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We present a numerical and analytical study of a multimode Jaynes-Cummings model describing
the spontaneous decay of a single atom in a high-Q cavity. The theory of cavity-modified spontane-
ous emission is discussed in terms of quantities that have clear physical interpretations: the photon
wave packet radiated by the atom, its reflection by the cavity boundaries, and its reabsorption by the
atom. Multimode corrections to the single-mode Jaynes-Cummings model are calculated. The mul-
timode corrections are formulated in terms of quantities that may be calculated by solving the

single-mode equations of motion.

I. INTRODUCTION

The problem of an atom interacting with a single mode
of the electromagnetic field in a high-Q cavity has been
the subject of hundreds of papers since the early investiga-
tion by Jaynes and Cummings.'! Recently, it has been pos-
sible to study the theoretical predictions in the laboratory
using atoms excited to Rydberg states interacting with mi-
crowave fields in superconducting cavities. Both
enhanced? and inhibited spontaneous emission® have been
observed.

The single-mode assumption of the conventional
Jaynes-Cummings model is an idealization that is useful
and reasonably accurate for a wide range of problems.
There are, however, many problems for which this as-
sumption is invalid. In the single-mode model there is no
retardation. Any changes in the field as the atom radiates
and absorbs are instantaneously = communicated
throughout the cavity. In a real cavity, a spontaneously
decaying atom radiates a field which propagates to the
cavity walls where it is partly reflected, and partly ab-
sorbed. The reflected field then acts back on the atom
carrying information about the cavity walls and about the
state of the atom itself at earlier times. To study these
transients a multimode description of the electromagnetic
field is necessary.

In this paper we will investigate the transient interac-
tion of a one-electron atom with its own spontaneously ra-
diated fields in a high-Q cavity. For simplicity it is as-
sumed that the atom is near the center of a spherical mi-
crowave cavity. The atom is excited from the ground
state to a Rydberg eigenstate with an optical laser pulse of
duration short compared to the round trip time of light in
the cavity. Our aim is to show how such a model reduces
to the single-mode Jaynes-Cummings model in the proper
limit and to examine some of the ways in which the
single-mode model fails.

In a number of ways the multimode model clarifies
rather than complicates the physics of cavity-modified
spontaneous emission. For example, the Rabi frequency
of the two-level atom and similarly the amplitude of the
Rabi oscillations depend very sensitively on whether or
not the atom is resonance with a cavity mode. The fre-
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quency of the cavity mode depends in turn on the boun-
dary conditions, and on the size and shape of the cavity.
The atom, in order to undergo Rabi oscillations of the
proper frequency and amplitude must somehow acquire
information about the boundaries of the cavity. The pic-
ture that emerges from our discussion is that the atom
learns of the boundary conditions by interrogating the
boundary with its radiated photon wave packet.

The success of recent experimental work has stimulated
theoretical work in both the single-mode and multimode
models. To give just a few recent examples, there have
been investigations of the quantum statistics of single-
atom radiation in damped cavities,* cavity-modified Lamb
shifts,? and absorption spectra.® In a related set of experi-
ments Dehmelt and co-workers have developed methods
to trap single electrons or ions in cyclotron orbits similar
to the circular orbit Rydberg states. Experiments have in-
cluded the successful demonstration of cavity-inhibited
spontaneous radiation,” and high-precision measurements
of the electron’s magnetic moment. The high-precision
experiments have made necessary careful theoretical study
of the influence of the cavity on the orbital energy of the
trapped ion.?

Our discussion begins in Sec. II with a review of
Heisenberg-picture quantum electrodynamical equations
that describe spontaneous emission in free space. We
develop a model cavity and modify the equations of
motion to describe the effect of a spherical cavity. In Sec.
III numerical solutions of the cavity-modified equations
are discussed. In Sec. IV simple physical explanations of
the numerical results are given. In Sec. V it is shown that
the multimode Heisenberg equations, in a certain limit,
are formally identical to the single-mode equations. In
Sec. VI it is shown that the analysis of Secs. I-V is appl-
icable in principle to a Rydberg atom experiment. In Sec.
VII some of the ways in which the single-mode model
fails are discussed, and a scheme for calculating mul-
timode corrections to the single-mode model is presented.

II. CAVITY-MODIFIED SPONTANEOUS EMISSION

The quantity of primary interest to us is the rate of
change of the atomic Hamiltonian H,. When we special-

4226 ©1987 The American Physical Society



35 TRANSIENT THEORY OF CAVITY-MODIFIED SPONTANEOUS . ..

ize to a two-level atom, the atomic Hamiltonian will be
proportional to the excited-state population of the atom.
In the presence of the vector potential A(t), the Heisen-
berg equation of motion is

d .

dt

dpg -

= x+)0t
dt me ©,0)

+--A)0,1)- (1)
mc

dt

where P is the canonical momentum operator, and the
carets on top of the variables imply that the variables are

2e

R (+)(O,t):
3rme? dt

where the rectangular function Z(t,t') is unity for
O<t'<t, 7 at '=0 and t'=t, and O elsewhere. The ki-

netic momentum operator of the atom p — eA/c is denot-
ed fI, and o, is a frequency cutoff. In deriving (2) we
have discarded time-dependent terms of the sort
@y (0)exp(—iwyt), where @y (0) is the t =0 photon annihi-
lation operator. Terms of this sort cannot in general be
discarded, but they play no role in the discussion that fol-
lows and henceforth will be neglected. Throughout this
paper, except where otherwise noted, it is assumed that
the initial state of the system is | e ), which signifies that
the atom is in the excited state, and the field in the vacu-
um state.

To show how this formalism may be used to describe
spontaneous emission, we apply it to the decay of an atom
in free space. The first step is to evaluate the field
A (+)(0,1). Equation (2) resembles a Fourier transform of
an inverse Fourier transform but with complications. It
follows from Eq. (A7) that

2e_d o4
3me? di?

2e
3mec?

AH(0,1)= —

2
ed,\(+>

s 3
cdtzp + - (3)

To get '™/, the terms in the Fourier expansion of P that
go as exp(+i |w|t) are thrown away. This is how we
will define the positive frequency parts of atomic opera-
tors. For optical transitions in free space, each succeeding
term in (4) is of order a® smaller than the previous term.
The higher-order terms arise from the A-A part of the
interaction Hamiltonian. Substituting (3) into (1) and
neglecting higher-order terms yields a formula reminis-
cent of Larmor’s formula for the power radiated by an ac-
celerated charge, dH,, /dt < (dp/dt)-(dp‘*)/dt)+H.a.

The atomic Heisenberg operators can be written as
linear combinations of the transition operators a,,(t) (Ap-
pendix A). The quantity dp/dt is a special case in which
the time derivative of an atomic variable may be written
as a sum of transition operators:
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operators rather than ¢ numbers. In Appendix A the
Heisenberg-picture approach is reviewed. The normal or-
dering of the equations of motion prevents spontaneous
transitions from a ground state to a state of higher energy;
A H)(0,1) is the positive frequency vector potential at the
location of the atom (r =0). The negative frequency po-
tential R(_)(O,t) is the Hermitian adjoint (H.a.) of
/A(*')(O,t). We use the f)x interaction and the Coulomb
gauge throughout.

In the absence of external fields and boundaries (free-
space spontaneous emission) A (+)(0,1) can be written in
terms of the atomic kinetic momentum operator:

fo doexp(—iot) [~ dr e )lit)expliot’) , 2)

where o;; is the transition frequency between atomic
states | zg and |j) and where p;; is the matrix element of
#iV/i on the same states. The quantity dp/dt is the
Coulomb  acceleration of the electron, whereas
d%/dt*=(dfl/dt)/m is the total acceleration. We make
the dipole approximation. Throughout this paper, in the
calculation of dp/dt, we will specialize to a two-level
atom only after performing the differentiation.

We now specialize to a two-level atom of resonance fre-
quency w,. If the ground-state energy of the atom is set
to zero, then H, =%w,5,,(t), where &,, is the projection
operator onto the atom’s excited state. It follows that the
expectation value of the atomic Hamiltonian on the initial
state | e) is #iw, multiplied by the excited-state popula-
tion of the atom. For a two-level atom decaying spon-
taneously in free space, (1) becomes

5 [(Cog +Gge )0 ge +Teg(Gog +5ge)]

= _Aegé-\ee ) (5)

where A,, is the Einstein A4 coefficient.

Equations (2), (3), and (5) are the equations that will be
modified in order to study cavity-modified spontaneous
emission. Equation (1) is always true, but (2) for A (+'
must be modified so that the field satisfies the cavity
boundary conditions.

To make the discussion as free from complications as
possible, the cavity is chosen to be spherical with the atom
placed exactly at the center. The cavity is assumed to be
lossless. In Sec. V the model will be generalized to in-
clude losses.
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The boundary conditions require that the component of
the electric field parallel to the surface is zero at the boun-
dary |r| =R. Consequently, the boundary conditions are

satisfied if R(r,z)-u(,:o, where up=rX(rxpe,) and

J

K(r,t)-u‘g:i 82
mme
with,
sin(wr /¢c)  coslwr/c) sin(wr/c)
— — 6b
folar/c) (wr/c) (wr /c)? (wr/c)? (6bJ

~

In the Coulomb gauge, E(0,#) is proportional to the
time derivative of the vector potential Al 0,2). The elec-
tric field is evidently a Fourier transform of an inverse
Fourier transform (apart from some time derivatives). It
can be integrated immediately to give a spatial wave pack-
et whose envelope is the Z function multiplied by
T (where dt/dt=1I1/m). Such an equation is formally
identical to the familiar dipole radiation formula of classi-
cal elec:trodynamics.9 There are, however, singularities at
r =0 and r =ct that are usually neglected in the dipole ra-
diation formula. The singularities arise from the time dif-
ferentiation of the # envelope at its discontinuities and
will be of some importance to our discussion in Sec. VII.

The boundary conditions are satisfied if f4(rew/c) is
zero at the boundary » =R. Consequently w is restricted
to a set of discrete frequencies w,, w,,... [the zeros of
fo(Rw/c)] and the integral over w in (6a) becomes a sum
over cavity modes. For large n, w, is approximately
27n /T where 7 is the time it takes light to reach the boun-
dary and return to the atom, ¢/(2R). The orthonormal
cavity-mode functions are

1/2
(r0,0)= N, 2n | 3
Bt @ I=Nn ™ " 1 4R
. Uy
X | sin(0)fglw,r/c)——
[ug |

+ cos(O)f, (w7 /c)— ] (7a)

||
with
(or /c) sin(wr /c)
(wr /c)=—252 2 . 7b
frlarse (r/c)? + (wr/c)? 70

To modify Eq. (2) for A +)(0,1), the integral over fre-
quencies becomes a discrete sum over frequencies w,.
This may be verified by taking the limit as r approaches O
of the positive frequency part of (6a). However, the prop-
er substitution for dw is not immediately clear. We argue
(Appendix B) that the proper substitution is N72w7 /7.
The normalization factor N, approaches unity rapidly
with n. The first three values of N3 are 1.205, 1.029, and
1.012. Consequently the substitution for dw is very near-

ly w, 1—w,.
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where A=A ")+ A=), All of the components of A
parallel to the surface at R are in the direction uy, just as
in classical electrodynamics. In the absence of a cavity
the field radiated by the dipole is

f_w do felor/c)wexp( —iwt) f_w dt’.%’(t,t')ﬁ(t’)~u9exp(ia)t’) , (6a)

In the discussion that follows it will be assumed that
the atom’s resonance frequency is much greater than w,.
In the numerical examples of Sec. III we choose w,~® g,
although the results would be the same with v, ~ws.

III. NUMERICAL SOLUTIONS

For the purposes of numerical integration, the equa-
tions are written in the Schrodinger picture. The numeri-
cal solution of the equations of motion is discussed in Ap-
pendix B. As we will show, the Schrodinger-picture equa-
tions and their solutions closely resemble the equations
and solutions of the Heisenberg-picture formalism em-
ployed here.

In the set of Figs. 1—4 it assumed that at ¢t =0 the
atom is in its excited state | e) at the center of the cavity,
and that there is no radiation in the cavity.

In Fig. 1 the normalized probability distribution P,(z)
of photons in the cavity modes at time ¢ =7/4 is plotted.
The quantity P, equals |b,(t)[%/ 3, [b,(t)|% The
atom is in resonance with the tenth cavity mode; its tran-
sition frequency w, equals w;o. From Fig. 1 it may be
surmised that field is in a coherent superposition of cavity
modes, with most of the photon population in the four
modes of frequency nearest to w,.

Figure 2(a) shows the expectation value of the spatial
distribution of energy in the cavity at t =7/4. The quan-
tity plotted r2{e | E=(r,0)-B+(r,1)| ), is proportional
to the energy contained within a spherical shell of width
dr about r. At t=r7/2 [Fig. 2(b)] the field has reached
the cavity walls. At ¢t =37/4 [Fig. 2(c)] the leading edge

Pn

0.0, 1 1
0 10 20 30
cavity mode number

FIG. 1. Normalized probability distribution ( P,) of photons
in cavity at t =7/4. The atom was prepared in the excited state
at t =0, and 7=2R /c where R is the cavity radius. The atom
is in resonance with the tenth cavity mode.
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FIG. 2. Expectation value of the spatial distribution of elec-
tromagnetic energy in the cavity at various times. The dipole is
along the z axis and the field energy density plotted is along the
x axis. The atom is in resonance with the tenth cavity mode.
(a)—() show the field at times 7/4, 7/2, 37/4, 7, 57/4, and
67/4, respectively. The units of the field are arbitrary.
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FIG. 3. Expectation value of excited-state population of the
atom as a function of time. Time is in units of Rabi period Tk.
The atom resonance frequency is detuned from the tenth cavity
mode by a frequency A, where 4.5A equals the frequency
separation of cavity modes. (a) is the multimode case. In (b) all
modes but the tenth have been discarded.
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of the wave packet has begun its return to the atom leav-
ing in its wake what will turn out to be the tenth cavity
mode. At t =7 the leading edge has returned to the atom
[Fig. 2(d)] and the field distribution is very nearly that of
the tenth cavity mode.

The  excited-state  population of the atom
(e |H,|e)/(#w,) is plotted in Fig. 3(a). In Fig. 3 the
atom is out of resonance with the cavity, the regime of in-
hibited spontaneous emission. The atom is detuned from
the tenth mode by a frequency 27/(74.5). The detuning
A is defined A=w;p—w,. In Fig. 3 the atom remains
nearly in its excited state and undergoes roughly
sinusoidal Rabi oscillations of period Tg =4.57.

At early times ¢ <7 the atom undergoes Fermi golden
rule exponential decay, which appears linear in the figure.
The rate of decay is initially the free-space rate, given by
the Einstein A coefficient. As the wave packet returns to
the atom at t =7 the excited-state population exhibits a
kink, a sudden jump in the rate of decay of the atom, and
another is seen at t =27 and at all integer multiplets of 7.
Figure 3(a) demonstrates that it is the return of the field
from the boundaries that modifies exponential decay into
sinusoidal Rabi oscillations. There are now 4.5 kinks per
Rabi oscillation, indicating that the Rabi frequency very
nearly equals the detuning. Figure 3(b) shows the Rabi
oscillations in the single-mode Jaynes-Cummings model.
All modes but the tenth have been discarded. The ap-
proximation is good, but the wave packet interpretation
has been lost.

In Fig. 4 the atom is in resonance with the tenth cavity
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FIG. 4. Expectation value of excited-state population of the
atom as a function of time. Time is in units of Rabi period Tx.
The atom is in resonance with the tenth cavity mode. (a) is the
multimode case. In (b) all modes but the tenth have been dis-
carded.
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mode. The dipole moment of the atom has been chosen
so that there are exactly ten kinks per Rabi period,
107r=Tpg. As the second Rabi oscillation begins at about
t =Tg, the “angles” of the kinks have changed sign: the
rate of change of the expectation value of H, takes a sud-
den positive jump at each kink rather than a negative
jump as it did at the first few kinks. As t approaches
2Tx the kinks return to their initial character suggesting
that there is a periodicity of period 2T,. This proves to
be the case and will be derived analytically in Sec. V. Fig-
ure 4(a) is the multimode case, Fig. 4(b) the single-mode
case.

IV. WAVE PACKET ANALYSIS
OF INHIBITED SPONTANEOUS EMISSION

The Rabi oscillations of Fig. 3(a) can be explained very
simply in terms of Eq. (1) for dH, /dt and Eq. (2) for the
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field at the atom A (+)(0,1).

The first step is to modify (2) by letting the integral
over w become a sum over cavity modes ®,, and by sub-
stituting N22m/7 for dw. The field A (*)(0,t) now in-
cludes radiation reflected from cavity walls along with ra-
diation reaction. To evaluate (2) for X(M(O,t) we assume
that the boundaries of the cavity are in the radiation zone
so that those cavity modes nearly in resonance with the
atom are approximately evenly separated in frequency.
The cavity mode most nearly in resonance with the atom
will be denoted no with frequency w, . Next, all cavity
modes are thrown away in (6a) except M modes greater in
frequency than w, and M modes lesser in frequency
(with M <ng). This approximation may be justified nu-
merically (Figs. 3 and 4) or analytically (Appendix B).
The field is

1
~ 2¢e 27w d ! PN -~

(+) —_ &t 2 Lh % - ’ . ’ (+) (=) ’

A0 =— o5 TR exp(—iogD) [, drexplio, (L 4 iK1 ] (8a)
T

with without complication to all of the Fourier components of

ng+M IT (except those near ;).
K(t—t')= 3 Niexpli(o,—w, )t —1t)]. (8b) The analysis above is exactly true only in the limit of
no—M ° large no (and small M), where the modes become evenly

The Fourier-like kernel K(¢z —t’) is a sum over 2M +1
modes, which are evenly spaced in frequency to first ap-
proximation. It is a series of sharp peaks, each of width
about 7/M. It is quasiperiodic with the peaks occurring
at intervals of length 7. The peaks are narrow enough to
behave as a 8 function for the slowly varying part of the
integrand il (“(t)exp(ta),, t), but not for the rapidly vary-

ing part ne- The negative frequency parts

of A+0,r) then are strongly, but not entirely,
suppressed. To good approximation, we may ignore the

negative frequency parts, neglect the A in I, and apply
the time derivative in (8) only to the exp(—iw, t) to get

(¢ )exp(zcu,,ot).

~ 2¢ d
A(+)0’t______ __/\(+)t
(0,1) 3l di (1)
[t/7]
4e S iw, “”(t—mr)
3mC m=1
Xexp(—iw, mt), (9)

where [ /7] is the largest integer less than ¢ /7. The first
term in (9) is the radiation-reaction field. The other term
is the sum of fields radiated at earlier times returning
from the boundaries. The phase factor indicates that the
fields do not in general return in phase with the dipole.

In deriving (9) we have assumed that the principal
Fourier components of fl are near @p, and —w,  in fre-

quency, which is true of the zeroth- order solution of flin
the case of a two-level atom. The argument generalizes

spaced in frequency. In general, the peaks of the kernel K
do not remain narrow like a 8 function, but with each re-
currance, at integer multiples of 7, become broader. This
“spreading” is equivalent to the spreading of the wave
packet due to unequal spacings of cavity modes—the lead-
ing edge of the wave packet does not remain sharp as in
Fig. 2. Elsewhere,'!® we have shown how to predict the
long-term evolution of kernels of this sort and, equivalent-
ly, of the wave packet. In the examples discussed here,
the effects of spreading are insignificant.

The radiation-reaction term of (9) has a coefficient half
that of the other terms, because as ¢’ approaches ¢ the in-
tegral (8) is over only half of the 8-function-like kernel K.
This is reminiscent of the well-known result that vacuum
fields are only half as effective in stimulating transitions
as external fields.!! The atom’s own field returning from
the boundaries behaves as an external field, but with an
important difference: it stimulates only the transition
that gave rise to it. It cannot, for example, stimulate a
transition of the atom from the initial excited state | e) to
a state of higher energy. Nor can it stimulate a transition
to a state of lower energy other than the ground state of
the transition that gave rise to the field. This is a general-
ization of the principle!*!® that in quantum electro-
dynamics there are no “lower-state beats”.

Now we can modify Eq. (5) for the rate of decay of the

atom [ 1/(#iw, )]dH, /dt:
d . Aeg . A~
Eaee ) Uee(t)_Aegaeg(t)
[t/7]
X 3, Ggelt —jmexpl —iw, j7)+H.a. (10)

j=1



35 TRANSIENT THEORY OF CAVITY-MODIFIED SPONTANEOUS . . .

Consider the mth kink, the discontinuity in d&.,,/dt
that occurs at t =m7. The angle of the mth kink is, for
small €,

iaee(mT—i—E)—‘i&\ee(MT—S)
dt

dt
=—AGog(MT)Gge(mT+E—mMmT)

X exp( —co,,OmTH—H.a. (11)

We now apply this formula to the first nine kinks of
Fig. 4(a), the first two Rabi oscillations. In the case of in-
hibited spontaneous emission the atom is only slightly
perturbed by the vacuum fields and by the cavity fields.
The atom remains nearly in its initial excited state, so we
may use zeroth-order solutions of the &’s (Appendix A) to
get

d . d . N

Eaee(t +&)— Eaee(t —&)=—2A4.,0,.(0)cos(At) , (12)
where ¢ is the time of the mth kink mr. One can pursue
this argument to derive the curve of Fig. 4(a), a Rabi os-
cillation of frequency A=w, —,.

In the example above [Fig. 4(a)] the walls of the cavity
were perfect conductors. Light emitted at time t —m 7 re-
flected off the boundaries m times to reach the atom at
time t. After m reflections the light was out of phase
with the oscillator (in its zeroth order solution) by mA.
Thus the m A has a geometrical origin indicating that the
oscillator does not complete an integer number of cycles
in the time it takes light to travel to boundaries and re-
turn. The examples of Figs. 1—4 illustrate the process by
which the atom communicates with the boundaries at in-
tervals of length 7.

V. RABI OSCILLATIONS IN THE KINKLESS LIMIT

In the limit in which the Rabi period is long compared
to 7 the Rabi oscillations lose their kinky character, the
summation in Eq. (9) may be treated as an integral, and in
the rotating-wave approximation (RWA), the equations of
motion admit an exact solution. For example, the period
of a Rabi oscillation of a typical one electron atom in res-
onance with a low-frequency cavity mode is of the order
10007. This is the limit in which we expect the mul-
timode theory to reduce to the single-mode theory.

When the detuning is very large as in the example of
Fig. 3 the kinks in the Rabi oscillation are unavoidable:
when the detuning multiplied by 4.5 equals the frequency
separation of cavity modes then there are always very
nearly 4.5 kinks per Rabi period (for a typical atom).
Such large detunings are properly treated as a special case
(Sec. IV).

Let us repeat the derivation of A ‘*), but with fewer
approximations and more general (semiclassical) boundary
conditions. In Sec IV we showed that the field at the
atom is a sum of terms representing fields radiated at ear-
lier times ¢t —m 7. With each such term there was a phase
factor of geometrical origin. We capitalize on this inter-
pretation by introducing more complicated (semiclassical)
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boundary conditions—due to dynamical as well as geome-
trical factors. For example, with each reflection from the
boundary the field may suffer an energy loss and a phase
shift of —A,. If, for each reflection, there is a fractional
decrease in field energy of 2I'r then after m reflections
the phase factor in (9) must be multiplied by
(1—mT7)exp(—iAtm), for small T, or more generally
exp[ —(C'+iA)rm]. It follows from (8) that

Liﬁ(+)([)

A0, =—
©.2) 3me? dt

Xexp(—iomr) |, (13)

where &= —il'+A;+w,+A and A=co,,o—w,,. In the

limit in which the sum may be treated as an integral the
radiation-reaction term may be treated as though it has
the same coefficient as the other terms. The result is

tdt’ﬁH’(t’)exp[i&)'(t’—t)] .

A0, )= —— .

T 3me? E

14edf

(14)
It follows that

%K‘+’+i(wa+A+A,—ir)R<+’
1 46 d ’\(+)
= —— — . 15
T :’ymc2 dt (15)

This equation for the time dependence of A ‘*) no longer
follows from the Hamiltonian, Eq. (A1l). However, the
evolution of the atomic variables is still governed by (Al).
In the RWA, the two required equations are

dA(+) . al+4) . € 277 R (+)

P2 HiwgPy = —ig | Peg | “ WA (16)
and
d ~ . € A=) Al . N () Aal4)
= —_ A +)-—l A( ). + , (17)
dt lﬁmcpz fimc P2
where § 57 is pg.6, and W is the inversion &, ——6‘&. In

)

the two-level atom, RWA P 5’ takes the place of P

Three equations (15), (16), and (17) strongly resemble
the equations of motion of the single-mode Jaynes-
Cummings model.'* To investigate the correspondence,
we make two simplifications: we assume no damping,
and we solve for d A/dt in (15). The d A /dt term on the
right-hand side of (15) arises from the A-A part of the
interaction Hamiltonian. It results in an insignificant fre-
quency shift which can be incorporated into A and an in-
significant shift in the coefficient of the atomic variable,
which we neglect. From these three equations it can be
shown that in the absence of damping the following quan-
tities are constants of motion:

1+W | 3er A,

61 =
2 4o,

(18)
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and

(A?z———ﬁa—L(A(_)'ﬁ(2+)+f>(z_)'3(+))

me
3eT 2 (A
i, AR (19)

The first quantity C 1 is called the excitation number.
The second quantity C , serves as an effective Hamiltoni-
an if a certain commutation relation is postulated between
A+ and A=), Because all vectors are in the direction
Peg» WE cCan suppress the vector character of K If we
were to set [A (), A (—)]=4#iw, /(3c7) then C, would be
identical to the RWA Jaynes-Cummings Hamiltonian,
and as a result the single-mode and multimode theories
would be formally identical. (However,
[A),AD]=4%0,/(3ct) does not follow from the
multimode equations.)

The solution of this set of equations is well known.
The result is that I?a —fiw,(W+1)/2 undergoes Rabi os-
cillations of frequency (A2+Q3)!/? when the expectation
value on initial state |e) is taken. Here  equals
2 A /)2

To understand these results and to compare them with
the single-mode model we must first reexamine the RWA.
The consequence of making the RWA is the neglect of the
Bloch-Siegert shift, a frequency shift of order Q3/w,.

In Appendix B it is shown that the equations that result
from discarding all cavity modes but the one nearly in res-
onance with the atom yield a Rabi frequency
[A?+(w, +A)Q5 /0,12 1t is easily verified that this
differs from the Rabi frequency derived above only by a
term of the same magnitude as the Bloch-Siegert shift.

Unlike the atom’s excited-state population (e | &, | € ),
which oscillates with period T =27/, when the atom
is in resonance with a cavity mode, the transition operator
G.g(t) oscillates with a period 2Tg, on resonance. In the
multimode theory [Fig. 3(a)] this has a clear physical
consequence in the angles of the kinks of Fig. 3(a). The
oscillatory behavior of Fig. 3(a) has a period Ty, whereas
the kinky behavior has a period 27;. This may be easily
understood by using the approximation solution
Geg(0)cos(Qqt /2)expliwp t) for G (1) when the atom is in
resonance with a cavity mode. This solution neglects a
term containing A =)(0) which is of no importance here.
When this is substituted into Eq. (11) for the angles of the
kinks, Eq. (11) properly predicts the behavior of Fig. 3(a).
The angles of the kinks are maximum near ¢t =0, Tk, and
2T, the angles approach zero in between these times, and
the angles are opposite in sign at T and 27Tg. Conse-
quently, we have used solutions of equations formally
identical to the single-mode equations to study multimode
behavior. We will pursue this strategy systematically in
Sec. VII.

It may be argued that solutions of equations identical to
the single-mode equations [Egs. (15), (16), and (17)]
should be consistent with the single-mode commutation
relation [A (), A=’]. On the other hand, these equa-
tions are limiting forms of the multimode equations,
where the commutator is a divergent ¢ number. To

14

JONATHAN PARKER AND C. R. STROUD, JR. 35

resolve this disagreement, and in general to answer ques-
tions about commutators, we cannot discard the term con-
taining @, (0) in the solution of @ (z), Eq. (A5). Let us
suppose that we have quantized the orthonormal cavity
modes g, so that A+ is written 3 A,d,. Without dis-
carding the operators @,(0), the right-hand side of (15)
must have the following operator added to it:
f,:i2(co,,o—co,,)A,,ﬁ,,(O)exp(—iw,,t). The operator L
greatly complicates the equations and is sometimes treated
as a Langevin operator. Because we have taken the
radiation-reaction point of view and have normally or-
dered the equations of motion and the Hamiltonian, and
because the initial state | e) is always a vacuum state, we
are able to neglect L in our analysis of multimode correc-
tions in Sec. VII.

The transitions of interest to us here are the Rydberg-
to-Rydberg transitions of one-electron atoms, particularly
transitions from a state of principal quantum number 7 to
the n —1 state. For such a two-level atom it is useful to
calculate the actual size of the cavity enhancement. Let
us assume that the atom is in resonance with a cavity
mode of low frequency, say the tenth cavity mode as in
Figs. 1—4. In the cavity the first correction to the
zeroth-order time evolution of the atom exp( —iw,?) is the
frequency shift Qf" ~'=2(4, ,_,/7)"/% It is found that
QF" " '/w, is of order (a®*/n?)'/2/10. In free space the
first correction to the zeroth-order solutions is the Ein-
stein A-coefficient A,,_;. In free space the ratio
A"’"_l/w“ is of order (a?/n?)/10. So the enhancement
QF" " '/Ann,_; is of the order 1000n. The next set of
corrections, due to the counter-rotating terms and the
A-A term, are of order a® smaller than w, in the cavity.
In free space the corresponding ratio is a®. These esti-
mates are roughly independent of the initial angular
momentum of the dipole.

VI. PULSED EXCITATION OF A RYDBERG ATOM

The analysis of Secs. I—V might be criticized on the
grounds that it was assumed that the atom was instantly
excited from the ground state at ¢t =0. The result of this
model is that the leading edge of the wave packet (Fig. 2)
is singular, whereas physical solutions of Schrodinger’s
equation do not permit such singularities. The problem is

n<Ewrt)Ery> (arbitrary units)

A

i | L 1
1.0 0.5 0.0 0.5 1.0
r (units of cavity radius)

FIG. 5. Same as Fig. 2(a), but the atom has been prepared in
the excited state at 1~0 with a Gaussian-shaped laser pulse.
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alleviated by slightly modifying the model to permit a
pulsed excitation of the excited Rydberg state of the atom
by a laser at optical frequencies. The microwave cavity
can be given an aperture small enough to minimize mi-
crowave losses and large enough to admit the optical
pulse. The result of such a model is shown in Fig. 5. The
Schrodinger-picture equations of Appendix B were modi-
fied and solved numerically. The wave packet retains its
relatively abrupt leading edge, but the singularities are
gone.

In this model we want the two-level atom to be a
Rydberg-to-Rydberg transition, ideally from a state of
principal quantum number n to the n —1 state. In free
space the most rapid transition is directly from the state n
to the atom’s ground state, an optical transition. The 4
coefficients have the ratio A, ,_1/A,,~0.5/n% In the
cavity, however, if the atom is in resonance with a mode
of low frequency then the corresponding ratio is
Q" _l/A,,,g ~a 3" /n or approximately 1000/n. Finally
we must worry about whether the n to n —2 transition is
also in resonance with a cavity mode. Cases of this sort
must be checked individually but this does not turn out to
be a defect of the model.

VII. MULTIMODE CORRECTIONS
TO THE SINGLE-MODE MODEL

The decay of two-level atom in a cavity may be charac-
terized as the process by which an atom generates, as best
it can, a single photon in a single-cavity mode, namely the
mode nearest in frequency to the atom’s transition fre-
quency. It is worthwhile, then, to ask a question that can-
not be answered by the single-mode models: how well
does the atom succeed in placing a single photon in a
single-cavity mode? A useful quantity in such a discus-
sion is the dispersion in the field Hamiltonian
Ab{,:(ﬁ}—(fif)z)l/z. After half a Rabi period
Tr/2=m/Sy, the atom is in its ground state and
AH;/(#2m/7) has a clear physical meaning: it is the
width An of the curve plotted in Fig. 1—the normalized
probability distribution of photons in cavity modes
P,=|b,(1)|%/3,, |bm(t)|% In Fig. 6 we plot the time
evolution of An.

Figure 6(a) shows a numerical solution of An over two
Rabi periods. The dipole moment of the atom was chosen
such that the Rabi period TR equals 107. At t =7, 27,
and so on, An takes a sharp dip toward zero as the field
distribution approaches that of the tenth cavity mode
[Fig. 2(d)]. With time the packet spreads, the leading
edge of the packet becomes less sharp, and the spikes be-
come less apparent.

In the examples of Sec. III and Fig. 6(a) it is assumed
that the atom is excited from the ground state to the ex-
cited state instantly at r =0. The example is instructive
but unphysical. In Fig. 6(b) is plotted An in the case in
which the atom is excited at r~0 with a smooth optical
pulse (Sec. VI). The minimum of An in Fig. 6(b) is signi-
ficantly smaller than the minimum of An in Fig. 6(a).
The minimum of An in the sudden turn-on case [Fig. 6(a)]
is dependent on the cutoff frequency w, of Eq. (2).

A difficulty arises in the calculation of AH + because

(A ) generally diverges in nonrelativistic theory. As a
result AH, depends on the frequency cutoff w, of (2).
However, if the model assumes a pulsed excitation of the
atom [Fig. 6(b)], rather than a sudden turn on, then after
half a Rabi period T /2, when the atom is in its ground
state, (A ) is finite and AH, independent of .. The
calculation is most easily done in the Schrédinger picture
(Appendix B). Discarding self-energy, the amplitude of
the nth mode is given by (B7)

n

Q
b,(t)=1i exp(—iw,t)

X f_: dt' B(1,t)b,(t )explio,t’) , (20)

where Z(1,t') is as defined in Eq. (2). The probability
that the atom is in the excited state is | b,(z)|2. The
probability that the photon is in the nth mode is | b,(¢) | ?
sothat (Hy) is 3, | ba(0) | Yo,

The divergences of (H ) are a result of the discontinui-
ties of the # function, which introduce a 1/w, depen-
dence in b,(t) for large n. The dependence is 1/(w,)'"? if
the self-energy term is not discarded. These divergences
have a clear wave packet interpretation. When the spatial
dependence of A s kept [Eq. (6)] the # function of
Eq. (20) [multiplied by b,.()] becomes the envelope of the
wave packet. The discontinuity in the & at t'=0 turns
into the sharp leading edge of the wave packet due to the
sudden turn-on of the atom. The discontinuity in the #
at t'=t becomes the sharp edge of the wave packet at the

8.0 ! =
(a)
o
<
0.0} , '_4
8.0 T T
®)
o
<9
0.0 L i
0.0 1.0 2.0

time (units of TR)

FIG. 6. Width (rms) of the normalized probability distribu-
tion P, of photons in the cavity as the atom undergoes Rabi os-
cillations of period Tk. The atom is in resonance with the tenth
cavity mode. (a) is the sudden turn-on case. In (b) the atom has
been excited at ~0 with a laser pulse as in Fig. 5.
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atom. In Fig. 2 is plotted the absolute square of the time
derivative of A *). It is apparent that the discontinuities
in A have become 8-function-like singularities. If the
atom is turned on smoothly with a pulse at 1~0 (Sec. VI)
then the leading edge of the wave packet becomes dif-
ferentiable (Fig. 5) and one source of divergence in (A )
is removed. It still diverges logarithmically due to the
sharp edge of the wave packet at the atom. This is be-
cause we have made the dipole approximation and have
assumed the atom to be a point particle. If the atom (or
the electron) is given a finite size then (ﬁf) is finite. The
divergences, then, are due to the fact that it takes an infin-
ite amount of energy to make wave functions with discon-
tinuities.

We assume now that the atom is excited with a pulse at
t~0 and that the atom is in resonance with a cavity mode
so that the atom is in the ground state after half a Rabi
period: b,(Tg/2)=0. (The # function now must be
modified so that it equals 1 for ¢+ <0.) With these condi-
tions, the # function no longer introduces discontinuities
into the integrand of (20), and AH is independent of ..
Because b, is the Fourier transform of a smooth curve
given by b,(t) (for t <Tg/2) we can immediately write
down a time-energy Fourier relation,

AH (TR /2)At(Tg /2)~#, (21)

where At is the standard deviation width (in time) of the
curve determined by | b,(z) |2 If we divide AHg(Tg/2)
by the energy separation in modes 27#/7 to get dispersion
in modes An and multiply At by 27 /7 to get AD then we
have at t =Ty /2 a number-phase relation A®PAn~1. A
numerical calculation of Af and of AH at t =Tg /2 veri-
fies (21). The phase AP to good approximation is found
to be /2 times the number of round trips the wave pack-

J

fiw

ng 28 1y =— ﬁw,,o f f dt' dt"G o4
n

L)
2

where the kernel K is given by (8b). The limiting process
of Sec. V may be applied to (24). It is found that H o be-
comes #iw, 3c7—A(_’ A*)/(4%w,), exactly the fourth
term of (1 ) the Jaynes-Cummings field Hamiltonian.
The correction term H r1 is calculated similarly, except
that the kernel K in (24) is replaced with — 9K /9t”. The
result is that to good approximation the expectation value
of H 11 equals the  expectation value of
—#A3ctA ) A ) /(4%iw,), where A=w, —w,. In

physical terms this correction simply means that, in units
of energy, the center of the photon probability distribution

', (Fig. 1) is at the transition energy of the atom #w,,
rather than the energy of the resonance mode fw)no.

We have seen, then, that the single-mode Jaynes-
Cummings model incorrectly predicts the expectation
value of Hy. The limiting process described above may
also be used to calculate the expectation values of the time
derivatives of the Hamiltonian, with the result that the

tr)K(t//_tl)é,\ge(tu
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et makes in Ty /2.

By contrast, the single-mode Jaynes-Cummings theory
yields the expected result that AH is zero at t =Tg /2.

To clarify the differences between the multimode and
single-mode models we will show how to calculate expec-
tation values of the multimode field Hamiltonian, its time
derivatives, and its dispersion AH; using the methods of
Sec. V. To begin, it is convenient to rewrite Eq. (8) for
A (F)(0,1) in terms of new variables:

A 0,1 = za A, , (22a)
where @, satisfies
A vioga, = a, =N 5 0 (22b)
dt n n“n time n 2 2 n%ge ’
and where A, is zﬁchON,,peg /(2e | p| 2). The field

Hamiltonian may be calculated in the usual way'' by writ-
ing the electric field as a sum of the orthonormal cavity
modes g, [Eq. (7)]. It follows that the RWA, normally
ordered H is ,, fiw,a ;ﬁ,,, which we write

Hy=Hyo+ Hpy=tioy, 2 +Zﬁ n—@n )8 n8y -

(23)

The second term on the right-hand side of (23), which we
call Hyy, is zero if all modes are discarded except the res-
onance mode of frequency @, . Consequently we expect

H 1 to be the multimode correction to the single-mode
Jaynes-Cummings Hamiltonian. This is easily verified by
substituting the formal solution of (22b) into (23). For
" ro we find,

)exp[iw,,o(t"—t')] , (24)

f

Jaynes-Cummings model also incorrectly predicts the time
derivatives. It may be verified that the limiting process
described above correctly predlcts that the multimode
Hamiltonian H +Hmt+Hf0+Hf1 is a constant of
motion, and not H +H,m+Hfo Nevertheless, Eqgs. (15),
(16), and (17) are the correct limiting forms of the equa-
tions of motion and may be solved by the standard
single-mode techniques to yield the quantities that appear
in the multimode corrections described above.

We turn now to AH;. Assuming that the atom is in
resonance with a mode of frequency a),, , AH? 7 equals the
)2

expectation value of # Y, (0, — n@, plus terms con-

taining a ro that sum to zero when the atom is in its
ground state. So, again it is found that the multimode
correction is characterized by the presence of a power of
(wp —wy,). In this case, because it is the second power of
(wp —wy,), the correction may be calculated from (24) by

replacing the kernel K with —3*K /dt"' 2. Again we find



35 TRANSIENT THEORY OF CAVITY-MODIFIED SPONTANEOUS . . . 4235

that the correction is easily written in terms of P Py,
A+, and so on, quantities that may be obtained by solv-
ing Eqs (15), (16), and (17). The result is that the time-
energy relation (21) is verified. The agreement is not
quantitative because the relation (21) depends sensitively
on the nature of the excitation of the atom, the details of
which we neglect here.

VIII. CONCLUSION

The central analytical results of the paper followed
from Eq. (13), in which the field at the atom A (*)(0,¢) is
written in terms of the acceleration of the electron
d(Il1/m)/dt at time ¢ (the radiation-reaction field), and at
earlier times ¢t —m~ (radiated fields returning from the
boundary). The wave packet interpretation of this formu-
la allowed damping to be introduced in a natural way, and
motivated a limiting process that yielded equations of
motion formally identical to the single-mode Heisenberg-
picture equations of motion. The same limiting process
successfully yielded multimode corrections to the single-
mode model, including a number-phase relation
AnA®~1, describing how well the atom succeeds in plac-
ing a single photon in a single cavity mode.

Throughout we have attempted to characterize the
physical behavior of the system in terms of the photon
wave packet radiated by the atom: the sharp kinks in the
Rabi oscillations were attributed to wave packets return-
ing from the boundaries; the divergences in the field
Hamiltonian were traced to discontinuities in the wave
packet; the phase A® was found to equal the number of
round trips the wave packet makes in the lifetime of the
atom multiplied by 7/2. Resonance was characterized in
terms of the relative phase of the dipole and of the fields
returning from the boundary: a dipole is in resonance
with the cavity if it completes an integer number of cycles
in the time it takes the wave packet to reach the boundary
and return to the dipole.
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APPENDIX A: HEISENBERG-PICTURE FORMALISM

We have chosen to work in the Heisenberg picture!’ be-
cause it yields a far clearer physical picture than the
Schrodinger picture. Furthermore, multilevel atoms are
handled very naturally in the Heisenberg picture. Both of
these virtues are apparent in Eq. (13) which relates the
field at the atom A (+)(0,7) to the acceleration of the elec-
tron d’2/dt?. Keeping all the atomic levels in the Heisen-

|

2e

A0, )= — —£
3mmc? dt

f dwexp(—iwt) f dr' R(t,t) (e’ Jexpliot') + ———— 3

berg approach permits a useful simplification (A8) and
identification of the self-energy term (A6). The
Schrodinger-picture equations specialize to the two-level
atom at the beginning and as a result give somewhat dif-
ferent answers than the Heisenberg equations.
For convenience we start with a normal ordered Hamil-

tonian

2 € & A (+) € A(—) N

H=H,——p A" (0,))———A"'"70,1)-p

mc mc

82

+ (A-A LA R)+H,, (A1)

2mc?

where H s is the free-field Hamiltonian and where A (+
is the »—O0 limit of the positive frequency vector poten-
tial:

AFrt)= 2 A, a,(Dexplik-T) . (A2)

The field has been second quantized, [ﬁk,ﬁZ]z 1, but
not the atom. The atomic variables are Heisenberg opera-
tors. They will be written as matrices, using as basis vec-
tors the complete set of eigenstates of the atomic Hamil-
tonian. These matrices in turn are written as linear com-
binations of the transition operators 6. At t=0, the
transition operator &;; is a matrix with a value of 1 at
(row, column)=(i,j) and a value of 0 everywhere else.
From that r =0 value of & it follows that & satisfies at
any time the commutation relation

[6\aﬁ76’\lj]:8316\a] 8(1]6-\13 . (A3)

Any atomic Heisenberg operator may then be written as a
linear combination of 6 ’s. For example, the atomic Ham-
iltonian is

+Vi(r)

2‘71/<

> S 6,tiw; (A4)

i

where the sum runs over all eigenstates of the atomic
Hamiltonian |i) and |j), and #w; is the energy of the
ith eigenstate.

The equation of motion for the field amplitude @; may
be formally integrated to give

@y (1) = exp( —iwyt)

t a2
X [Zik(O)—f- fo dt'expliogt')ell(t')- Ay /mc

(A5)

Setting r=0 in (A2), summing over polarizations, and in-
tegrating over angular variables, we find

—= o () . (A6)
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The second term on the right-hand side of (A6) can be
identified as the self-energy of the electron. Henceforth
this term will be discarded.

In Sec. IV we showed how to evaluate the integral in
(A6). The result in free space is that A *) is to a good
approximation proportional to the positive frequency part
of II:

A‘“(o,:):-—z'e—z—d— pH_LAH0 . (A7)
3me? dt c

The positive frequency atomic operator P ‘*’ was defined
in Sec. I. A consequence of the definition of P (*’ is that
differentiation commutes with the positive frequency
operation:

(+) (+)

_d_/\

d 4
=1 aP

- P

A8
i (A8)

~ .
2 Gyiwypy
ij

where w;; equals 0; — ;.

Because the vacuum fields perturb the atom so weakly,
the zeroth-order solutions of the atomic variables are ex-
tremely useful. To get the zeroth-order solutions the
equations are solved as though there were no vacuum
field. In the case of a two-level atom the zeroth-order
solution of P+’ is

a(+)

P (A9)

=0, (0)pgeexplicgt) ,

where | g) is the ground state, | e) the excited state, and
Pge the matrix element of #V /i.

2e
3mme?

A(+)(0,t)=i

where A ., is Z; Apbi(t). Schrodinger’s equation im-
plies the following equation of motion for pg, b, (2):

d . . e

Zpgebe +lwapgebe:l_ﬁz: ‘peg IZA(+) . (BS)
Equations (B4) and (B5) correspond to the Heisenberg-
picture Egs. (2) and (16). The cavity modifications are
unchanged from the Heisenberg approach of Sec. IIL
Equation (B4) inserted into (BS) yields

d .
2t b, +iwyb,

A P . ’
5 o, Jdrbreplion 01

(B6)

fo “dwexp(—iwtw fjw dr' B(t,t')
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. APPENDIX B:
SCHRODINGER-PICTURE FORMALISM

To write the equations of motion in the Schrédinger
picture, we assume a wave function of the form

$‘I’)=be(t)|e)+2bk(t)|lk,g) , (B1)
k

where | 1;,g) is a state with one photon in the kth mode,
and the atom in the ground state. Schrodinger’s equation,
restricted to this set of states, has been extensively studied,
beginning with the work of Wigner and Weisskopf.'®
Emphasis has been on studying causality in quantum elec-
trodynamics.!” Here we wish to establish connection with
the Heisenberg equations and to apply boundary condi-
tions. The Schrodinger-picture equations have the advan-
tage of being easy to solve numerically and analytically.
In Sec. VII, use of the Schrédinger-picture equations per-
mitted a straightforward and quantitative calculation of
the AH;. Furthermore, they help to justify the less fami-
liar Heisenberg radiation-reaction approach. In particular
the Heisenberg-picture rotating-wave approximation will
be better justified in view of the results below. The Ham-
iltonian is (A1), although it need not be normal ordered.
The connection with the Heisenberg picture follows from

(W(0) | oo (2) | W(0)) = (W(2) | G, (0) | W(2))
= |b,(2)|?%, (B2)
and

(W(0) |Er,0)- B 1) | W(0))
2

zﬁ’c—"—Akbk(t)exp(fk-r) . (B3)
k

Just as in the derivation of (2) and (A6), Schrodinger’s
equation implies

expliot') . (B4)

e
pgebe‘_ ?A(+)

f

We use the many-level atom Heisenberg theory, specifical-
ly Egs. (A6), (A7), and (A8), to apply boundary conditions
and to argue that the self-energy of the electron is discard-
ed by simply replacing NZw, in (B6) with N2w,. With
this modification (B6) is equivalent to

Ay tiwgh,=i S Coby , (B7)
dt "
and
j—b +iw,b,=iC,b (B8)
dt n n“n — n*e »
where C, =N, Q,/2. If we had kept the self-energy term
of (A6), then we would have found

C,=(w,/w,)""*N,Qy/2. Equations of this sort appear
frequently in semiclassical models as well and have been
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widely studied.'® In particular Kyrdld'® has investigated
the single-mode limit of the multimode equations.

We are now prepared to justify our choice of N22w/7
as the substitution for dw in (2). The modified equations
must satisfy two requirements. First of all, before the
wave packet reaches the boundaries, the cavity-modified
equations must give the same results as the free-space
equations. The fact that N,=1 (very nearly) for all but
the smallest n guarantees this since then the substitution
for dw is w, ,1—w,. (Atoms in resonance with the first
cavity mode are a complication we ignore in this discus-
sion.) The second requirement is that the amplitudes
b,(t) behave as quantum-mechanical amplitudes. From
Eqgs. (B7) and (B8) it is apparent that the time evolution of
the amplitudes b,(¢),b,(2) is governed by a Hermitian ma-
trix so that |b,|’+ 3 |b,(t)|?=1. This is the
equivalent of (19). Next, to get (H,) we integrate (B3)
over the cavity volume and divide by 2, but first rewrit-
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ing the right-hand side as a sum of cavity modes g, [Eq.
(7)] as in (6). It is verified that N22m /7 is the unique sub-
stitution for dew such that the Hamiltonian of (B7) and
(B8) is Hermitian and (H,) is 3, fiw, | b,(2) | %

The single-mode approximation may be motivated by a
simple argument. We see that the right-hand side of (B6)
is a sum of the Fourier components of the slowly varying
quantity b,(t)exp(iw,t) (multiplied by an unimportant %
function). The slowly varying quantity oscillates at the
Rabi frequency, which is typically much less than the fre-
quency separation of cavity modes. The Fourier
transform of b.exp(iw,t), then is a curve that falls to zero
rapidly for w of the order 27 /7 and larger. Consequently,
the elements of the sum on the right-hand side of (B6) are
all much smaller than the n =n, element. Throwing
away all but n =ny term yields a simple equation that
predicts a Rabi frequency of [A2+(w,+A)Q3/w,]'"%.
However, this answer is not unique.
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