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Superradiance: A numerical study

A. Duncan and P. Stehle
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

(Received 10 December 1986)

The full set of Weisskopf-Wigner equations describing the spontaneous radiative decay of a sys-

tem of up to four excited two-level atoms and many field modes is integrated numerically. Mea-
sures of collimation and of photon-photon directional correlation are evaluated and demonstrate the
tendency of the photons to form a single ray. Decay rates of the initial state are found to be propor-
tional to the number of atoms, as expected from analytical work.

I. INTRODUCTION

The radiative decay of systems of atoms prepared in
various excited states is a fundamental process that has
been much studied. The one-atom system was described
by Weisskopf and Wigner' in their famous paper of 1930.
The result is that over the time interval of most interest
the atom decays exponentially and the emitted photon has
a Lorentzian frequency distribution about the atomic fre-
quency as center. At very short times the probability of
finding the system atom-plus-field not in the initial state
grows quadratically with time, as required by time-
reversal invariance. The angular distribution of the radia-
tion is that typical of dipole radiation. For a Am =0
transition involving only the z component of the atomic
dipole moment the intensity I(8) cc sin 8.

Stephen studied the two-atom case in which one atom
is initially excited and the other is in its ground state. If
the atoms are close together, this leads to a 50% chance
of the radiation being trapped in exchanges between the
two atoms. At large separations it leads to two alternative
modes of radiation with distinct lifetimes.

Dicke studied the ¹ tom case where the atoms are
closely spaced relative to the atomic radiation's wave-
length, and introduced the concept of superradiance as the
accelerated radiation resulting from the coherent addition
of atomic dipole moments. He also considered cases of
partial and complete radiation trapping or subradiance.
For an extended set of atoms he showed the existence of
directional correlations between emitted photons. Ernst
and Stehle applied the original Weisskopf-Wigner ap-
proach to a system of N atoms distributed with uniform
density but without positional correlations over the
volume of an ellipsoid. The Weisskopf-Wigner equations
here become very complicated and numerous, so that a
solution as good as Weisskopf and Wigner's for the one-
atom system cannot be obtained analytically. An ansatz
for the form of the desired amplitudes could be shown to
satisfy the equations in a combinatorial sense, e.g., in the
sense that n!=n", or perhaps even n!=(nle)", but no
better than this.

The results of this analysis showed two striking effects:
(i) The lifetime of the system is shorter than that of in-
dependently decaying atoms, but the spectrum is nar-
rower. (The final state is an X-photon state so this does

not contradict the uncertainty principle. ) (ii) The emitted
photons are strongly correlated in direction also, forming
a diffraction-limited ray, the diffraction pattern corre-
sponding to an aperture with the shape of the ellipsoid
cross section perpendicular to the direction of the ray,
most probably along the longest axis of the ellipsoid.
These results are very similar to those of Rehler and Eber-
ly obtained later using a much simpler semiclassical
model which, however, required an initial prod to radiate,
as a system of atoms all in their excited state has no elec-
tric dipole moment to act as a source of a classical field.
Other aspects of this problem have been studied, for ex-
ample Watson et al. and by MacGillivray and Feld.
Watson et al. used the three-dimensional coupled semi-
classical Maxwell-Bloch equations, simulating the spon-
taneous initiation of the superflourescent pulse by a ran-
domly chosen initial polarization of the inverted medium,
and reached a good agreement with experiments. The
treatment of the pulse initiation is, however, somewhat ad
hoc. In the present treatment the entire course of the evo-
lution of the state of the system is done completely quan-
tum mechanically using the Weisskopf-Wigner method.

Experiments were done to see if these predicted effects
could be observed in the laboratory. Vehrens, Hickspor,
and Gibbs studied the superradiance of cesium vapor.
They found accelerated emissions and considerable col-
limation of the radiation, but they always observed radia-
tion from both ends of a pencil-shaped volume, and these
rays were not diffraction limited, but more or less filled
the geometric opening angle as seen from the center of the
volume.

The situation concerning superradiance being so ambi-
guous, it seems worthwhile to exploit the possibility of ob-
taining numerical solutions of the Weisskopf-Wigner
equations for systems as large as the available computing
resources will allow. The limiting factor is the large num-
bers of field states needed to show any photon-photon
correlations that do develop. If nk modes are used, and if
states containing X photons must be included, as is the
case if the initial state contains X excited atoms, then

nk +N —1

there are ( "~ ) states of the field. Initially and finally
the atomic state is unique, but if cV& atoms are in the
ground state and %g photons are therefore present, there
are (z ) atomic states for each field state. For example,
with five frequencies in each of 328 directions, there are
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1640 modes, and the total number of states included in
the Weisskopf-Wigner calculation for two atoms is
1348901. For the two-atom system the analytical solu-
tion for large times is obtainable, and the numerical solu-
tion can be compared with it. This is done below, and the
two are seen to be in good agreement.

For four atoms it is clearly impossible to use as many
modes of the field, as the combinations lead to enormous
numbers of states. The restriction to three frequency bins
helps, but the number of directions must also be reduced.
Work on the four-atom system is described in Sec. IV.

II. A NUMERICAL APPROACH
TO QUANTUM-MECHANICAL TIME EVOLUTION

In many complex systems the accurate computation of
the quantum-mechanical time-evolution o erator e
(or, in the interaction picture, T exp[ i Ht—"'(t)dt]) is
of crucial importance. In such systems, one typically
must deal with a state space of high dimension, and direct
diagonalization of the Hamiltonian is impractical. In the
superradiance problems discussed in this paper, for exarn-
ple, the combined atomic-radiation-field state space has a
dimensionality between 1& 10 and 2&(10 .

We have chosen instead an approach that makes maxi-
mal use of the properties of vector machines with large
quantities of fast memory (such as the cRAY-xMP). The
only operations performed correspond to matrix multipli-
cation on a large state vector, which is a completely vec-
torizable procedure.

For a system of N two-states atoms interacting with the
radiation field in Weisskopf-Wigner approximation, the
interaction Hamiltonian may be written

HP'(t) =g g (bja~e 'e +H. c. ) .
j,k

(2.1)

In (2.1), g is a coupling constant, essentially the dipole
strength, with dimensions of energy. The exact dipole
coupling contains the angular dependence resulting from
the scalar product E.d, but for the purposes of this work
this dependence is suppressed. bz is the deexcitation
operator for atom j, ak the creation operator for a photon
of momentum k, Rj the location of the jth atom, co the
frequency ( =

~

k
~

) of the emitted photon, and coo the en-

ergy difference between the two atomic states (fi= 1

throughout).
The state space is a direct product of atomic states with

multiphoton states. We imagine the system contained in a
box of finite volume V so that the photon momenta k are
discrete. In practice, we take nk modes consisting of n„
frequency bins and nk/n directions (more on angular
coverage below). Thus there are Nnk single-photon states,
[N(N —1)/2]nk(nk+1)/2 two-photon states, etc. The
total dimensionality is

nk+I'
D(N, nk)= g (2.2)

r=o

For example, for a two-atom system with 1640 photon
modes, D = 1 348 901, while for a four-atom system with

72 photon modes, D =1490803.
The calculation of the time evolution proceeds as fol-

lows. The time-evolution operator (in interaction picture)
for the desired finite interval is broken up into a large
number of small time steps

T exp —i ' I"' t' dt' =+ exp[ iHI—"'(t; )At],

where Mht =t.
(2.3)

Then we approximate each unitary operator in the
product by a truncation of the exponential expansion, ex-
pressed as a factorized product of linear terms

e ' ' = g I[ iHP'(t;)—At]]
m=i m'

=[1+aiHt"'(t; )][1+a2Ht"'(t; )]

(2.4)

I =2' 2 dn

dk
(2.5)

For a discrete set of nk momentum modes distributed
over n frequency bins of width hen, dn Idk =nk I
(n Ace). We have checked that the discretization does not
do violence to the physics by varying g, nk, n while keep-
ing I fixed (see below).

III. ONE AND TWO ATOMS

For one- and two-atom systems good analytic solutions
exist. Comparison of the numerical results with the ana-

For example, for p =2, one takes a& —— i At(1+i)/2—,

a2 ———i At(1 i)/2, a—nd in general the expansion of the
series of p complex time evolutions is equivalent to a sin-
gle real-time evolution with a loss of unitarity at the
H +' level. The advantage of the form (2.4) is simply
that linear operations involving (2.1) are readily expressed
in fully vectorized code. We have used (2.4) with p & 6 in
the two-atom case to check that unitarity is indeed
preserved to one part in 10 over the full evolution of the
state. For the four-atom case, we have taken only the
linear approximation (p = 1) because it permits much
more efficient use of the memory available (in this case,
we do not need to keep a copy of the old state vector while
forming the new one). This results in a loss of unitarity
(over the whole time evolution) on the order of a few per-
cent for the time interval used.

As a check on the numerical results, we note here some
simple analytical features of the time-evolution generated
by (2.1), in the one-atom case. For small time t, the prob-
ability of the one-photon state increases quadratically
with time as g nkt —or equivalently, the initial state
(with the atom "up" and no photons present) decays as
1 —g nkt . For somewhat larger times, the Fermi golden
rule gives an exponential decay e "' for the initial state
with
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4 atoms, 3 frequency bins

lytic ones provides a check on the algorithm and the code,
and further validates the discrete mode structure of the
field used in the code.

The one-atom case leads to results shown in Fig. 1.
Here the probability of finding the atom excited at time t
when it was prepared at time 0 in its excited state shows
the expected features; it begins to decrease quadratically,
then decreases exponentially. The deviations for large
times are caused by the discrete mode structure. There is
a nonzero minimum difference between adjacent frequen-
cies so for times greater than 1/Ace oscillations will ap-
pear. Only when Aco~0 does the emission become ir-
reversible. The value of go used is 0.345 ( in these units).
Thus according to Weisskopf-Wigner theory,
I =2m(0. 345) =0.75. Fitting the third through the
eleventh points plotted in Fig. 1 for the one-atom case to
the best straight line, a value of I =0.79 is obtained.
These are close enough to indicate the one-atom mode
structure is adequate. Doing the same for the four-atom
system yields a value l (4)=2.92=4&0.73, another good
check on the overall time evolution.

The decay of the initial state of a two-atom system is
shown in Fig. 1 with two different mode structures. One
structure has 7 frequency bins and 248 solid angle cells;
the other has 5 frequency bins and 248 solid angle cells.
The coupling strength g is adjusted as described in Sec. II.
This should keep the rate of decay of the initial state the
same in the two situations, and the figure shows that it
does. Again there is a quadratic time dependence at the
start changing to an exponential decay. The rate of this
latter is twice that for the one-atom case, there now being
twice as many ways for the system to leave the initial
state. The four-atom case is plotted also. The rate of de-
cay of the initial state is now very nearly 4 times that of
the one-atom system. The rate of decay of the various

I.O

~ 7 bins, t=6
5 bins, t=6
7 bins, t=2
5 bins, t =2

0.5—
CL

0
4J —3+4)0 m -b, u m ~+4~ 4J +364'

FIG. 2. Photon line shape (two atoms, 5 and 7 frequency
bins).

systems thus scales properly with the number of atoms,
and is independent of the mode structure used provided
that g, the coupling of the atoms to each mode, is scaled
with the number of modes so that g n~ is kept un-
changed.

The time development of the frequency distribution of
the photons emitted by the two-atom system is shown in
Fig. 2. The calculations are done using mode structures
including 5 frequency bins or 7 frequency bins. The nar-
rowing of the line with increasing time is evident. The
shape of the line does not depend noticeably on the num-
ber of bins aside from the missing wings in the 5-bin case
where the extreme bins have been excluded as possible
modes. The area under the curve thus excluded appears
as a very slight increase in the height of the central por-
tion.

Figure 3 shows the time dependence of the probabilities
of finding 0, 1, or 2 photons in the two-atom system. The
complication in the shapes of the curves at large times is
due, as discussed above, to the discrete mode structure
which prevents the emission from being truly irreversible.

The state of the two-atom system at large times con-
tains two photons. If the atoms radiated independently,
these two photons would not be correlated in direction or
in frequency. The atoms are, however, coupled to the
same radiation field, and the time evolution of the system
includes processes in which a photon emitted by one atom
is absorbed by the other. This produces a correlation be-

I.O

0 x

~ ~

FIG. 1. Initial state decay for (a) one-atom system, (b) two-
atoms (5 frequency bins), (c) two-atoms (7 frequency bins), (d)
four-atoms.

'0

FIG. 3. Photon multiplicities vs time (two atoms).
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FIG. 4. Angular correlation ((k, —kz)(R, —Rz) ) for the
two-photon final state.

seen above that a reduction from 7 to 5 frequency bins
had little effect on the calculated results. For the four-
atom system the number of frequency bins is further re-
duced to 3. The number of solid angle cells is also re-
duced. Instead of distributing these modes uniformly
over the sphere, they are confined to polar caps around
the axis, and are distributed uniformly within these caps.
This can have the effect of causing the expected axial ra-
diation pattern, but it will be seen that measures can be
devised to detect photon-photon correlations which are in-
dependent of this mode structure. Note that the mode
structure is symmetric on reflection in the origin so that
no directionality along a line is built in.

The solid angle cells are specified by unit vectors. For
each polar cap there is one along the axis. If there are n

&

in a ring of polar angle 0&, n2 in a ring of polar angle 02,
etc. , then these numbers are chosen so that

1 —cosO;

1+n&+ - +n;
1 —cosOi

1+n )

(4.1)

tween the two photons relative to the independent emis-
sion by the two atoms which is shown in Ref. 1 to have
the form

R ( kt, kz) = 1+ cos[(kt —kz)(R, —Rz)] (3.1)

IV. FOUR ATOMS

Four atoms can be arranged in many ways. Here essen-
tially linear arrangements are considered as these are ex-
pected to radiate primarily along their axis. Because
four-photon states occur, of which there are many more
per mode than there are two-photon states, it is necessary
to reduce the number of modes drastica11y in order to be
able to follow the time evolution of the system. It was

to good accuracy in the cases studied here. To extract this
correlation from the numerical results, the following pro-
cedure is used.

(a) The difference of the k's in the same solid angle cell
but in distinct frequency bins is ignored.

(b) For given Rt —Rz ——Dz taken along the z axis, the
range of values of (k~ —kz)(R, —Rz) = (k ~, —kz, )D ex-
tending from 0 to 2kD is divided into bins, and the num-
ber of possible final states given the value of D and the
chosen mode structure corresponding to each bin is found.
Many bins contain no final states.

(c) The sum of the probabilities of the final states lying
within each occupied bin is found and divided by the
number of such states. This gives the ratio 8 (kt, kz)
aside from an overall normalization which is chosen to
make it unity at k& ——k2.

The result of this procedure is shown in Fig. 4 for two
values of D. The abscissa is the argument of the cosine.
The range of the curves depends on the value of kD. The
whole range of the curve for the greater separation is not
shown.

The comparison of results obtained analytically and nu-
merically gives confidence in the method of numerical
computation. There is good reason, therefore, to believe
the results obtained in more complicated cases where the
analytical solution is not available.
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Time ( 5 x lO T, T =1/f, e~)

MULT1PHOTON OCCUPATION S
4 ATOM SUPERRADI ANT DECAY

FIG. 5. Photon multiplicities vs time (four atoms).

The azimuths in each ring are equally spaced. For
most of the calculations reported here, n& ——4, n2 ——7, and
0& ——tan '0.2=11.3'. There are 12 cells per cap, 3 fre-
quency bins per cell, for a total of 72 modes. This leads
to 1490 803 states to be included in the Weisskopf-Wigner
approximation.

To extract useful information from the large number of
amplitudes, several quantities are defined and calculated
every tenth time interval. They are the following.

(a) The total probability of finding the system in some
state, a check on unitarity.

(b) The total probability of finding 0, 1, 2, 3, or 4 pho-
tons present.

(c) The unijet J, a measure of the presence of a ray in
the emitted radiation. J(1111)is defined as the expecta-
tion value of the square of the total momentum in states
where no two photons are in the same mode, in units of
coo. J(211), J(31) are defined analogously where two or
three photons are in the same mode. J(4) is identically
unity. This value is to be compared with the correspond-



35 SUPERRADIANCE A NUMERICAL STUDY 4185

TABLE I. Atomic coordinates (A,0=2~/uo= 3).

Case

A
B
C
D
E
F

X S

0,0,0,0
0,0,0,0
0,0,0,0
0,0,0,0
0,0,0,0
0,0,0,0

g S

0,0,0,0
0,0,0,0
0,0,0,0
0,0,0,0
0,2.5, —2.5,0
0,2.5,2.5,0

zs

15,-5,5, 15
—15,—7,7, 15
—15,—3.5,3.5, 15
—15,—3.5,6.5, 15
—15,—3.5,6.5, 15
—15,—3.5,6.5, 15

c(1111)

0.934
0.937
0.924
0.924
0.931
0.928

J(1111)
0.757
0.582
0.433
0.387
0.356
0.373

ing values JI calculated for independently emitted pho-
tons, equally likely to be in any mode, JI(1111)
=[1—3/(nk —1)]/4.

(d) The collimation value C, a measure of the concen-
tration of the emission along the axis of the atomic distri-
bution. It is the sum of the squares of the axial com-
ponents of the photon momenta, C(1111)when all pho-
tons are in distinct modes, C(211) when two are in the
same mode, etc. , measured in units of coo. Its values are
compared with the corresponding values for independent
emission.

The results of the computation in the four-atom case
can be summarized as follows.

(1) The rate of decay of the initial state is very nearly
4t where I is the single atom rate, despite the drastic
change in the mode structure.

(2) The multiphoton state probabilities behave as ex-
pected up to a time of order 2~/Aco, when oscillatory
behavior sets in due to the discreteness of the modes (see
Fig. 5).

(3) There is an unambiguous tendency for the emitted
photons to go in a common direction. The value of the
unijet J depends in as yet obscure ways on the details of
the atomic locations and the mode, but is always greater
than that given by statistically distributed photons. This
tendency is established very early in the time evolution
and remains essentially unchanged throughout.

Table I lists six sets of atomic positions. The first four
are all on a line; the last two include transverse displace-
ments. In Table I, we show the measured values for the
collimation and unijet parameters C(1111) and J(1111)

for the four (distinct) photon state after 10 time steps
(these quantities change very little in the subsequent evo-
lution). The statistically expected values for C(1111)and
J(1111),obtained by assigning equal a priori probabilities
to each available final state, are 0.9391 and 0.2395, respec-
tively. The unijet parameter is in each case larger (some-
times substantially) than the statistical value, indicating a
tendency for the photons to emerge on the same side. The
collimation parameter C(1111), ranges from 0.9237 to
0.9368, all values close to, but slightly smaller than, the
statistical value 0.9391 (this is necessarily close to one be-
cause the modes included are at most 0.3-radians polar
angle). Similar results are obtained for the other collima-
tion and unijet parameters C(211), J(211),etc.

In conclusion, our preliminary results show a strong
tendency for one-sided emission at the four-atom level
when the atoms are coupled to photon modes in polar
caps aligned with the atoms, but no strong evidence for
tight collimation of the outgoing jet. It remains to be seen
how these results are modified by the inclusion of more
atoms and/or more photon modes. The large SSD
memory (128 MW) available on the Pittsburgh cRAY-xMP
will allow a factor of 50 increase in dimensionality of the
state space over the situations described here. Thus we
shall be able to examine five-atom systems (nk +72) or
four-atom systems (with nk up to —150). Another issue
which will be explored more fully is the question of sensi-
tivity to the initial state —in particular, to the presence of
photons and/or unexcited atoms at t=0. Work along
these lines is in progress.
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