms of a time-independent
Kubo-type operator A defined in Eq. (2). If H(t) is Her-
mitian then an anti-Hermitian 3 assures the unitarity of
U(t). We have not provided existence criteria for A.
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FIG. 2. The time-resolved transition probability Pj,k (t )(, left ordinate) and the average energy absorbed (E)

( ———,right ordinate) by the CH anharmonic oscillator at (a)
the one-photon resonance frequency 2979.2 cm ', and at (b) the
two-photon resonance frequency 2924.6 cm ' in a laser field of
intensity 100 GW cm

FIG. 4. The time-resolved dissociation probability Pd,„(t) for
the CH anharmonic oscillator whose uppermost level has a radi-
ative width 2&(10" s ' in (a) a laser field of strength 2. 17)& 10
Vcm ' and frequency 2900 cm ', and in (b) a static field of
strength 2. 17X 10 V cm
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Indeed even if 3 exists it is not necessarily unique; since
we can formally eliminate the explicit dependence of U(t)
on A through Eq. (8), the density matrix p(t)
= U(t)p(0) U"(t) is independent of the particular choice of
A. Further, we do not claim the existence of A to be
universally true for a general quantized system.

However, in the context of an N-level system dipole in-

teracting with a cw laser, we showed how A may be sys-
tematically constructed through an algebraic algorithm
given in Eq. (26). The solution of Eq. (26) requires the in-
troduction of certain simplifications in H(t), specifically
the appeal to the RWA, whereupon Eq. (26) reduces to
(28a). In pursuing the additional assumption that A is di-

agonal, two interesting outcomes emerge. First, the over-
determinism in Eq. (28b) requires one to invoke the
relevant transition dipole selection rules in order to vali-
date the neglect of unimportant couplings, as in Freed's
application of the PFT, or through the retention of only
the most nearly resonant multiphoton transitions from the
ground state to all other states, as in Quack's application
of the QRA or Whaley's and Light's application of the
RFT. Second, the matrix elements of A depend only on
the resonance off-sets and are independent of the relative
coupling strength matrix elements. This latter feature
contrasts with Tietz's and Chu's most probable path
approximation' "and Chang's and Wyatt's artificial in-
telligence techniques' ' ""for pruning the order of the
Floquet matrix these approaches employ selection cri-
teria which are dependent upon both resonance detunings
and coupling strengths. The Kubo transformation yields
a sparse time-independent Hamiltonian without any
reduction in its order. Pursuit of the solution of Eq. (28a)
for a general Kubo-type transformation in an attempt to
retain a dependency on coupling strength parameters
proves to be futile. In fact it is generally true that the sys-
tem in Eq. (28a) is incompatible "so that the assumption

that A is diagonal was a necessary expedient.
Having determined a suitable Kubo-type transforma-

tion matrix for a specific application, one must then grap-
ple with the construction of the matrix exponentials ap-
pearing in Eq. (7). In this paper we have proposed the use
of the Leverrier-Bateman resolvent method which is one
among what an authoritative review' described as "nine-
teen dubious ways to compute the exponential of a ma-
trix"; on consideration of computational stability and effi-
ciency, some of these methods were deemed to be prefer-
able to others, but none were judged to be entirely satis-
factory. Although computationally laborious, the resol-
vent method is insensitive to the vagaries of C(0) —A.
The method does not require the eigenvectors correspond-
ing to the eigenvalues, a feature in common with the re-
cursive residue generation method promoted by Wyatt
and co-workers' for the evaluation of transition ampli-
tudes of systems with a large () 10 ) number of levels.
The sum rule given in Eq. (23a) for the generalized Bate-
man matrices or its simplified version given in Eq. (24a),
as well as the projection and idempotent properties of the
Bateman matrices given in Eqs. (24b) and (24c), in addi-
tion to the condition given in Eq. (25), serve to gauge the
numerical performance of the method. The generaliza-
tions of Eqs. (19) and (24a), given in Eqs. (17) and (23a),
respectively, are new, as far as this author is aware. We
illustrated the application of the method by considering
the excitation of the CH stretch in CD3H.

The Leverrier-Bateman resolvent method is equally
applicable to the evaluation of the matrix exponentials ap-
pearing in the Riemann product integral representation
of U(t) for multilevel systems interacting with sinusoidal
or nonsinusoidal fields. As pointed out recently by
Hirschfelder, ' the evolution operators on the serial time
intervals can be determined en bloc by parallel array pro-
cessors as can their requisite Bateman matrices.

V. N. Bagratashvili, V. S. Letokhov, A. A. Makarov, and E. A.
Ryabov, Multiple Photon Infrared Laser Photophysics and
Photochemistry (Harwood, New York, 1985).

~(a) F. J. Dyson, Phys. Rev. 75, 1736 (1949); (b) C. C. Lam and
P. C. W. Fung, Phys. Rev. A 27, 1760 (1983).

3P. Pechukas and J. C. Light, J. Chem. Phys. 44, 3897 (1966).
4T. M. Einwohner, J. Wong, and J. C. Garrison, Phys. Rev. A

14, 1452 (1976).
5K. B. Whaley and J. C. Light, Phys. Rev. A 29, 1188 (1984).
6(a) M. Quack and E. Sutcliffe, J. Chem. Phys. 83, 3805 (1985);

(b) M. Quack, ibid 69, 1282 (1978. ).
7K. Freed, J. Chem. Phys. 43, 1113 (1965).
8(a) R. Kubo, in Lectures in Theoretical Physics, edited by W. E.

Brittin and L. G. Dunham (Interscience, New York, 1959),
Vol. I, p. 120; (b) Cx. Fano, Mathematical Methods of Quan
turn Mechanics (McGraw-Hill, New York, 1971); (c) G. E.
Shilov, Linear Algebra (Dover, New York, 1977).

R. M. Wilcox, J. Math. Phys. 8, 962 (1967), and the source
references therein.
R. D. Richtmyer and S. Greenspan, Commun. Pure Appl.
Math. 18, 107 (1965).

'(a) R. A. Frazer, W. J. Duncan, and A. R. Collar, Elementary
Matrices (Cambridge University, Cambridge, 1960); (b) N. J.
Pullman, Matrix Theory and its Applications (Dekker, New

York, 1976).
~(a) U. J. J. Leverrier, J. Math. 5, 230 (1840); (b) V. N. Fad-

deeva, Computational Methods of Linear Algebra (Dover,
New York, 1959)~

' H. Bateman, Proc. Cambridge Philos. Soc. 15, 423 (1910).
~4(a) IMSL Library Reference Manual (IMSL Inc. , Houston,

1982), 9th ed. , (b) B. T. Smith, J. M. Boyle, J. J. Dongarra, B.
S. Garbow, Y. Ikebe, U. C. Klema, and C. B. Moler, Matrix
Eigensystem Routi nes-EISPA CK Guide (Springer, Berlin,
1976)~

~5(a) A. S. Besicovitch, Almost Periodic Functions (Dover, New
York, 1954); (b) T. Hogg and B. A. Huberman, Phys. Rev. A
28, 22 (1983).

' S.-I. Chu, Adv. At. Mol. Phys. 21, 197 (1985).
~7(a) J. V. Tietz and S.-I. Chu, Chem. Phys. Lett. 101, 446

(1983); (b) J. Chang and R. E. Wyatt, ibid. 121, 307 (1985); (c)
J. Chem. Phys. 85, 1826 (1986).

8C. Moler and C. van Loan, SIAM Rev. 20, 801 (1978).
'9(a) A. Nauts and R. E. Wyatt, Phys. Rev. Lett. 51, 2238

(1983); (b) Phys. Rev. A 30, 872 (1984); (c) I. Schek and R. E.
Wyatt, J. Chem. Phys. 83, 3028 (1985).
(a) G. F. Thomas and W. J. Meath, J. Phys. B 16, 951 (1983);
(b) G. F. Thomas, Phys. Rev. A 32, 1515 (1985).

2~I. O. Hirschfelder, Int. J. Quantum Chem. 29, 1139 (1986).


