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Quantum oscillator in a non-self-interacting radiation field:
Exact calculation of the partition function
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With the use of functional integration, an exact analytic expression valid for the whole tempera-
ture range is derived for the partition function of a charged quantum oscillator coupled to a non-
self-interacting (with the 2 term neglected) radiation field. To derive this result, special care is tak-
en with renormalization which is carried out at two stages. The temperature-dependent free-energy
shift due to blackbody radiation is studied and compared with recent work. It is shown that the
ground state is the only stable state and that the higher states have a finite lifetime.

I. INTRODUCTION

This paper is concerned with an exactly solvable three-
dimensional model of a harmonically bound electron in a
radiation field. The model arises from minimal coupling
of the electron to the free-electromagnetic field by (i) re-
taining only the dipole interaction and (ii) neglecting the
self-interaction term of the field (see Sec. II). One recog-
nizes the simplified system as the special case of the fully
coupled oscillator model where the oscillator couples uni-
formly to the noninteracting field oscillators. Such a
model has universal character and has often been con-
sidered mainly in statistical mechanics, see, e.g. , Refs.
1—6. It yields a commonly used description of a harmon-
ically bound particle in a heat bath with linear coupling.
Furthermore, it often gives a good approximation to more
complicated systems, as, e.g. , the polaron, where varia-
tional methods are used to calculate the free energy of the
system. For other systems, as, e.g., Rydberg atoms, one
may expect the oscillator model to be a good approxima-
tion, as suggested in Ref. 7 (cf. also the remarks below).
Concerning our main interest here we shall see that the
model is able to give detailed answers to questions about
the influence of the radiation field. Exact formulas for
the thermodynamical potentials and their dependence on
the temperature T=fi(kP) ' and the coupling strength
a =e (Rc )

' can be derived.
Let us elucidate our results. Because of the quadratic

form of the action of the oscillator model, .the path in-
tegrational method is well suited and allows a nonpertur-
bative ab initio computation. Following Feynman's
method we average out the variables of the field oscilla-
tors which includes the division by the partition function
of the free-field oscillators. The result is an effective ac-
tion, see Eq. (9), where the coupling to the field oscillators
is replaced by a memory potential for the oscillator. Be-
fore evaluating the remaining path integral, two renormal-
izations have to be performed: (i) a renormalization of the
kinetic energy (mass renormalization) and (ii) a redefini-

tion of the zero mark of the energy by an infinite shift.
Our main result is the exact analytic expression (12),

which we believe is new, for the partition function Z of
the oscillator subjected to the radiation field. It incorpo-
rates the influence of the radiation field on the oscillator.
There is no restriction on the size of the coupling constant
a. The expression (12) for Z is valid for the whole tem-
perature range.

From Z one gets exact expressions for the closely re-
1ated therrnodynamica1 potentials. We discuss the asymp-
totic behavior of the free energy, see (13) and (15). The
question, which recently has generated some interest, is
the low-temperature behavior of the shift AF(13) in free
energy. Up to higher-order corrections, we get

bF(/3)= —~ak T (3mc )

[which is approximately —0. 17 T (s K )
' for the elec-

tron]. Ford et al. obtain for the low-temperature shift in
free energy the same absolute value but the opposite sign
to (1). We postpone our criticism of the result of Ref. 7
until the end of this section.

The question arises if (1) is in accord with the recent ex-
periments (cf. Ref. 7 for Ref. 8—13) on the shift of Ryd-
berg energy levels induced by blackbody radiation, which
are consistent with a T dependence of the shift.

As a tentative answer, let us make the following con-
siderations: First (i), the shift (1) is global and it is not at-
tributed to individual energy levels. (ii) the energy spec-
trum (state density) of the oscillator subjected to the radi-
ation field is obtained as the inverse Laplace transform of
the partition function with respect to P. Hence the energy
levels do not depend on the temperature. However (iii),
this is no longer true if one had to deal with thermal ine-
quilibrium and the radiation field had to be regarded as
an external field, so that the radiation temperature Tz
may be different from that of the ensemble of atoms T.
In that case one can consult previous calculations
based on temperature-dependent perturbative QED per-
formed for the Coulomb potential. There, indeed, the lev-
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el shifts depend on the radiation temperature (dynamic
Stark shifts). As detailed calculations in Ref. 12 indicate,
in general they depend also on the specific kind of atoms
under consideration. For temperatures TR &~a mc /k
( -2)& 10 K for the electron), second-order nonrelativistic
perturbation theory combined with the dipole sum rule
(Thomas-Reiche-Kuhn sum rule) yields a universal state-
independent energy-level shift which coincides (casually?),
including sign, with Eq. (1) but with T being replaced by
TR. For the oscillator potential this is the correct result
even without the restriction on the temperature, see Eq.
(14). It is concluded in Ref. 13 that the dominant thermal
QED effects are the same for all levels, and thus not seen
in transitions. However, it should be stressed that for real
atoms this conclusion is true as long as it refers to transi-
tions between Rydberg levels, but in general it fails:o
hold for transitions to more tightly bound levels which
will suffer relatively small dynamic Stark shifts. As a
fourth point (iv), one notes that there is common agree-
ment on the absolute value of the dominant thermal shift
but that there is discrepancy on its sign, cf., e.g. , Refs. 11
and 13. Finally (v), in this context it is pointed out in
Ref. 7 that because of the thermodynamic relation
U=F —T(BF/dT), a term proportional to T has the
same absolute value but has opposite sign in internal ener-

gy U and free energy F, and it is argued in Ref. 7 that the
measurement of Ref. 8 measures the shift in free energy
and not in internal energy.

Mainly because of the temperature dependence of the
shifts, we may conclude from the above considerations
that the experimental situation in Ref. 8 is met at best by
the description mentioned in (iii). So one has to deal with
a partial equilibrium which is not investigated in this pa-
per [only Eq. (14) refers to it]. In this situation initially
the radiation field is decoupled from the atoms and is in
thermal equilibrium corresponding to a temperature TR
(blackbody radiation). The atoms are imagined to be
prepared separately. Then, brought into contact with the
radiation field, the atomic levels are shifted according to a
dynamical Stark effect. Obviously the shifts depend on
the temperature TR which, however, has nothing to do
with the temperature T of a statistical ensemble of the
atoms. The shifts of Rydberg levels measured in Ref. 8
correspond to differences in the energy between Rydberg
levels, for which the present oscillator model should be
reasonably valid, and more tightly bound levels which, as
already mentioned, will suffer smaller shifts. To get an
estimate of the shifts in free and internal energy in the
following considerations, let us nevertheless assume, in ac-
cord with the mentioned perturbative calculations [see Eq.
(14) and Ref. 13], that the value c. of the shift of an
energy-level is approximately the same for all levels and
coincides with the right side of Eq. (1) where T is re-
placed by TR. Within the simplifications made so far we
may suppose that c, does not depend on the temperature T
of the atomic system (in contrast is that of the radiation
field Tz). Now, the partition function of the atomic sys-
tem in contact with the radiation field is given by

g „exp[ P(E„+E)],where E„end—teos the unperturbed
energy levels and f3=A'(kT) '. It follows immediately
that the shift in free energy is equal to c. Since E is in-

dependent of T (not of T~), the thermodynamic relation
recalled in (v) above yields the same shift in internal ener-
gy. Concerning the experiments we conclude that the ef-
fect of blackbody radiation on atoms is a shift (depending
on the temperature of the radiation Tz as discussed) of
the energy levels (measured for highly excited, i.e., Ryd-
berg states, with respect to tightly bound states) which for
a statistical ensemble of atoms in thermal equilibrium
gives rise to approximately the same shift, including its
sign, in free energy and internal energy.

Returning now to our harmonic oscillator model in
complete thermal equilibrium, the limit of bF(P) for
P~ ao yields the renormalization-dependent negative-
ground-energy shift

3A'i) ( cosy +y sing) /ir —3iriil /2, (2)

where g is the oscillator frequency and
cosy&—=ail(3cocz) ' with cocz=mc /fi the Compton fre-
quency corresponding to the oscillator mass m. The shift
is of second order in a, namely —( —, )firicos y.

Let us, at this point, mention a peculiarity of the parti-
tion function (12). It depends on only two dimensionless
quantities, @=pill(2') and cosy. The latter is funda-
mental for the system. In particular, the damping con-
stant for a classical dipole is given by

y=2i) cosg=2e ri /(3mc ) . (3)

For a quantum oscillator, y is the natural linewidth of the
first excited state. The linewidth of the higher states
should be multiples of y. In the formalism of Ref. 6 the
limiting classical equation of motion q+y j+g q=O of
the oscillator follows on the assumption that the effective
spectral density is proportional to the frequency.

For a rough illustration of the magnitude of (3) for
atomic levels, let us approximate the Coulomb potential
—Zafic/r at the Bohr radius rs=n c/(Zambo pc) of the
nth eigenstate by an oscillator potential miI r /2 b. It-
follows i) =Z a cocr/n and cos@=Z a /(3n ). This
yields y=2Z a cocq/(3n ) corresponding to a lifetime
I/y=(n /Z )10 ' s.

For high temperatures the free-energy shift tends to
—oo logarithmically (15). As a consequence of this the
mean density of the states at high frequencies is the same
as for the free oscillator. Physically this is clear since the
effect of the coupling to the electromagnetic field is a per-
turbatioo of the free case.

A most interesting aspect regarding the formula (12)
for the partition function is the possibility to get detailed
information about the state density f which is available
from Z through the inverse Laplace transformation. We
show analytically (see the Appendix) several nontrivial
facts being most satisfactorily in agreement with physics:
(i) Z is indeed the Laplace transform of a function f,
(ii) f is nonnegative, (iii) f vanishes for all frequencies
less than co =3i) (cosy+ysing)/ir corresponding to the
ground energy, (iv) f starts with a 5 peak at co, and (v)

f is continuous at all frequencies larger than co . The
physical interpretation is obvious. In particular, it shows
the existence of a ground state and it shows that the
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and

L (co) = (y /ir)(ei'+ r/') [(a/' g')'+—y'e/']

A =irairi/(9mc ) .

In order to formulate our objections to FQ we first discuss
its temperature dependence. Obviously F0(P) & i/iAP

since f &0 and L & 0. Then one notes that L is bounded
and that L is p integrable for any p &0. The latter is also
true for a/~f (a/, P), denoted by f(. . .

,P), since it tends
logarithmically to —oo for 0&co~0 and vanishes ex-
ponentially for ~~ oo. Hence we may apply the Holder
inequality and get RAP F0(P) & ~~f(—, P)~~~~~ L~~~.

By the change x =pea of variables
~
~f(,p)~ )z becomes

i/ip
' '~/'()g()z, where g(x)=——in[1 —exp( —x)], so that

F0(P) fzAP fiB~P ' ', —where B~ =//g//~/ fL /~

&0. Passing to the partition function Z(P)
= exp[ —PF0(P)/A'] we get

ground state is the only stable state of the perturbed oscil-
lator.

We should remark on the case of very strong coupling.
It is present if cosy=ail/(3coc„)=e il/(3mc ) exceeds
the value I. Then the angle y becomes imaginary or,
equivalently, coscp has to be replaced by cosh'. The for-
mulas remain valid, but we do not study this case here.

As mentioned we disagree with Ref. 7 about the correct
expression for the free energy of the oscillator model. The
expression derived in Ref. 7 is, for one dimension,

F0(p) =RA p + f f (a/, p)L(a/)den,

where

f (e/, P) =A'P ' in[1 —exp( Pa)/]—

plies that Z is not decreasing and hence not the Laplace
transform of a positive function, the state density, as it
should.

So far (i) and (ii) prove that F0 is not the right expres-
sion for the free energy. It fails to be correct for any posi-
tive coupling strength. Now, one would like to know if
there is a region of approximate validity of F0. Let us
add some remarks on the inverse question. Since L ap-
proaches a 6 function in g in the limit of vanishing cou-
pling, Z(p) tends for any p&0 to the value of the parti-
tion function of the free case which is infinite at p=O,
however not in a uniform manner, since Z(p=O) persists
to be zero for all positive coupling strengths. From (4) it
follows that Z tends to 1 as p~ oo. Hence, for weak cou-
pling, Z has a peak. Thus for temperatures beyond that
peak Z is definitively wrong. Moreover, for strong cou-
pling this peak does not even exist, the maximum of Z is
equal to 1 and lies at p= ao. Indeed, for cosy & ~3/2 or,
equivalently, y /g &3 one gets Bj ——A and hence, from
(4), Z &1. Thus Z fails in the strong coupling case for
the whole temperature range.

In a forthcoming paper we will present numerical and
analytic computations on the state density f which
shows the expected pattern of the natural line structure of
a charged quantum oscillator coupling to the surrounding
electromagnetic vacuum.

II. DIPOLE INTERACTION
AND NON-SELF-INTERACTING RADIATION FIELD

A charged oscillator minimally coupled to an elec-
tromagnetic field is described by the Hamiltonian

H= [p —eA(x)] +—il x
2m 2

exp( —Ap ') &Z(p) & exp( —Ap '+B~p '~~) (4) + —, f [&(y)'+8(y)']d'y,
for all P&0 and where p is any number greater than or

equal to 1. This displays some unreasonable features of
Z.

(i) Because of the smallness of the coupling constant a,
one knows from QED that one may regard the interaction
with the radiation field as a perturbation of the free oscil-

lator. Indeed, the calculations of, e.g., the transition prob-
abilities based on perturbation theory in QED are in good
agreement with observation. Due to the perturbative
character of the electromagnetic coupling to the radiation
field the properties of the oscillator do not change drasti-

cally in the presence of a radiation field. This means that
the weak coupling limit a~O(a~O) yields the free oscil-
lator.

Now a simple test, which rules out the expression F0 of
Ref. 7 as a correct formula of the free energy of the per-

turbed oscillator (and which confirms our formula), con-

sists in looking at the total number of states of the oscilla-
tor. This number is given by the value of the partition
function at P=O. From (4) one easily infers Z(P=O) =0.
Thus F0 gives rise to a total number of states equal to
zero instead to infinity, even in the weak coupling limit.
This is unphysical.

(ii) By the same reason, i.e., Z(P=O) =0, Eq. (4) im-

where m, g, and e are the mass, the frequency, and the
charge of the oscillator, respectively. Expressed in terms
of creation and destruction operators the vector potential
1s

i//, ~(a/, oe' +ak~e '
)

where uk, o.=1,2, are orthonormal polarization vectors
perpendicular to the momentum k, and where Q is a nor-
malizing volume in momentum space. To achieve a sim-
plified version of (5) we retain only the dipole interaction,
i.e., we replace A (x) by A—:A (0), and neglect the self-
interaction of the field by dropping the quadratic term
e 2 /2m. The resulting Hamiltonian

H'=H0s, +H„d — pA,
m

where H„,d = —,
' g„ iris'/k(ak ak +ak ak ), now has tobe

transformed equivalently for a path integrational treat-
ment. For this purpose, position and momentum vari-
ables for the field are introduced,

xk~ = (2p~k /A') ' (ak~ +ak~)
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and

pt, ~=i(Rpcok/2)' (ak~ —ako),

where p is a mass. Then except for the interaction term

—epA/m, in all other terms momentum variables are
separated from position variables. Full separation is
achieved by passing to the momentum-space representa-
tion of the oscillator. Thus we end up with the Hamil-
tonian

T

'rip + Qpk~ + & + g~okxk +m 2 2 1 1 2 2 2 e 4m.p
2 2p, k 2m 2k m

1/2

& g &kWk~
k, o

(8)

III. PATH INTEGRATION, RENORMALIZATION

The partition function Z ascribed to the oscillator coupled to the radiation field is the partition function of the whole
system (8) divided (normalized) by the pa ition function of the radiation field in absence of the oscillator. The latter is

+k [2sinh(pcok/2)] so that Z (p) = &q exp( S,tt[q]/—fi) with [cf. Ref. 14, Eq. (14)]

co cosh co
i
t —s

2

2 sinh(Pto/2) q (t)q (s)dt ds, (9)

where we replaced gk by

g f sin5d8dy f to de
(2mc ) 0

er is expressed by the coefficients K„=f„v„/11 b—eing
the Fourier coefficients f K(t) exp( i v„t)dt of th—e ker-
nel

introducing a frequency cutoff ~, . We shall get rid of co,
after renorrnalization.

Expanding the closed path q(t) = g„" a„exp(iv„t),
v„=2m.71/p, a „=a„',in a Fourier series, one gets

S ff[q]= g ~
a„~ f„

00 2z.(p)= qp+
n=1 vn

—3

2a 1 "~ co cosh[co(t —p/2)] de)3' cocF o sinh(Pro/2)

cf. Ref. 15, Eqs. (34) and (55). One gets

(10)

where

4a 1=1- cu, —v„arctan
37T COcF

COc

vn
+v„/q

Let us discuss the dependence of (10) on the cutoff. The
term

4a ~c1—
37K cocF

4a ~c
0
——1—

3~ ~cF

Hence, for y =q(0) =q(p) fixed, the action is minimized
at

is well known, e g., from the theory of the natural
linewidth, and gives rise to a renormalization of the kinetic
energy, see, e.g., Ref. 16, Sec. 5.3. According to it, the f„
are replaced by new

ff (y)= y' ' g 1/f 4a vnf„=1+ arctan
377 COcF

+v'/n' fo= 1 .

Indeed, the new coefficients f„and Kc roresp nod to the
memory term

Since the action is quadratic, Z (p) splits into two fac-
tors, one of them being f exp[ S tt" (y)/fi]d y. The oth-—

cx 1 f t f t f co cosh[co( j t —s
i

—P/2)]
6m m~CF sinh( Pro/2 )
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added to (9) the kinetic energy term
r

a 1 & c cocosh m t —s — 2
dQ) d$ q

m~CF sinh(Pcs/2)

2a ~c
q3~ m~cF

[We recall that q has the dimension of momentum since
in (8) we passed to the momentum-space representation. ]
This term proportional to the cutoff can be generated
from the beginning adding to (8) the counter term

2
2 tr e

I'k
Terms like the latter have been discussed in connection
with the generation of a dissipative term in the corre-
sponding classical equation of motion (Ref. 17, Sec. 3).
Here it is a consequence of renormalization.

At this stage one should look at the limit co,~ m. the
memory term becomes

+ air p ii ti [q (t) q(s)]-dt d$
mtocF 0 sin [m.(t —s)//3]

and expression of b.F independent of the cutoff.
Rearranging the terms, we get

bF = [ Inp —Rei/i(ip)]
77 Ct7CF

ln 1+3A 2a r] &n

p „ ~CF Vn + 'g

2a q vn

~CF v„+g
This can be summed up and we find

b F(P)= i) cosy lnp ——ln
3A 1 I (pe'~)
7T p r(ip)

and hence

Z (/3)=
2I e

—(2 cosy)P 1nP I ( iP)2~'

where

pi) fi i) ai) iria
p = =, coscp=

2w 2nk T '
3mcF 3 mc

(12)

where the singularities at t =$ are removed. However,
those at t =p, s =0 and s =p, t =0 still are present.
They are likely to be responsible for the term proportional
to vn in

2a vn
K„(co,= oo ) = 1+

3 ~CF

IV. DISCUS SION

Of course, in the limit of vanishing coupling a~0, or
equivalently &p~n/2, the .partition function (12) becomes
that of the free oscillator Zo(p)=[2sinh(i')] and the
free-energy shift vanishes. In the limit of low tempera-
tures Stirling's formula yields

making the partition function Eq. (10) divergent. In order
to reveal the nature of this divergence we retain the finite
cutoff and expand the shift in free energy
bF = —(ih'/P) ln(Z /Zo ) in a power series in a, thus

'k
4a —1 "+'

b.F=3 Q — g (h„)"p„,

b.F(P) =— 7T . COS+——cosy —y sing+
2 12p

cos 3' cos5@4+
360p 1260p

for T~O .

(13)
with

g /v„
n 21+q /v„~cF

vn
arctan

COc

which converges for co, & cocF. The first-order term reads,
after some algebraic manipulations,

~c ~coth m 2 —gcoth g 2
2 2

de .
'7T COCF CO

From this the divergent part (gaia/ir)(r/ /cocF) ln(1+
coc/i) ) is extracted; the remainder becomes

I R
c cF 0 ~ —'g e —1 ~ ~cF

where p =(r/p/2m. ) and i/i denotes the digamma function.
Moreover, all higher-order terms converge for co,~ oo in
a dominated manner, so that the sum converges absolute-
ly. Therefore, we are led to regard the (unique) divergent
term (gaia/ir)(r/ /too„) ln(1+a~, /i/), being independent of
the temperature, as normalizable just by redefining the
zero mark of the energy. Thus we drop this term and keep

bE (P)= g f37Tc CO —CO —COn n Cc)n —Qn +CO

eP"—1
'

(14)

where this time p=A'(kTR) ' refers to the radiation tem-
perature Tz, produces exactly this term, since

The temperature-independent term is the ground-energy
shift (2) and the next term is the well-known free-energy
shift (1) depending quadratically on the temperature. It is
the leading term of the first order of the a expansion of
AF, namely

AX Xf ~ 2' d Cc)

7T COCF P Q7 —7f

Just for comparison, in the case of partial equilibrium (see
the Introduction) the second-order contribution of non-
relativistic perturbation theory
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( (ic, l.,v ~!

P/m
~

ic', A, ', v')
~

= [5gi 5 X„[(ic+I)X,+i5,+, „+—,'X, i5„ i ]+ .
Vl

where the ellipse represents cyclic permutations with
=2'ic!(rriri/mr))'~ . It is independent of the state

) =
I
~,~, v)

For the high-temperature limit we get from (11)

b, F(P) =(3A/vr)q coscp(y+ lnp) for T~ Oc (15)

(y being Euler's constant), which tends to —oo only loga-
rithmically. Hence Z /Zo~ 1 for P~O independently of
a. This implies the expected result that the mean density
of the states at high frequencies is the same for the per-
turbed and unperturbed oscillator.

From Eq. (12) one gets the state density f by inverse
Laplace transformation. In other words Z (P)

e ~f (co)dco. For the unperturbed oscillator one
0

has

APPENDIX

Theorem. Let a&0 (more precisely 0&y&n/2) and
co =(3/rr)g(coscp+cpsiny). Then (i) f (co) &0 for all
co&0, (ii)

f (co) =5(co—co )+—cosine(co —co )+r (co),

fo(co)= g ,
'

(n +—1)(n+2)5(co —r)„), ri„=(n + —,
'

)ri .
n=0

The effects of the coupling to radiation on f are a
broadening of the lines (5 peaks) and a shift of their posi-
tion. (Of course, as already mentioned earlier, they do not
depend on the temperature. )

In the Appendix we prove a theorem on the structure of
f . The essence of that theorem is that the ground state,
shifted down to fico =(3firilrr)(coscp+cpsinp), see Eq. (2),
remains stable, a property which is expected from rather
general considerations, and that all other states become
unstable. For the position of the lines and for the
linewidths, which are closely related to the lifetimes, more
details about the inverse Laplace transform of Z are
needed.

A numerical analysis of the one-dimensional case shows
that f is very well approximated by the sum of Lorentz
profiles

r. /7T

(co —co„) +I „
centered around co„=2( n + —, )co with widths 2I „
=2r) n cosy& and heights ( ir I „) '. In particular this
shows an increasing of the negative shifts and of the
linewidths proportional to n Since I . i

——e q (3mc )

we have reproduced the formulas for the transition proba-
bilities from the nth eigenstate to the (n —1)th eigenstate
found by perturbative quantum electrodynamics, which
give the natural linewidths. A detailed presentation of
these results will be the subject of a forthcoming paper.

where r is a continuous function with r (co) =0, for all
co&co, and lim e r (co)=0, for any cr&0.

Proof. It suffices to prove the analogous assertions for
the inverse Laplace transform f(x) of

z(p)—= exp[ —(2cosy)p lnp]
~

I (pe'~)
~

277

According to Stirling's formula the asymptotic expansion

2

6p 72p

x =—2(cosrp+ y sing),

holds for
~ p ~

~ oo,
~
arg(p)

~

&rr/2. Hence

z, (p) =z (p) —e 1+
6p

is analytic in the open right half-plane, vanishes there as

~ p ~

~co, and f ~zi(o+ip)
~
dp& oo for any o &0.

The latter follows from

~!z,(o+ip) &M
~

e
~

! o+ip
with some constant M . According to Ref. 18, Sec. 5,
theorem 11.2, there is a function f, satisfying
zi(p)= e ~ fi(x)dx. Moreover,

0
oof i (x)= f e' +'r ~"z, (o+ip)dp,

2'7T

and hence, by the Riemann-Lebesgue lemma e "f,(x) is
continuous and vanishes for

~

x
~

~ oo. To accomplish
(ii), it remains to show f(x)=0 for all x &x . Consider

—x p 1zz(p)—:z(p) —e 1+
27Tp

We like to apply Ref. 19, theorem 96. Indeed,
ol—+zz( icr) is —the pointwise limit of zz(p io)fo—r pl. O,

which is analytic in the upper half plane. Since
zz(p) = —(cosy/ir) lnp +O(p ) for p~0 and
z, ( icr)=O(o —') for

~

o
~

~m),

~

z~( —io. )
~

~do & ~ .

Finally, from Stirling's formula it follows that

~zq(p icr)
~

& e—xp( —2x p) z
2 M

C7 +P
with some constant M for all p sufficiently large.

We turn to (i). By Bernstein's theorem (Ref. 18, Sec.
6.7), an equivalent property is that z(p)/p is completely
monotonic. We apply the following simple fact. Let g be
a real infinitely differentiable function such that —g is
completely monotonic. Then h:—exp(g) is completely
monotonic, too. This is proved by induction: Clearly,
h & 0 and, since h

' =hg',
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1)n+ lh(n + 1)

(n )( 1)kh (k~( 1)(n+ & —
k~g~n+

&
—kl & 0k

k=0

In the present case, where h (p) =z(p)/p, we have

—g'(p) =2(cosy)(1+ lnp)

P(z) = lnz+ f [x ' —(1 —e ") ']e dx,

one can show that

—g'(p)=x +2 f ReI[1—exp( —xe'~)]
0

—(xe'~) ']e "~dx .

Vsing Binet's expression
Since Re I I )0, the assertion follows by once more apply-
ing Bernstein's theorem.
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