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Analytical treatment of free-electron laser in the long-pulse limit
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~e discuss a method to obtain analytical solutions of the evolution equation of the optical signal
in long-pulse free-electron-laser oscillators in the low-gain and small-signal regime. Supermodes are
identified with the eigenstates, harmonic-oscillator orthonormal functions, of a non-Hermitian
Hamiltonian. Inhomogeneous broadening effects due to energy spread and emittance are included.
The space-time characteristics of the laser field are obtained with a significant reduction in the com-
puter time.

I. INTRODUCTION

The concept of supermode' (SM) has been introduced to
treat the pulse propagation in a free-electron laser
(FEL) and to get around the rather complicated situation
of dealing with a large number of coupled longitudinal
modes in this inherently multimode problem. The SM's
can be qualitatively understood as those configurations of
longitudinal modes which remain invariant in shape after
each cavity round trip, although they can grow in ampli-
tude and change the overall phase. They are rigorously
defined as an overcomplete orthonormal set of eigenfunc-
tions of a Volterra-type integro-differential equation.

The use of SM's has greatly simplified the numerical
difficulties involved in the analysis of the optical signal
evolution in an FEL operating with rf accelerating de-
vices ' and they have been particularly useful in elucidat-
ing many features of the experimental results, i.e., the
structure of the spectrum and the dependence of the
small-signal gain on the cavity detuning. ' More recent-
ly, SM's have been utilized successfully to analyze the
data of the les Anneaux de Collisons de 1'Accelerateur
Lineaire d'Orsay FEL storage-ring experiment. '

Elleaume has proposed an interesting method to find
analytical solutions for the SM evolution in the long elec-
tron bunch limit. He has shown that the FEL pulse-
propagation equation reduces to a Schrodinger-type equa-
tion with a non-Hermitian harmonic-oscillator Hamiltoni-
an. As a consequence SM's have been identified with the
harmonic-oscillator orthonormal functions.

In this paper we will analyze the same problem dis-
cussed in Ref. 7 using an algebraic approach that has the
advantage of being quite general and allows us to study

the dynamics of an FEL operating with a long electron
bunch by means of the well-established methods of quan-
tum optics, i.e., those employed in the analysis of the evo-
lution of Glauber and Yuen two-photon states.

Our starting point will be the integrodifferential equa-
tion defining SM's introduced in Ref. 1 which will be
solved analytically in the long bunch limit. We also in-
clude in the analysis the effects of inhomogeneous
broadening due to the energy spread and emittance of the
electron beam.

II. GENERAL PROCEDURE

Before going into the technical details we will clarify
the meaning of "long electron bunch limit. " The e beam
produced by a rf accelerator is characterized by a series of
bunches with an rms longitudinal length o, . Due to the
different speed of the radiation and electron pulses, the
former will advance a net slippage distance 6 =NA. at the
end of the undulator; X and A, are the number of periods
of the undulator and the operating wavelength, respective-
ly. The fundamental lengths of the problem, 6 and o.

„

define the dimensionless coupling parameter p, =6/o.
„

which is a measure of the relative slippage of the laser
pulse with respect to the electron pulse, and also deter-
mine the number of longitudinal modes coupled by the
FEL interaction. The long electron bunch limit refers to
a situation where p, « l.

The equation defining the space-time evolution of the
optical electric field E(z, t) for an FEL operating in the
low-gain and small-signal regime with a bunched e beam
is given by'
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is the small signal coefficient, XL is the laser cross sec-
tion, ( b co /cp )p = 1/2N is the homogeneous linewidth,
K=(e/mc )(B~/k ) is the undulator parameter, Io is
the Alfven current, I the peak current, and finally vo is
the resonance parameter. We have also used yz- to denote
the cavity losses, 0=2c6t/goA the delay parameter, 6t is
the time difference between the electron pulse-pulse period
and the cavity round-trip T„andf (z) is the electron dis-
tribution.

The above equation is valid in a large time scale com-
pared with the cavity round-trip period T„time t is
t =n T, where n is an integer denoting the nth cavity
round trip of the laser pulse. The left-hand side (lhs) of
Eq. (1) accounts for the "free-propagation, " while the

right-hand side (rhs) describes the laser —electron-beam in-
teraction and thus all the information connected with the
slippage of the radiation pulse and its concurrent lethargy.
Equation (1) translates mathematically the intuitive idea
of the lethargic behavior, i.e., the laser pulse is pushed
back toward the trailing edge of the e bunch by the FEL
interaction resulting in a slowing-down oscillation period
of the laser pulse inside of the optical cavity.

Analytical solutions of Eq. (1) can be found in two lim-
iting cases corresponding to short and long e-bunch con-
figurations. In this note we will be interested in the latter
case. The assumption is that the interaction is mainly
centered around the maximum of the e-bunch distribution
and therefore it is insensitive to the slippage and to the
lethargy. Expanding the rhs of Eq. (1) up to the second
order in 6 and assuming that the laser pulse is centered
about the maximum of the electron-beam distribution, we
obtain

2 2
BE(g,r) P G2(vo)

G((vp) 1+
C}7 8 Gt(vp)

.E((,r)
Ro

+P, [G3( p) —B~ ' + —P, G4( ) —G, ( p)~ E(BE(g,r) 1, B'

Bg 2 '
Bg~

where we have defined

(2)

E(g, t) =E(g, r)exp i B vp ——~ 7 t )

and

z &
G2(vo) 1 got+ 2V.o; ' '
Gi(vp) 2 T,

G((vp) = 2' 1+i-' VO 8VO

sin( —,vp)

i
2 Vo

exp(i —,
'
v, )

(3)
a a a'

G2(vp) = 1 —i G] (vo), G3(vp) = —i G&(vp), G4(vp) = —
~ G](vp)

C) Vo 8Vp 8VO

The function G~(vp) is the complex gain function while
G2 3 4(vp) are the higher-order corrections due to the fi-
nite length of the pulse.

Equation (2) has the same structure as that proposed by
Elleaume for a linear undulator. We rescale the coordi-
nate g as

1/2
G)(vp)

[0+[G3(vp) —Bl J
Pc

L

and Eq. (2) becomes

BE(g,r) TE(( )
a7

The operator T is of the form T=M +& +~&o
+Q&(K+ +K ), i.e., it is a linear combination of the gen-

erators of the Heisenberg-Weyl group [ a,a t,I ) and of the

SU(1,1) group [KO,K+,K I, namely,
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1 8 t 1 8
W2 ag

'
W2

(Sa)

(I is the identity operator), with the commutation relation

[a,a]=I and

two-photon squeezed states. %'e can therefore apply the
same techniques usually adopted to treat this kind of
problem. We expand E(g, r) in terms of the harmonic-

—( 1/2) g2oscillator functions u„(g)=X„H„(g)e

E(g, r) =g C„(r)u„(g),
Ko ———,(2a a + 1), K+ ———,a, K = —,a (5b)

which satisfy [Ko,K+]=+K+, [K+,K ]=—2K~o. The
coefficients in the definition of the operator T are

2 2
p., G2(vo)5= G)(vo) 1+
8 G, ,)

G)(vo)
2

[G3(vo) —6]

~= —Iu [1+Gi(vo)G4(vo)l

0=+2p, G) (vo)[G3(vo) —e],
Pc

Ai —— [Gi(vo)G4(vo) —1] .
2

The problem of evaluating the space-time behavior of the
optical field in an FEL in the long bunch limit has been
formally reduced to that of studying the evolution of

I

where H„is the Hermite polynomial of order n. In writ-
ing Eq. (7) we have assumed that the laser field vanishes
at a distance large compared with the dimensions of the
electron pulse o, .

We use the algebraic methods of Refs. 8 and 9 to obtain
the analytical expression for the time-dependent coeffi-
cients C„(r).The algebraic structure of the operator T
provides the following expression of the coefficients
C (r)=Q„S„C„(ro)where C„(ro)are the initial con-
ditions and the elements of the "scattering matrix" S are

S „(r,ro) = exp[5(r —ro)+ —,co(r —ro)(2n + 1)]

X~—(n +m + 1)/2~~
m, n (8)

Details of the derivation of Eq. (8) and the definition of
the auxiliary functions ~,S,H, W are presented in the
Appendix. The matrix elements W„are

S~2 1 1

r! 2 2 (r —s)! (n —2r +2s)!
XL" + '(HW) for rn (n,

&m n(r, ro) = '

( 1)m —n

' 1/2

m! rf

7 7
1

(n —2r)! (9)

s = [(n —m) /2]

2
2

1)s (n —2s)! 2M L m —n+2s( ~~)
(r —s)!

010co„(e,p, ) =5+ (2n + 1)co+2 (10)

Consequently, the optical electric field reads

E(g,r)= g C„(ro)e " 'u„(g) .
n=0

This is a superposition of "modes" with the property that
the longitudinal profile shape remains unchanged during
the interaction and with their growth rate determined by
Eq. (10). These "modes" can be identified with the SM

where L„(H~W) is the associate Laguerre polynomial.
The above result is the most general solution to the prob-
lem of the FEL pulse propagation in the limit of long
electron pulse.

In first order in p, and neglecting intermode coupling,
the scattering matrix becomes diagonal S „(r,ro)

CO+ ( T—'Tp )=e " 6 „where co„,the growth-rate eigenfrequency,
1S

introduced in Ref. 1; in particular, Eq. (11) coincides with
the results found by Elleaume in Ref. 7.

The first two terms of Eq. (10) describe the free-field
energy with the usual level spacing of a harmonic oscilla-
tor; the last term is due to the interaction part of the
"Hamiltonian. " Equation (10) describes both the disper-
sive and absorptive behavior of SM's and their degeneracy
is removed by the p, parameter. Furthermore, the SM
gain exhibits a quadratic dependence on 6 that qualita-
tively reproduces the gain-cavity detuning plots of Refs. 1

and 5 around the maximum of the gain function. We
stress that the result in Eq. (10) is in agreement, for the
first supermode, with the one obtained in Ref. 5, where
the threshold regime of a storage-ring FEL was analyzed.
In Fig. 1 we plot the gain of the SM's for several values of
Pc.

We can apply this result to the analysis of single-
passage experiments characterized by p, « 1 such as
those by Newnam et al. ' and Bizarri et al. " The prob-
lems with these kinds of FEL devices arise only in con-
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FIG. 1. Gain of a helical FEL vs the cavity detuning parameter 6 for different coupling parameters p, . (a) g„=1, Q =0.24,

p, =0; (b) go —1, Q =0.24, p, =0. 1; (c) gp
——0.8, Q =0.01, p, =0.

nection with the inhomogeneous broadening induced by
the energy spread and emittance. The inclusion of these
effects in the above formalism is almost straightforward;
assuming indeed an e beam with a Gaussian energy distri-
bution and a Lorentzian emittance distribution, we rede-
fine G, (vo) according to

a
Gl(vo~Pe~Px tPy) =

0Vp

a1+i
C) Vp

ivor —(1/2)P g

X
( 1+ip„g)(I+ t'Py g)

where p, y are the inhomogeneous broadening parame-
ters due to the energy spread and emittance, respectively;
we define

2'~&
Pe=

polar terms of the wiggler and E'zy are the x and y emit-
tance of the electron beam.

The formalism we have discussed in this work is suffi-
ciently general to be easily extended to different FEL con-
figurations. In particular, Eq. (2) applies to single-pass
electron-beam sources, i.e., linear, induction, microtron,
electrostatic accelerators; however, including the self-
consistent degradation of the electron beam, we could also
describe a storage-ring FEL. A tapered undulator FEL
could also be treated with this formalism; the results
remain almost unchanged, only the 6 functions defined in
Eq. (3) have to be modified. Finally, Eq. (2) cannot
describe the start-up of the laser since it has been derived
omitting the spontaneous emission contribution; however,
including a source term in Eq. (1) it can be used to study
the start-up phenomena of the free-electron laser. Some
of these problems will be the subject of a forthcoming pa-
per.
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APPENDIX

where A, is the period of the wiggler, h y are the sextu-
A solution of Eq. (4) can be obtained defining a nonuni-

tary evolution operator
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E((,7) = U(7, 7p)E((, 7p)

that satisfies the equation

(Al)

B U(7, 7p) = TU(7, 7p) .
a7.

(A2)

The non-Hermicity of the Harniltonian T and the conse-

quent nonunitarity of U is due to the gain (absorption)
process described by Eq. (4).

An exact solution of the operators equation (A2) can be
obtained noticing that T is a linear combination of the
generators of both SU(1, 1) and the Weyl group. Using the
Wei-Norman method, we can write the evolution operator
U in the following ordered form:

5(7—7p)+$(7) 2[h(7)+( 1/2)CO(7 7p)]Kp
U(7, 7p) = e ' e

with the initial conditions h(7p)=g(7p)=f(7p)=0. We
also define

7
p(7)=II I d7'g(7')e"'',

r (7)= —fI f d7'[1+f (7')g (7' )]e"' '

dr (7')
s (7) = — d7'p (7')

7p d7

(A5)

Using the harmonic-oscillator eigenstates, we can com-
pute the evolution operator matrix elements S
= (m

~

U
~

n ) which is given in Eq. (8) in the main text.
The explicit forms of the functions entering in this equa-
tion are obtained solving Eq. (A4) in combination with
Eq. (AS); we obtain

h (7)= ——,
' co(7—7p) —»[tt(7) ],

(7)K+ —f (7)K &(7)a &(7)a&(e e e e (A3) g (7)= 2 a(7)sinh[ —,Q (7—7p)],

The various functions appearing in the exponents must
satisfy the system of differential equations: f (7)= —2 [D(7)] Slnh[ TQ (7—7p)]

—1

dh (7) df (7)

dg (7) ah i ~I+~I ~ —~, I dh (7)= —n, e 0

d

df (7) 2hIw) —ro(r r&i-=Die
d~

(A4)

a(7) =cosh[ —,
' Q(7 —7p)] ——sinh[ —,

' Q(7—7p)],

with

Q =(co —4II, )' =2@,[G, (v )G (v )]'

The auxiliary functions p (7),r(7),s(7) are given by

sinh[ —,Q (7—7p) ]
p(7) = —,fl|II

2

r(7)= —II
sinh[ —,Q (7—7p) ]

1

4

2

~ sinh[ —,
' Q(7 —7p)]

cosh[ —,
'

Q (7—7p) ]+—

s(7)= 2$I& — +40, sinh[ —,
' Q(7 —7p)](cosh[ —,

' Q(7 —7„)]+—sinh[ —,
' Q(7 —7p)])

—4 sinh[ —,
'

Q (7—7p)](cosh[ —,
'

Q (7—7p)]+ —sinh[ —,
'

Q (7—7p)]) . (A6)

Finally, for convenience we have also introduced the functions

J (7 7p)=e cY(7 7p)=e "", ~ (7,7p) =f (7)e "", 9'(7,7p)=g (7)e""
(A7)

G. Dattoli, A. Marino, and A. Renieri, Opt. Commun. 35, 407
(1980); G. Dattoli, A. Marino, A. Renieri, and F. Romanelli,
IEEE J. Quantum Electron. QE-17, 1371 (1981).

W. B. Colson and A. Renieri, J. Phys. (Paris) 44C, 11 (1983); J.
Goldstein, Proc. Soc. Photo-Opt. Instrum. Eng. 453, 2 (1984);
M. N. Rosenbluth, H. V. Wong, and B. N. Moore, ibid. 453,
25 (1984).

3G. Dattoli and A. Renieri, Experimental and Theoretical As-
pects of the Free Electron Laser, Vol. IV of Laser Handbook,
edited by M. L. Stitch and M. S. Bass (North-Holland, New
York, 1985), p. 1.

4G. Dattoli and A. Renieri, Nuovo Cimento B 61, 153 (1981);
G. Dattoli, J. Gallardo, and A. Torre, Phys. Rev. A 31, 3755
(1985).



4180 G. DATTOLI, A. RENIERI, A. TORRE, AND JUAN C. GALLARDO 35

~G. Dattoli and A. Renieri, Nuovo Cimento B 59, 1 (1980).
P. Elleaume, J. M. Ortega, M. Billardon, C. Bazin, M. Bergher,

M. Velghe, Y. Petroff, D. A. G. Deacon, K. E. Robinson, and
J. M. J. Madey, J. Phys. (Paris) 45, 989 (1984).

7P. Elleaume, 1EEE J. Quantum Electron. QE-21, 1012 11985).
8F. Ciocci, G. Dattoli, A. Renieri, and A. Torre, Phys. Rep.

141, 1 (1986).
9G. Dattoli, A. Torre, and R. Caloi, Phys. Rev. A 33, 2789

(1986); B. L. Schumaker and C. M. Caves, Phys. Rev. 31,
3093 (1985).

' B. E. Newnam et al. , J. Opt. Soc. Am. B1, 505 (1985).
''U. Bizarri et al. , Nucl. Instrum. Methods A250, 254 (1986).


