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Effects of cross relaxation and line mixing on third-order nonlinearities of resonant systems
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The effect of cross relaxation, i.e., the transfer of coherence between transitions coupled by inelas-
tic collisions, on third-order nonlinear processes, namely, saturated absorption and four-wave mix-

ing, is studied within the context of a model four-level system. Numerical results displaying
changes in the resonant structures in four-wave-mixing signals for a range of collisional parameters
are presented.

I. INTRODUCTION

There has been a lot of interest in the study of the non-
linear response of an atomic system to radiation in the
presence of collisions. Collisions have been known to in-
fluence the atomic response in various ways. For in-
stance, both elastic as well as inelastic collisions have been
found to give rise to redistribution of radiation' emitted
by an atomic system. These also give rise to extra reso-
nances in the nonlinear susceptibilities ' and Auores-
cence produced by multilevel systems. In such studies, it
is usually assumed that the function of inelastic collisions
is merely to bring about a transfer of populations among
the various energy levels of the system, and a decay of
coherence induced between the levels. A point that is gen-
erally not taken into account is that there can be an in-
terference between two collision-induced transitions,
which becomes significant when the rate of such transi-
tions is appreciable compared to the frequency separation
between those transitions. Such interferences give rise to
couplings between different coherences or between coher-
ences and populations in the equations of motion for the
density operator of the system. A simple case of such
couplings, namely, the coupling that gives rise to a
transfer of coherence (or cross relaxation) between two
pairs of levels, has been discussed in some detail in the
literature. Cross relaxation has been found to give rise
to interesting effects in the linear response of a system to
an external field, e.g. , the collapse of the inversion spec-
trum of NH3 at high pressures, and the mixing of the
two lines in the absorption spectrum, their merger into a
single line and further, the narrowing of this line, with in-
creasing pressure. However, the question of how cross
relaxation influences the nonlinear response of a system to
external fields has not received enough consideration ' so
far. In this paper, we examine the effect of cross relaxa-
tion on third-order nonlinear processes.

In Sec. II we trace the origin of cross relaxation to cer-
tain nonsecular (or counter-rotating) terms in the master
equation' describing the interaction of an atomic system
with the bath of perturbers. In Sec. III we specialize the
general formulation of Sec. II to a model four-level sys-
tem with two optical transitions. We study the effect of
cross relaxation on saturated absorption. In Sec. IV we
calculate the nonlinear susceptibility for four-wave mixing

in the model system of Sec. III. We present detailed nu-
merical results for a range of collisional parameters. Our
discussion includes the various resonances and, in special
cases, our results reduce to those obtained by other
methods.

II. ATOMIC DYNAMICS
WITH CROSS RELAXATION
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At this point one usually makes the rotating-wave ap-

The relaxation behavior of an atomic system in the
presence of collisions can be handled by using various
methods. For example, one can consider the interaction
of an atom with a heat bath and write the interaction in
the form
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where U describes the interaction of the atom with the
heat bath or with the perturbers and Hz is the unper-
turbed Hamiltonian of the heat bath. Note that ukt is an
operator in the Hilbert space of the perturbers. Let p be
the reduced density matrix for the multilevel atom of in-
terest. In the weak-coupling limit and in the Markov (im-
pact) approximation, the density matrix p in the interac-
tion picture is found to obey the equation'
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proximation and keeps only those terms in Eq. (2.2) for
which cok~+co „ is exactly equal to zero. Then, in the
case when the atom has a nonequidistant and nondegen-
erate spectrum, one gets the well-known equation which
has been extensively used in finding the nonlinear
response of a driven system,

P',, = —rj( I —n,, )P,',

I I+~ij g (3 ikpkk YkiPii ) ~

i, k
(k~i)

where
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Here y;j is the rate of transition from
~ j ) to

~

i ) due to
spontaneous emission as well as due to inelastic collisions,
and I;~ is the rate of dephasing due to elastic collisions.
However, the counter-rotating terms in Eq. (2.2) can be
important in certain cases as discussed below. When
counter-rotating terms are retained, then Eq. (2.2) can be
written in the Schrodinger picture as

Pij = 1 AijPij + g kkjinPnk g ( likPkj +'9kjPik )r(iAJ)
n, k k

(2.8)

is related to the modulus squared of the transi, tion ampli-
tude of the form cik . Thus the terms yki „can be
seen to arise from a quantum-mechanical interference be-
tween the two transitions

~
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One can take the magnitude of y~~' „' to be roughly equal
to —,

'
Qyiky „. By doing a simple first-order perturbation

theory with any particular counter-rotating term as the
perturbation parameter, one can estimate the order of its
contribution to p(t) F.or instance, the contribution from
the term gkj;„ that couples the coherences pij and p„k can
be seen to be important when gkj;„( —Qyjky;„) is appreci-
able compared to

~
A;, —A„k

~

. There are many systems
for which some of the nonsecular couplings become im-
portant (at high pressures) when the inelastic collision
rates become sufficiently large. In Sec. II we study a
model system where a simple coherence-coherence cou-
pling between two pairs of levels is important. Such a
model system has been of considerable interest. Other
systems can also be studied similarly.

III. EFFECT OF CROSS RELAXATION
ON THIRD-ORDER NONLINEAR

SUSCEPTIBILITIES

Consider a frequently studied ' ' four-level system con-
sisting of two transitions

~

2)~
~

3) and
~

1)~
~

4) cou-
pled by inelastic collisions (see Fig. 1) where a central fre-
quency ~o is defined so that cu&

——coo —5 and co2 ——coo+6.
The time evolution of an atomic system in the presence of
external fields is described by the equation
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In Eqs. (2.8) and (2.9) the g and q terms are the
counter-rotating terms that bring about coherence-
coherence and coherence-population coupling. Let us now
look at the origin and meaning of such additional terms.
Expressing Eq. (2 4) in a representation in which the bath
Hamiltonian is diagonal, i.e., HR

~
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where H (t) is the atom-field interaction in the dipole ap-
proximation, and Ljip is given by Eqs. (2.8) and (2.9).
For the above system, Eq. (3.1) leads explicitly to the sys-
tem of equations
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where f0(R) is the probability distribution of the bath
states. One can see from Eqs. (2.11) and (2.12), that while

y~~ „ is related to a product of two transition amplitudes
of the form cikc"„(where c;j denotes the probability am-
plitude that a transition takes place from

~ j ) to
~

i )), yik

I» "

FIG. 1. Energy diagram of the model system with various re-
laxation rates. 2y is the radiative relaxation rate of each transi-
tion and o. is the strength of collisional coupling between the
two components.
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where we have taken k3412 04321 41234 f2143 k (all
other g and rI terms are negligible), I 14 —I 23 —)+cT,
I P =0. Here o. is thus the rate of the inelastic collisions
between two nearby levels as shown in Fig. 1. The param-
eter g couples coherences to coherences. These parameters

g and cr can be obtained in terms of the matrix elements
of V [see Eq. (2.11)]. These can also be related to the col-
lision matrix S, for example, g= f (S+)12(S)34F(g)dg,
where F(g) can, for example, be the distribution of im-
pact parameters g. Let the system be interacting with two
monochromatic fields with frequencies co, and co~. We
write the total field as

—EQl —l COE(t)=e(e,e ' +e&e ~ +c.c. ) . (3.3)

The macroscopic polarization induced in the system is
given by

& P(t) & =XTr[p(t)p], (3.4)

where X is the atomic number density, p is the dipole mo-
ment operator, and p(t) is determined from Eqs. (3.2) with

H'(t) = —p.E(r)

= —d[(I 1&&4I+ I2&&31)

y+~+~[&, +(5' —g')'"]
ImX "(co, ) cc

[g +(52 g2)1/2]2+( + )2

y+cr —a[6,—(5 —g )'/2]
+

[g (52 $2)1/2]2+ (y+ )2

g/(52 g2)1/2
(3.10)

One can see from Eq. (3.10) that for g/5 & 1, the linear-
absorption spectrum consists of two lines exhibiting both
absorptive and dispersive character. These lines get mixed
more and more as o increases (static mixing) and as g in-
creases (dynamic mixing). In the limit g/5~0, Eq. (3.10)
reduces to a sum of two Lorentzians,

Imp" 1(co ) ~ /+0
(&, +5)'+ (y+ o )'

/+0
(&, —5)'+(y+o )'

(3.1 1)

As g/5=1 one has a single line peaked at b,, =0 and with
width y+ o.. In general, the first-order spectrum is
symmetrical around b,, =0. For g/o & 1, one has

X(e,e ' +e~e ~ )+H.c.] (3.5)

in the rotating-wave approximation. It should be borne in
mind that the cross relaxation in Eqs. (3.2) is represented
by the terms involving g. We will now obtain the results
for the nonlinear response of a system when cross relaxa-
tion is important.

ImY (co, ) cc
2 2 + 2 2

[

g2+ g2 g2+ g2

where

(3.12)

(3.1 3)

A. Linear response

To first order in the probe field e, (in the absence of
any pump) one has

P'"(r)=X'"(~, )e,e
' "+c.c. (3.6)

I1(co, ) =2',
~
e,

~

Img"'(co, ) . (3.7)

Using the system of equations (3.2) we have shown that

The linear absorption is related to the imaginary part of
7'" by the relation

——y —6 /2o. , A -2+6 /2',
/L ——(y+2o. )+5 /2o, /I ——5 /2cr .

(3.14)

Hence, at very high pressures, one observes a single nar-
row line with width approaching the natural linewidth.
This is the well-known line-narrowing phenomena re-
sulting from the mixing of the lines.

Thus, as g/5 increases beyond 1, one of the two lines be-
comes narrower and stronger while the other line becomes
broader and weaker and what survives is the narrower
line. For g/5 —o/5»1, one has

A+ A

6, —iX+ 6, —ik+ (3.8) B. Susceptibility for saturated absorption
with cross relaxation

where

~s =Cps COO ~

A, + ———(y+cr)+i(5 —g )'

1 +g/(g2 52)1/2

(3.9)

We next consider absorption from a probe in the pres-
ence of a pump field. The absorption spectrum in such a
case is given by

13(~,)=2',
~
e,

~

1m[X'"(co, )+ ~e~ ~

X' '(co, —co,co, )],
(3.15)

The behavior of 7'" depends on the magnitude of cross
relaxation. For g/5 & 1, one has

where X'"(co, ) is as given by Eq. (3.8). We have proved
using Eqs. (3.2) that the third-order contribution to Eq.
(3.15) is given by
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where b„, A+, and A, + are defined as before [Eq. (3.9)] and b~ =co~ —coo. It is found that ImX' '(co~, —co~, co, ) can be
negative. This can be seen by considering a special case of Eq. (3.16) with g/5=o/5=0. In this limit, we have

(3) 1Vd
(mp~ ~palms) =

2

—2 1 + 1 +(5~—5)
(b,, +5+i y)(6~+5 iy)—b,, +5+iy b~+5+iy

(3.17)
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Xd
2

ip is coi cops~ l = 12 .

From Eq. (3.18) one can see that for h, ~ =0, for instance,
Img' ' remains negative for all values of 5&, for which it
is significant. Hence it turns out that the third-order pro-
cess gives rise to the possibility of amplification' of the

(where 5~—5 represents the same terms with 5 inter-
changed with —5) which is just the sum of X' ' for two
independent two-level systems with resonance frequencies
coo —5 and coo+5. Equation (3.17) leads to

probe wave. However the tota1 absorption wi11 still be
positive since the contribution of X' ' terms is small. This
is seen from Fig. 2. The amplification can become ap-
parent by, for example, examining the absorption at two
different values of the pump intensity. Further, one can
see from Eq. (3.16) that 7' ' has resonances at

~(52 g2)1/2 (3.19)

which should be well resolved if bz is large and if 5~&g.
Note that the resonance 5, =Ap is the pressure-induced
extra resonance (PIER), which has been discussed exten-
sively in the context of four-wave mixing. Figure 2 shows
the resonances at b, =+(5 —g )'~ . The resonance at
6, =Ap is rather weak and gets washed away by the line-
mixing effects. This can be seen from the analysis of Eq.
(3.16). In the limit of large b,, and b~ the coefficient of
the resonant term (2iy+b. , —hz) ' has an overall coeffi-
cient [5,—b&+2i(y+o —g)]. Thus the resonant struc-
ture corresponding to PIER will disappear if o =g and

j(q)
3

p
-3 0 3

(u-
qg)

FIG. 2. Saturated absorption spectrum I3(~,) as a function
of (co, —coo) /6 for various parameters given by cr/5 =0.5,
y/6=0. 25, Az ———7/26, g/2y=1. 0 (g =de/A is the pump
Rabi frequency). The solid (dashed) line corresponds to the
spectrum with cross relaxation, g = cr {without cross relaxation,
/=0); the dotted line denotes the case of no collisions
(o =/=0). The normalization in the last case is four times
larger than what is shown in the figure.

I—3 -2-4 0 1 2 3 4
(W- 0)je

FIG. 3. Same as Fig. 2, except that now A~ = —5 and
g/2@=0. 1. The normalization in the case of no collisions
(g'=cr =0) is two times larger than what is shown in the figure.
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this is the case in Fig. 2. We have checked numerically
the existence of PIER for g=cr/2, etc. We also observe a
small asymmetry between the two resonances at
+(5 —g )'/'. Note also that the character of the reso-
nance changes if bp, say, is chosen close to (5 —g )'

Some of the resonances take the form of the square of a
Lorentzian. The behavior of the absorption spectrum
when the pump is tuned to one of the atomic transitions is
shown in Fig. 3. This tuning results in a smaller absorp-
tion. For g/5=1, Eq. (3.16) reduces to

4

X ( Cilp» —Q)p» C05 ) =— 2 1

(2iy ~b, , hp—)[b,, ~i(y ~a)] 5, ~i(y~o)
1

b,p i (—y f-o.)

2 1+
2i y[h, +i (y+cr)] bp+i (y+o. )

1

b,p i (y ~—o. )
(3.20)

which has the same structure as that of 7"' for a two-level system with excited state lifetime y+o. . For g/5 —o/5» 1,

( Mp» —COp»CO~ ) =—(3) Nd —2 1 1+
(b., ~iy)(Ap iy—) b,, ~iy bp ~iy

(3.21)

resembles the 7' for a two-level system when only radiative relaxation is present. Hence, for g/5& 1, the third-order
spectrum will consist of a single narrow symmetrical line at 6, =0, in much the same way as in the first-order spectrum,
except for a slight reduction in the peak height depending on pump detuning and pump strength.

IV. NONLINEAR SUSCEPTIBILITY FOR FOUR-WAVE MIXING WITH CROSS RELAXATION

We next examine in detail the nonlinear susceptibility 7' '(cop, cop, —co, ) describing four-wave mixing (FWM). For the
model of Fig. 1 we have shown that

(3)
(mp»cup» ms)

Nd
2

3+
0—2i y 0, —6&+i A+ 0—6&+iA.

+
Ap —l k

+

1+ II 2i(y 4-—o. ) fI —Ap ~i A ~

1

6—Ap ~ik Ap —i A, ~ Ap —iA,

1+
A~Ap ~i A, ~

1

A~Ap ~iA,
(4.1)

where A=co, —cop, bp ——cop —coo, and 3+,A+ are defined by Eq. (3.9). One can see from Eq. (4.1) that for g/5 & 1, the
resonances in X' '(cup, cop, —co, ) are at

(52 g2) 1/2 g ~ (52 g2)1/2 () [g ~ (52 g2)1/2] [g (52 g2)1/2] (4.2)

Thus, depending on the magnitude of bp+(5 —g )'/
some of the lines may overlap. The widths of the two res-
onances at Q=O are 2y and 2(y+o. ), while the width of
each of the other resonances is y+o. . Consider the case
when bp is negative, and

Ap + (5 —g )'/ is far from zero.
In such a case, all the five lines corresponding to the reso-
nances in (4.2) are distinctly present. It can be seen from
(4.2) that the lines corresponding to the first (third) and
the second (fourth) resonances dynamically mix with each

other as g/5 increases. As in the linear-absorption spec-
trum, here too the dynamic mixing is due to the fact that
the frequency separation between the lines in each of the
above pairs [equal to 2(5 —g )'/ ] becomes smaller and
smaller and approaches zero as g/5 approaches 1. On the
contrary, the separation between the lines corresponding
to the second (fourth) and the third resonances [in (4.2)],
which is equal to

~
bp+(5 —g ) ~, increases as g/5 ap-

proaches 1, for any given 6& &0. Hence, one can say that
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p an 0= —5
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which is just the sum of 7' ' for two independent two-
level systems. Note that the extra resonance B=O now
disappears, so that one has only four resonances in gen-
eral, at

Q, =hp —5, 6~+5, —(6~+5), —(&~ —5) . (4.7)

In Figs. 4—7 we plot the FWM signal ~X )(co&,co&,
—co, )

~

versus Q (=co, —co&) for various values of pump
detuning and cross-relaxation rates g (=o). Figure 4
shows the usual FWM signal in the absence of collisional
coupling between the two components (g/5 =o /5 =0). In
Figs. 5—7, we display the changes in the FWM signals as
the strength of the collisions increases. We show results
both with and without cross relaxation. When all the five
lines are resolved, then cross relaxation reduces the

strength of the collision-induced coherence at 0=0. The
mixing and narrowing of lines as discussed above are seen.
The effect of cross relaxation is seen to be more dramatic
when the pump is detuned far away from the resonant fre-
quencies of either of the two components.

In conclusion we have studied the effect of cross relaxa-
tion on saturated absorption and four-wave mixing. We
have based our calculation on the general atomic relaxa-
tion equations which follow by considering the interaction
of the atoms with the bath of perturbers. Cross relaxation
makes a difference in the pump-induced asymmetry in the
third-order absorption spectrum. The effect of cross re-
laxation on four-wave mixing is more dramatic than on
saturated absorption. Line-mixing and line-narrowing
phenomena occur in four-wave mixing as well, as in the
linear-absorption spectrum.
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