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The generalized oscillator strength (GOS) of H2+ is calculated comprehensively for both discrete-
discrete and discrete-continuum transitions using exact Born-Oppenheimer wave functions. The cal-
culation presumes the Born-Oppenheimer separation, and thus gives the GOS dependence upon the
internuclear distance and the angle between the molecular axis and the momentum transfer, in addi-
tion to the dependence upon the energy and momentum-transfer magnitude. The theoretical study
of the molecular GOS is extremely rare even for discrete excitation and is virtually absent for con-
tinuum transitions. The present study serves as a guideline for fu11 understanding of the molecular
GOS in general, although no experimental results on the key aspect, i.e., the dependence of the GOS
upon the momentum transfer, are available for comparison with theory.

I. INTRODUCTION

All information about any inelastic collision of a high-
energy charged particle is embedded in a target property,
i.e., the generalized oscillator strength (GOS), within the
framework of the first Born representation. In particular,
the essential part of differential, as well as total cross sec-
tions, are indeed determined by the GOS. Hence, the
understanding of characteristics of the GOS directly con-
nects to that of collision dynamics. ' Since the historic
work on the GOS by Bethe, ' theoretical study of the
GOS has concentrated predominantly on discrete transi-
tions in atomic systems. ' Furthermore, for continuum
transitions, treatments have been limited to atomic hydro-
gen or to central-field models of atoms, owing clearly
to the difficulty of obtaining more accurate wave func-
tions to describe continuum states. Although knowledge
of the GOS for molecules is more urgently necessary in
various applications, the study of the molecular GOS is
relatively limited. In addition, to the best of my
knowledge, virtually no detailed study has been reported
on the molecular GOS which involves continuum states. I
have conducted a systematic and comprehensive study of
the molecular GOS for discrete, as well as continuum,
transitions for the H2+ system for the first time. Al-
though this study of the molecular GOS for one-electron
diatomic molecular (OEDM) systems may appear some-
what academic because relevant experiments on H2+, e.g.,
measurements of the angular distribution of inelastically
scattered electrons are not feasible at present; it is, howev-
er, a necessary step toward full elucidation of the molecu-
lar GOS in general. Taking full advantage of the
knowledge of exact wave functions, both for discrete and
continuum states of OEDM systems, " one can explore
characteristics of the molecular GOS without any ambi-
guity.

Previously, Peek' has investigated the molecular GOS
for the H2+ system for several lower discrete states. Since
the main focus of his study lay on electron-impact dissoci-
ation of the H2+ via unbound discrete channels (2pcr„,
2pir„, and 2sog states in the united-atom designation), his

discussion of the molecular GOS is brief and most discus-
sion apparently concentrates on the dissociation cross sec-
tion.

As is now well known from experiments and from the
general consideration, ' a large part of the GOS comes
from continuum transitions or ionizations. Therefore,
discussion of the molecular GOS of continuum transition
should be included for full understanding of the GOS.
The primary purpose of the present report is the follow-
ing: (i) To illustrate results of the GOS of H2+ both for
discrete and continuum transitions calculated by using ex-
act Born-Oppenheimer wave functions for both states, and
(ii) to discuss characteristics of the molecular GOS in
each transition in conjunction with that for the H atom
and the He+ atomic ion as two extremes of H2+ molecu-
lar ion.

II. DEFINITIONS

Sets of the coordinate system for Hz+ are shown in Fig.
1. Note that the orientation of molecular axis with

Z

e

FIG. 1. Sets of coordinate system of H2+ and momentum
transfer K.
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respect to momentum transfer K is shown by angle 6 in
Fig. 1. Atomic units are used throughout.

General features of the GOS and of the form factor are
given in Ref. 1.

A. The generalized oscillator strength

The generalized oscillator strength f„(K,R) for transi-
tion of one-electron diatomic molecular system from its
ground state to discrete or continuum states is defined as
(see, for example, Ref. 1)

2E„
f„(K,R) =

i
e„(K,R)

i

with

B. The Born-Oppenheimer molecular eigenstates

Exact molecular eigenstates and eigenvalues for discrete
and continuum states were generated "using the prolate
spheroidal coordinates (g, g, P), which make the
Schrodinger equation separable. The solutions may be ex-
pressed in the form

(r, R) =(2') '/ X(g)S('t))exp(img) .

For discrete states, one may write

~
e„(K,R)

~

= f ~
e„(K,R,6)

~

(sin6)d6/2 (2)
J

X(g) (g 1) I I/ e
—k(g+1) J

e„(K,R, 6)= f P„(r,R)e' 'Pp (r,R)dr, (3) S(n)= gf(P( (7b)

where E„(K,R), is the so-called scattering form factor, K
represents momentum transfer K=kp —k kp is the
momentum of an incident particle before the collision,
and k„ that after the collision. The symbol P„(r,R)
represents the Born-Oppenheimer (BO) wave function for
the nth excited state, and (tp (r,R) that for the ground
state. The symbol E„represents the excitation energy of
the nth state measured from the ground state.

Using the GOS in Eq. (1), the differential, as well as the
total, cross sections are readily derived within the first
Born approximation. For an electron collision, the dif-
ferential cross section can be written

m I/2

X(g) = F(g),
—1

/+1 (8)

and F(g) satisfies the differential equation

(g2 —1)F"(g)+(2
l

m
l
+g)F'(g)

+ (d2$2+ qg —A)F (g) =0, (9)

using the symbols defined in Ref. 9. For continuum
states, ' '" one may write

d~ k. 1=4
dA kp K4

X[
~
(X„(R)

~

e„(K,R) ~Xp(R))(( [
'], (4)

F(g) being obtained numerically by integration of Eq. (9).
Similarly, one may put

S(r))= gd(P(I (g) .
1

where X;(R) represents the nuclear vibrational wave func-
tion. ( . )(( denotes integration over the internuclear
separation R. Correspondingly, the total cross section is

The continuum wave functions are normalized to include
the density of continuum states.

Now, Eq. (3) can be reduced in numerically tractable
form using the BO wave functions (7)—(10) as

3

e(K,R,6)= — f dg f dpi(g —21 )

In the derivation of Eqs. (4) and (5), certain simplifying
assumptions are made. First, the coupling between vibra-
tional and rotational states is disregarded. Second, the
slight dependence of the momentum transfer upon the ro-
tational quantum numbers of the initial and final states is
disregarded. Further, the rotational motion is extremely
slow compared to the electronic excitation and may be
treated adiabatically. Thus, the average over the initial
rotational states and the summation over the final rota-
tional states may be effectively replaced by the integration
over the angle 6 as indicated in Eq. (2). For further de-
tails, see Ref. 2 and Sec. 3.5 of Ref. 1. As clearly seen
from Eqs. (4) and (5), the GOS constitutes the central ob-
ject of both cross sections, and thereby, its study is pre-
cisely nothing but a detailed study of collision dynamics.

iKR
&& exp gr( cos6 J

I

X (g —1)1/2(1 —q2)1/2sjn6KR
2

XX (g)Xp(g')S„(g)Sp(rI), (11)

where J (X) represents the Bessel function. The 28-point
Gauss-Laguerre and 32-point Gauss-Legendre quadra-
tures have been found to be adequate to evaluate nonse-
parable double integrals in Eq. (3) with relative errors less
than 1)&10 . The Simpson method was used to in-

tegrate over angle 6 in Eq. (2) with relative errors less
than 1&10
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III. RESULTS AND DISCUSSIONS

A. Discrete-discrete GOS

The dependence of the form factor on the angle 6 for
1so.

& ~2pu„and 1so.
g ~2sog transitions at fixed R =2.0

a.u. is shown on Fig. 2. As is observed by expanding Eq.
(11) with the help of Eqs. (6)—(10) in a power series of the
exponential, certain form factors vanish identically for a
specific value of 5. As is apparent from the figure, for the
npcr„ final state,

~

e(K,R)
~

is zero at 6=m. /2, while it
goes to zero at 5=0 for the np~„ final state.

~

e(K,R)
~

is nonzero for all angles for the nso.
~ state. Although the

magnitude of the form factor varies significantly depend-
ing upon the magnitude of the momentum transfer K, its
shape as a function of 6 is very sitnilar to each other. At
small K for the 1scr~~2po„ transition, e(K, R) ap-
proaches the cosine curve, while it starts deviating from

the cosine curve having larger magnitudes at larger 5 at
large K.

Figure 3 displays
~

e(K,R)
~

/K versus 1n(Kao) at
various R values for the 1so.g~2so.g transition. Note
that 1serg and 2s ca~ molecular states correspond to
He+( ls) and He+(2s) at R ~0, and H++H(ls) and
H++H(2s+2po) at R~oo, respectively. Therefore, the
present result should tie to each atomic GOS at these two
asymptotic regions. Indeed, results clearly show that as R
increases, the magnitude of the GOS at small momentum
transfer K increases indicating that the molecular GOS
approaches the H(n =2) CxOS, while the present result
becomes close the He+(2s) GOS as R decreases which
corresponds to optically forbidden transition.

Similar results for the 1so.
g ~2po.„ transition are seen

in Fig. 4. There is a decisive difference from the earlier
case. That is to say, the lsog and 2po.„states are degen-
erate asymptotically forming H++H(ls) channel, al-
though these states correspond to different states, He+( is)
and He+(n=2), at R=O, respectively. This Isog~2pcr„
transition is a special additional process possible in only
homonuclear molecules, but not in atoms as was first
pointed out by KoI'os "in reference to the hydrogen mol-
ecule. As is apparent from Fig. 4,

~

e(K,R)
~

/K seems
to increase as internuclear separation R becomes larger,
although the GOS for this transition itself approaches
zero as R increases because of an energy defect between
these states [see, Eq. (I)]. This certainly reflects the fact
that there is no transition between the same states. Simple
analysis of this characteristic using a linear combination
of atomic orbitals (LCAO) method reveals that for large
R with fixed K, e(K,R) behaves like

KR
sin

2

while e(K,R) is roughly linearly dependent to R for small
R with fixed K. Needless to say, in the limit of K~O,
the GOS of this transition approaches the optical oscilla-
tor strength between corresponding states of He+ ion
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since the 1so.~ —+2po.„ transition is an optically allowed
transition.

The GOS for the lsog +2pcr„ trans—ition as a function
of R is shown in Fig. 5. Interestingly, the GQS at R =2.0
a.u. , i.e., the equilibrium distance of H2, possesses the
largest magnitude in the region of K(0.6 compared to
others calculated by different R. And in both sides of R
departing from R=2.0 a.u. , its magnitude decreases, al-
though the rate of decrease is less drastic for larger R
scde.

The
i
e(K,R)

i
/K for the Iscrz~3po„ transition is

shown on Fig. 6 as a function of ln(Kaz) . Two interest-
ing features are apparent in the figure: (i) the GOS
possesses a minimum as K varies for cases in R &4.0 a.u.
(no minimum is observed for the GOS in R &2.0 a.u. for
entire K values), and (ii) the GQS approaches a finite
value as K—&0 (optical limit) since this transition is opti-
cally allowed. The occurrence of a minimum in the GOS
at fixed R is attributable to the similar reason as for that
of atomic GOS or the Cooper minimum for the photoab-
sorption cross section. Any 1so.g~nlo. „series transition
shares the same trends mentioned above, namely, the GOS
having a minimum as K varies and a finite value at

K~O, except for the 1sog~2po. „ transition. Again, the
2po.„ is the special state appearing only in a homonuclear
molecule and hence, possesses unique molecular character
compared to the other states which belong to the nlo.„
family.

As a summary of this subsection, several results of
i
e(K,R)

i
/K from the ground state to several excited

states at R=2.0 a.u. (equilibrium distance) are illustrated
in Fig. 7. Again, the excitation energy must be multiplied
to obtain the actual GOS from the quantity shown in the
figure. Therefore, the actual difference of the inagnitude
in the GOS for npo. „ transition series becomes somewhat
smaller compared to ones in Fig. 7. However, the general
trend of the same I series is well illustrated in the figure.

B. Discrete-continuum GOS

Similarly to Fig. 2, the 5 dependence on
~

e(K,R, E~)
~

from the discrete ground state 1sog to 1=0 and 1 contin-
uum states with ejected electron energy ej =1 a.u. at
R =2.0 a.u. is displayed in Fig. 8. Remarkable differences
found in the present figure from discrete-discrete transi-
tions are that any

i
e(K,R, EJ. )

~

/K starts very small
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value at angle 5=0 for the 1so.g~continuum transition
with subsequent growing as angle 5 increases and there is
a maximum around 5=50' for the 1$cTg Ej'po.„ transition,
although they behave similarly to that of counterparts in
discrete-discrete transition at larger angles. Although
only 1=0,1, cases are shown, obviously, due to symmetric
nature in the molecular wave function used, e(K,R, ej ) ob-
tained from even-1 or odd-1 continuum states shares simi-
lar characteristic features in shape. The R dependence of

~

e(K,R,e~) ~
/K to the Isog~e~po„ transition at eject-

ed electron energy ej ——1.0 a.u. is shown in Fig. 9. Two
features observed should be particularly stressed: (i) the
so-called Bethe ridge' develops noticeably as R increases,
and (ii} the presence of a minimum around K-O.S, simi-
lar to the ones seen in Fig. 6 for the 1scrg~3po. „ transi-
tions, becomes marked when R=2.0 a.u. and up. As has
been seen in discrete-discrete transition, the shape of the
GAS at small R resembles that of the He+ ion, while as

R increases it becomes closer to that of the H atom, as ex-
pected. The well-known property that

~

e(K,R, e~. )
~

/K
has a sharp maximum around (Kao) =E (the Bethe
ridge) is quite evident in the figure.

Figure 10 shows
~

e(K,R,el)
~

/K for different partial
wave 1's at fixed R=2.0 a.u. One sees a gradual decrease
of magnitude as 1 increases with giving even-/ cases larger
values compared to that of odd-1 cases. Note that only
the 1=1 (expo.„) case exhibits a noticeable minimum in
the GrOS within the E ranges studied.

Figure 11 shows
~

e(K,R,ej)
~

/K versus ejected elec-
tron energy Ej at fixed E=1.0 and R=2.0 a.u. The ej
dependence of the shape is quite similar to each other re-
gardless of the 1 value. Contribution from ej =1 a.u. and
below to the molecular GOS constitutes more than 95&o
of the total under conditions considered.
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C. The sum rule and the mean excitation energy

S(p, )= J E"dE,d
dE

and its derivative with respect to the order p is

L(p)= = E"lnEdE .
dp dE

(12)

The integrals are taken over all continua as well as includ-

The moment of the pth order of the distribution of the
GOS is defined' by

TABLE I. Representative results of the sum rule. The sum
rule for arbitrarily chosen 5 and K at fixed R =2.0 a.u.
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Transition

Discrete
Continuum
Total

0.78
0.21
0.99

0.83
0.17
1.0

I( =0.5
5=0' 5=45'

0.51
0.48
0.99

0.53
0.46
0.99

K= 1.0
5=0' 5=45
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R (a.u. )

Transition
Discrete Continuum Total

1.0
2.0
4.0

0.782
0.865
0.803

0.216
0.133
0.196

0.998
0.998
0.999

TABLE II. Representative results of the sum rule. The sum
rule integrated over angle 5 with E=O (optical limit).

The mean excitation energy (MEE) varies smoothly as a
function of R as shown in Fig. 12. Chiefly owing to the
increasing role of the 2pcr„state, the MEE gradually be-
comes larger from that of the hydrogen atom 15 eV at
R~ap to that of the He+ atom, 60 eV, at R~O, al-
though the value of the MEE increases rather drastically
at smaller R &5 a.u. to reach that of the He+ ion at the
united-atom limit.

0.565 0.435 1.00

IV. CONCLUSIONS

MEAN E XCITATION ENERGY

R(a.u. )
IQ l5

FIG. 12. The mean excitation energy as a function of R.

ed in the summation over all excited states. The mean ex-
citation energies I(p), defined by

lnI (p) =L (p) IS (p)

are crucial to many properties of atoms and molecules. '

In the present work, we restrict our discussion specifically
to investigate p=O case only. When p=O, I(0) is the
Bethe excitation energy for stopping power. ' Making use
of the previous results for the Hz+ GOS's, the sum rule
and the mean excitation energy have been evaluated.
Those results are tabulated in Tables I and II for the sum
rule, and displayed in Fig. 12 for the mean excitation en-

ergy. As seen from Table I, the sum rule is clearIy satis-
fied independently for each fixed K, R, and 5. This is
mathematically provable following the procedure
described in Ref. 13. Note that as the momentum transfer
E increases, a contribution from continuum states to the
sum rule expectedly increases.

The sum rule integrated over 5 with K=O (optical lim-
it) shows in Table II that a contribution from discrete
transitions to the total of the sum rule is the largest (87%%ui )

when R=2.0 a.u. It decreases smoothly as R increases
approaching to 57% of the H atom at R~~. It also
decreases as R decreases approaching to again 57% of the
He+ ion. [Note that the ratio of the continuum contribu-
tion to the discrete contribution to S(0) in a hydrogenlike
ion is independent of the nuclear charge. ] A contribution
of the 2po.„state to the sum rule at R =2.0 a.u. has about
37% with 93% of the total coming from joint
(2pa„+2p~„) contribution to whole discrete transitions.
As repeatedly discussed above, the 2pa„ is the special ex-
tra state appearing only in homonuclear molecule, and it
is interesting to see a role of this state in the GOS in con-
junction with understanding collision dynamics.

important characteristic features of molecular form
factors and molecular GOS's for both discrete-discrete
and discrete-continuum transitions in the H2 system
found in the present study are summarized: (i) Presence
of a marked minimum in the GOS for both discrete-
discrete and discrete-continuum transitions as R changes
has been found for the first time. This minimum is analo-
gous to the one frequently found in atomic GQS' (as a
function of K ) and, similarly, to the one in the optical
limit known as the Cooper minimum in the photoabsorp-
tion cross section as a function of photon energy. (ii) Spe-
cial states (for example, the 2pa„state), which arise only
from molecular formation and have no analogs in an
atom, play an important role for full understanding of
general properties related to the GOS and also collision
dynamics. As an illustration, a dominant contribution to
discrete portion of the distribution of the GOS comes
from the 2po„ transition. (iii) The sum rule, viz. ,

df (K,R, 5,e)

is valid independently for each fixed EC, R, and 6. This
result also implies that the derivative of df(K, R,5,e)/de
with respect to E, R, or 6 sums up to zero. The deriva-
tive with respect to E has been discussed already. ' '
However, the remark on the derivative with respect to R
and 6 is new. This property specific to the molecular
GOS may have useful applications in data analysis. A
contribution from discrete transitions to the sum rule oc-
cupies more than 87% of the total integrated over K and
5 at internuclear separation R=2.0 a.u. (equilibrium dis-
tance). As R increases, partitioning of the sum rule slow-
ly approaches to that of the hydrogen atom in which 57%
of the total is accounted for discrete transitions. (iv) Gen-
erally, the GOS for both discrete and continuum transi-
tions is a sensitive function of R, 5, and ez (for continuum
transition only). (v) The mean excitation energy of the
H2+ is a smooth function of R, connecting that of He+
ion and H atom at two extremes of R. Note that, for a
hydrogenlike atomic ion of nuclear charge Z,
I(0)=Z exp(0. 096982)/2 a.u. =15.0Z eV.

Lastly, it would be extremely interesting if coincidence
measurement of the state selected differential cross section
for collision of electron with the H2+ molecular ion at
fixed R is able to be carried out, since result from this
kind of study provides comprehensive and detailed insight
of collision dynamics which also serves stringent test for
theoretical approach such as the present one.
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