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Impact excitation of the n =2 fine-structure levels
in hydrogenlike ions by protons and electrons
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Quantal close-coupling calculations of the impact excitation of the n =2 fine-structure levels in
the hydrogenlike ions Ar' +, S"+, Mg" +, C +, and He+ by protons and electrons are presented,
and the resulting cross sections and rate coefficients are compared with previous values. The effects
of relativity on the proton-impact excitation cross sections for ions with high nuclear charge are in-

vestigated. Plasma-density effects on the transition cross sections are explored using a Debye-
screening model, and it is shown that the screening of the ion alters the excitation cross sections sub-

stantially and brings the ratio of the cross sections towards the statistical value. The calculated
transition rates are used to model the ratio of the intensities of the two components of Ly-e radia-
tion emitted by impurity hydrogenlike ions in an optically thin, hydrogen plasma. The results con-
firm that at intermediate plasma densities proton-impact-induced transitions redistribute the n =2
fine-structure-level population ratio away from the statistical value.

I. INTRODUCTION

Observations' of Lyman-a radiation emitted by Mg" +

ions in solar flares show deviations of the intensity ratio,
P=I(2pt&2-1st&2)/I(2p3/2 ls&&2), from the statistical
value of one-half. Similar deviations in P have been ob-
served from radiation emitted by impurity S' + ions in
the Alcator Tokamak and by other hydrogenlike ions in
laser-produced plasmas.

In a plasma that is sufficiently dense, collisional excita-
tions of the fine-structure levels of the ions drive the pop-
ulations of the levels toward a Boltzmann distribution,
and the P ratio is effectively determined by the statistical
weights of the levels. At the other extreme, of low plasma
densities, the populations of the excited levels in the ions
are governed by radiative captures followed by radiative
emission to the ground state and P again has the statisti-
cal value. In the intermediate-density region, the proba-
bility that the ion undergoes a transition from one fine-
structure level to another due to collisions with plasma
constituents becomes comparable with the probability that
the ion radiates a Lyman-a photon. In this region the
fine-structure-level populations may differ from their sta-
tistical values, and the value of P could prove to be a valu-
able diagnostic probe of the plasma environment.

Theoretical studies by Vinogradov et al. of P for radi-
ation emitted by hydrogenlike ions in optically thin laser-
produced plasmas predicted P to differ significantly from
the statistical value over a wide range of plasma densities,
and they suggested that ion-ion collisions are primarily re-
sponsible for redistributing the fine-structure populations
away from their statistical values. Beigman et al. calcu-
lated P for the impurity hydrogenlike ions seen in the so-
lar corona, and found that it departed from the statistical
value over a wide range of plasma densities. Further,
more comprehensive analyses of the coronal plasma by
Ljepojevic et al. yielded the same qualitative functional
dependence of P on the plasma density and temperature.

In modeling P, various approximations are employed to
obtain the collision rates of the fine-structure transitions.
Among them are the Born approximation with a model
potential, ' ' the Coulomb-Born approximation, a uni-
tarized Coulomb-Born approximation, ' and semiclassi-
cal methods. ' In this paper we carry out fully quantal
close-coupling calculations of the proton- and electron-
impact excitation rates for transitions within the n=2
fine-structure levels of the ions He+, C +, Mg" +, S' +,
and Ar' +. Scaling arguments can be used to predict the
fine-structure excitation rate coefficients for the entire
range of hydrogenlike ions with nuclear charges
2&Z (18.

In Sec. II we present the scattering formalism. We per-
form a close-coupling expansion of the scattering ampli-
tude over a set of atomic target states that contain all
states within the n =2 manifold. The expansion should be
adequate for proton-ion collisions for values of nuclear
charge Z ~ 2 because the Coulomb repulsion between the
scattering partners inhibits close encounters. In the case
of proton-He+ collisions, molecular effects may be signi-
ficant and our results are less reliable. We use the same
formalism to calculate electron-impact excitation cross
sections. At impact energies far above the fine-structure
thresholds, the majority of the contribution to the total
cross section comes from partial waves corresponding to
large impact parameters and contributions due to ex-
change forces are negligible. Near threshold, our calculat-
ed cross sections are less accurate but we are concerned
here with plasmas for which the electron temperature is
much larger than the threshold temperature.

The close-coupling equations are expressed as a set of
coupled radial equations for the scattering amplitude at
each value of the total angular momentum J of the
projectile-target system. The long-range coupling for the
dipole-allowed transitions causes a significant contribu-
tion to the total cross section from very large values of J.
For large J, numerical solution of the radial equations be-
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comes prohibitive, but we may use the unitarized
Coulomb-Born approximation to get accurate partial cross
sections.

Relativistic effects are important for ions with large nu-
clear charge. We examine the modifications necessary in
our close-coupling equations when the ion target states are
represented by fully relativistic four-component wave
functions.

In a very hot dense plasma, the proton- and electron-ion
interactions are screened by the surrounding plasma envi-
ronment. They can be described approximately by a
Debye-Huckel potential. ' '" We present calculations for
the impact excitation of Ar' + when the long-range po-
tentials are replaced by short-range Debye-Huckel poten-
tials with various values of the Debye parameter. Finally,
the calculated excitation rate coefficients are used to
model the Lyman-a line intensities from photons emitted
by the impurity ions He+, C +, Mg" +, S' +, and Ar' +

in optically thin, hydrogen-based plasmas.

II. FGRMALISM

total angular momentum and azimuthal quantum num-
bers J,M; the incoming particle orbital angular momen-
tum l; the total and orbital angular momenta of the bound
electron j,A. ; and the radial quantum number n. %'e re-
strict the expansion to the channels with n =2. The
Schrodinger equation for the scattering amplitudes be-
comes

d2

dR
l(l+1) Fr r(R)+~„jFr r(R)

—2~ g (r
~

V
~

r"&F,. „-(R)=O, (2b)

where

v„j =2@(ET—c.„j) (2c)

and ET and c„J are the total and atomic energy eigen-
values, respectively.

Because of parity conservation, the equations decouple
into two independent sets of four-channel equations. The
set of channel states with parity ( —1) '~ is

We consider a particle with charge q scattered by a hy-
drogenlike ion with nuclear charge Z (atomic units are
implicit, unless otherwise stated). The Hamiltonian in the
center-of-mass frame is given by

HT ——— Vg +H (r)+1 Zq q

2p R iR —ri

i
JMJ — 2sijp&

~

J M J+ 2 2p(iz&

~

JM J+ 2p3gp&

i
JM J— 2p3yp &

(3a)

where R is the coordinate of the scattered particle, r is
the coordinate of the bound electron, p is the reduced
mass of the system, and H(r) is the Hamiltonian for the
bound atomic electron. It is assumed that transitions
among the atomic levels of the ion are induced by the in-
teraction —q/~ R —r ~. We restrict attention to transi-
tions within the 2p&&2, 2p3&2, and 2s&&2 fine-structure lev-
els. In order to obtain the scattering matrix for these
transitions, we must solve Eq. (1) within some appropriate
approximation and match the solution to the boundary
condition for scattering in the asymptotic region. We
solve (1) by utilizing a close-coupling expansion of the
wave function over a set of channel states

~

I &. The out-
going wave function for the system, originally prepared in
state I ', is given by

and the set with parity ( —1) +' is

I
JM J+ j 2s)yp&

l

JM J—
2 2p(jz &

~

J M J + -,
' 2p„, &

~

JM J ~ 2p3yp&

The potential matrix (I
~

V
~

I"
& is given by

(3b)

q JMlnkj ——~ Z
R

1

/R —rf j 'k'n 'l'M' J' (4)

Expanding the interaction operator as a scalar product
of the irreducible tensors Ck of rank k according to'

(2a)
oo y

k

, Cj, (r).Ck (R),
~R r~ k=o r)

(sa)

The channel kets
~

I &=
~

JMlnkj& are specified by the we get

QO
l' j' J rr (" = g ( —I) ) 5rr6M rr

' .
1 ) '(1(~Cr(R)(~(1') j)rr (r(r) r &

j ' 'n') .j
k o r) (5b)

The reduced matrix elements can be expressed' by

l k l'
( t~ ~C„(R)

~
~t & =( —1)'[I,r ]'" (6a)
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(jAn Ck(r) k &
j 'A'n. ' =(—1) J+'~ [jj ']'~,

, R„"k (k,R) .„k+1 (6b)

I

Selection rules limit the multipole sum in (8b) to the di-
pole k=1, and quadrupole k=2, terms. The explicit rep-
resentation for the angular coefficients Qpz k (k,J) for the
channel states (3a) and (3b) is presented in Table I.

Inserting the nonrelativistic hydrogenic radial wave
functions, ' P„k(r), into the integral (7), we obtain

The sole dependence of the reduced matrix element of
Ck ( r ) in (6) on the orbital angular momenta A, , A,

' is
through the parity-conservation requirement, A. +A, '+ k is
an even integer, and in the radial matrix element
R„"k (k,R). The radial matrix elements are defined as

R„"k (k,R)=
R k+1 o

dr P„k(r)P„k (r)r
R po(O, R)

Z
1 —x 3 1 x x=——e " —+—+ +-
x (4 x 8 4P„ (r)P„ (r)

+R dr k+1

RzI(O R) 1 „1 3 x x'
Z x x 4 4 24

=——ewhere P„k(r) Ir are the hydrogenic radial functions for the
bound electron in state nX. Combining (5b) and (6) with
(4), we obtain

«l V
I

1"&=~ &rr
9 1 „1 1+e " —+—+~3 x' 2 x x'

R 2O(1,R)
Z

x x
6 24where

Vt~j'k'n'(J R ) = g QPy~k (k,J)R„"k (k,R),
k=1

(8b) R 2I (2,R)
Z

30 „ 30 30 15 5x 5x5+ ~+ 3+ + +
24

k j'
where the scaled coordinate x —=RZ.

The S matrix in the I representation is obtained by
solving Eq. (2b) numerically subject to the boundary con-
ditions,

0

(8c)

Parity ( —1) ' coefficients Parity ( —1) +' coefficients

1

3
1

3
~J —1/2, 1/2, 0
KJ+1/2, 1/2, 1

~J+1/2, 1/2, 0
VJ—1/2, 1/2, 1

1/2
2J+3

36J

1/2
2J+3

12(J+1)
~J—1/2, 1/2, 0
KJ+1/2, 3/2, 1

~J+1/2, 1/2, 0
KJ +3/2, 3/2, 1

1/2
2J —1

' 1/2
2J —1

36(J+1)
~J—1/2, 1/2, 0
KJ —3/2, 3/2, 1

~J + 1/2, 1/2, 0
RJ —1/2, 3/2, 1

6J+9
100(J +1)

1/2
2J+3
100J

' 1/2
~J+1/2, 1/2, 1

KJ+1/2, 3/2, 1
~J —1/2, 1/2, 1~J+3/2, 3/2, 1

1/2 1/2
2J —1

100(J+1)
—(2J+5)
20(J +1)
[3(2J+3)(2J—1)]'"

20(J + 1)

2J+5
20(J+1)

3(2J —1)
100J

2J —3
20J

~J+ 1/2, 1/2, 1

KJ —3/2, 3/2, 1
~J —1/2, 1/2, 1

KJ —1/2, 3/2, 1

~J+1/2, 3/2, 1

KJ+1/2, 3/2, 1
~J+3/2, 3/2, 1

KJ +3/2, 3/2, 1

[3(2J+3)(2J—1)]
20J

~J +1/2, 3/2, 1
KJ —3/2, 3/2, 1

~J+3/2, 3/2, 1

VJ —1/2, 3/2, 1

—(2J —3)
20J

~J —1/2, 3/2, 1

KJ —1/2, 3/2, 1
~J —3/2, 3/2, 1

KJ —3/2, 3/2, 1

TABLE I. Angular coupling coefficients (8c) as a function of the total angular momentum J. En-
tires in the first three rows are the dipole coupling coefficients; the remaining entries are the quadrupole
coupling coefficients.
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Fr r (R =0)=0,
1

lim Fr, r —
i/2 5r rsin krR — lr —ilr»(2krR)+ ~r„i+Kr, rc os krR — lr —grin(2krR)+ai

k 1/2 2 r

(10a)

(Z —1)qp
9I kI-

(10b)

and K~ z is a real symmetric matrix related to the S ma-
trix by

S= (1+iK)(1 iK )— (10c)

The transition cross section for the ion to go from state kj
to A, ',j' is expressed in terms of the S matrix by

o.(Aj~k'j') =
2pE (2j + 1)

~ g (2J+1)[~S„f (J,/1) ~'

where kr is the wave number for the scattered particle in
channel I, I& is the orbital angular momentum of the
scattered projectile, o.

I is the Coulomb phase factor, '

is the Coulomb parameter,

III. APPROXIMATIONS

A. Unitarized Coulomb-Born approximation
for large angular momenta

Although one can, in principle, solve Eq. (2b) for all
partial waves to obtain the total cross sections, the large
number of partial waves contributing to the sum (1 la)
makes it impractical. Instead, we solve Eq. (2b) for values
of J below some critical value J,„, and use a more effi-
cient approximation to obtain the partial cross sections
from J „to J~oo.

At large values of J the scattered projectile can be
represented by a Coulomb wave function and at some
value, J =JCB &~1, the K matrix obtained from the
close-coupled solution approaches Kc, the K matrix ob-
tained from the Coulomb-Born (CB) approximation. In
the unitarized CB approximation, a symmetric K matrix
is constructed for the Jth partial wave from the formula'

(1 la)

(1 lb)

where E is the kinetic energy of the relative motion in the
incoming channel, SiJf (J,A) is the S matrix correspond-
ing to the channel states (3a), and the second term in (1 la)
is the S matrix corresponding to the channel states (3b).
It is useful to introduce a collision strength,

k,
II(a,b): (2j, + 1—)cr(a ~b) .

f dR f (R)2p V(R)fJ(R) k

(12)

where k is a diagonal matrix whose ith element is the
wave number of channel i, and fJ(R) is a diagonal matrix
whose elements f~i(R) are the radial Coulomb wave func-
tions regular at the origin. Explicitly, '

f; (k;R)=5; e ' (2k;R) ' e ' iFi(l;+1 ii);,21;+2—,2ik;R)
—ng, /2 ~

I (1;+I+i q; )
~

. i, +1 ik, R. —

21 (21;+2)
(13)

where l;, k; are, respectively, the projectile angular-momentum quantum number and radial wave number of channel i for
the partial wave J. The interaction matrix V(R) is the leading term in the asymptotic expansion of expression (8a), as
R ~ ao. The K matrix then contains elements proportional to the radial integrals,

fi/(kfR)fi (k;R)
Irf.=— dR

(14)

where y = 1,2 for dipole and quadrupole transitions, respectively. These integrals can be expressed in terms of the Appell
functions. ' However, for large 1;,lf » ~

il; ~, ~ iaaf ~, and for transitions where the energy defect is small, considerable
simplification can be achieved in the evaluation of (14) by replacing the radial functions fi(kR) by their WKB approxi-
mation. Following Alder et al. ' we get

Ir —sgn~q~~~~2~
I 4 I

ij

r

2c'g
2I 1+P+

2

~+5/2, —y/2( I
2C

I
) (1Sa)
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where

I:—(1;+lg)/2, g:—(q;+gg)/2,
(15b)[q'+ I (t + I ) ] '~'

4= ri—y
r/

and W„„(z) is the Whittaker function' regular at z~ oo.
The + sign in the expression correspond to the cases when
sg&O, eg&0, respectively. The term in the square brack-
ets is the large I limit of expression (14) when the radial
Coulomb functions are replaced by the radial plane-wave
functions, the Ricatti-Bessel functions. In the case of di-
pole transitions (y= 1), a more accurate approximation to
the integral (14) can be obtained which is valid when

q »1 regardless of the value of /. It is given by'

1 (Z — ) 7P r- —(m.l2)
2

(
2 1)l/2

&;g( I 4 I

)+I' e( I g I
)

where E;~(x) is a modified Bessel function, '

E„(z)= e '"'"I"cosh(vt)dt, (16b)
0

and E «(x} is the derivative. When
~

Eg
~

&& 1, the leading
order term in the asymptotic expansion of (15) for the di-
pole term (y = 1}and (16a) approach the same limit,

lim I,', ='=e —' "'~&
I &4

I
~~ 4c,g 5' I 1+—

2

Xe ''~'(
~
2g

~

)+ (17)

Using (15) and (16) to calculate the E matrix whenJ)JCB, we obtain the S matrix S . This S matrix is

unitary for all J since K is guaranteed, by construction,
to be a symmetric matrix. In Fig. 1 we illustrate the con-
vergence at large J of the close-coupled calculated partial
cross sections to the ones obtained in the unitarized
Coulomb-Born approximation for the dipole fine-
structure transitions in S ' + induced by proton impacts.

B. Relativistic effects

For highly charged ions relativistic effects are signifi-
cant and the scattering formalism must be modified. We
may distinguish between two relativistic effects. The
first, which we have already implicitly included, consists
of the energy splittings of the target states, the 2p&&z-

2p3/2 splitting due to the spin-orbit interaction between
the bound electron and the nucleus, and the 2s&&2-2p&&2
splitting, the Lamb shift due to the interaction of the elec-
tron with virtual photons and positrons. The energy split-
tings' are reproduced in Table II. The second effect is
the change in the target-state eigenfunctions.

When the target states of the ion are described by Dirac
spinors, the expansion (2a) must be generalized. The scat-
tered projectile is still essentially nonrelativistic, so that
we can use Hamiltonian (1), where now H(r) is a single-
particle central field Dirac Hamiltonian. The expansion
kets

~

I ) no longer diagonalize the operator H(r), and
new channel states

~

I ~ ) are used in the close-coupling
expansion (2a). These channel states are linear combina-
tions of the Dirac wave functions

~j m~n ), where j, m are
the total and azimuthal angular-momentum quantum
numbers of the electron, ~ is the Dirac quantum number
which is related to the relativistic parity operator, and n is
the principal quantum number. These kets can be
represented by the spinor'

P~„„(r) X~„(8,$)
jmKn)=——

Q ( ) gM (g p) 7 (18)

where X~„(8,$) is a two-component spin-orbit function
with the properties

3.5

3.0—
N 00

O
2.5

2.0
O

15

(

~ ~ ~~ ~ j jX,,=j(j+1)X,
J XJ =mXJ

( I+a"A. )XJ = —a.XJ

and j,A, are, respectively, the total and orbital angular-
momentum operators and o. is the Pauli spin matrix. For
a given value of j the Dirac quantum number ~ specifies

O
1,0

I—

0.5

TABLE II. Values for the energy splittings (a.u. ) of the n=2
sublevels used in our calculations. All values are obtained from
Ref. 17, except for the values for the ion He+ which are taken
from Ref. 9.

0
0 400 SOO I 200

J
(600 2000 2400 Ion b E (2p I/2-2s )/p ) AE(2p 3/2-2p )/2 )

FIG. 1. Comparison between partial cross sections obtained
from the close-coupling calculations (dotted line) and the unitar-
ized Coulomb-Born approximation (solid line) for the dipole
transitions induced by proton impacts on S"+ at a collision en-
ergy Eof 270eV.

He+
c'+
Mg" +
S15+

Ar' +

2.14~ 10-'
1.19X 10-4
1.42 &&

10-'
3.92 X 10-'
0.006

2.66 X 10
2.16)& 10
3.48 X 10
0.106
0.177
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the orbital angular-momentum quantum number A, of the
spin-orbit functions such that

A, .AXj„——A(A, + 1)Xj

K)0
A. =j —2, K(0 .

The amplitudes PJ„„,Qj „are, respectively, the "large"
and "small" components of the radial wave function.
With these target states we can construct channel states

I
I j1 )—:

I
JMlj vn ) where JMI are the same quantum

I

numbers as in the nonrelativistic channel states, and jKn
are the relativistic quantum numbers assigned to the
bound electron. Using these channel states in the close-
coupling expansion (2a), we calculate the potential matrix
&I R I

V
I
I 11 ). The resulting expression is the same as

Eq. (Sb) except for the replacement of the reduced matrix
element

k

k 1Ck jXn
I' 0

(jan
k k

k+1Ck j'K'n' = dr P' r Pj' ~ r jK Ck I' J K + 7" ' ~ ~ P J —K Ck T J
P' 0 7 0

(21)

where the ket
I jmx ) —=Xj„. Using'

&j~=j+ 2 llc~(r)llj'~'=j'+ 2 &

j k
( 1)j+1/2[j .~]1/2

02

1

2

Rjj„"„(k,R) = „,I dr[P„j (r)P„j„(r)

+Q„„(r)Q„' (r)] (26)

tation we can adequately approximate the radial potential
by

and Eq. (20) we get

A+A, '+k =0,2, . . .

&J~IIC~(r)llj'~'& =
&j —~IIC, (r

J
1 y + 1/2[j Ji]1/2

0

(23)
provided that A, +A, '+k is an even integer. We then ob-
tain

& I j1 I
V

I
I 11 & =e &r, r

5J J5M M V—Pj„"„(J,R) (24a)

where

V jj (J R) g Q1jj (k J)Rjj (k R
k=1

(24b)

and Q1jj"„ is identical to the expression on the right-hand
side of Eq. (8c). The new radial Potentials Rjj„"„areob-
tained by replacing the functions P„2(r)P„2 (r) in Eq. (7)
by

P,„„(r)P,„„(r)+Qj,„(r)Q,'„„(r) . (25)

For the radial wave functions we use the Dirae-Coulomb
radial functions given in Rose. ' Unlike the nonrelativis-
tic integral this integral cannot be expressed in terms of
elementary functions. In the case of proton-impact exci-

provided that the collision energy is such that the distance
of closest approach, (Z —I )/E, is greater than the size of
the ion. This integral may be evaluated in a straightfor-
ward manner but it is more useful to express (26) as an ex-
pansion in powers of Zu where o.=,37 is the fine-
structure constant. To an accuracy up to order (Za),

ZR1/2 —12(k = l,R)= [1——„(Za) ],

ZR3/2 22(k =1,R) = [1——,(Za) ], (27)

Z R3/2 22(k =2,R)=
3 [1—~ (Za) ],

where we have used the quantum-number assignments:
n =n'=2, j = —,', and K= —1 for the s«2 state; j = —, and
K= 1 for the p1&2 state, and j = —, and K= —2 for the p3 /2

state. In the collisional excitation of the n=2 levels in
Ar' + we found that the relativistic correction is about
one percent of the nonrelativistic cross section. Relativis-
tic corrections are expected to become significant for hy-
drogenlike ions only when Z& 30.

C. PIasma-density effects

In a sufficiently dense plasma the independent-particle
collisional model is inadequate. The interactions of the
plasma constituents, the electrons and protons, with im-
purity ions can no longer be described by the direct long-
range Coulomb interaction of the projectile with the tar-
get. However, for many plasma environments, many-
body effects can be represented approximately by a
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TABLE III. Proton-impact-excitation cross sections for the n=2 levels in the ions Ar' +, S"+,
Mg" +, C'+, and He+. The cross sections are expressed in units of ap, as a function of the scaled ener-

gy ET(eV)Z . The energy ET is measured with respect to the 2p&/2 level.

ET(eV) Z

0.084
0.21
0.42
0.63
0.84
1.68
3.02
6.30
8.40

10.50
12.60
14.70
16.80
20.16
25. 19
33.59

0.106
0.319
0.531
1.063
2.126
5.314
8.503

12.75
17.01
21.26
25.51
38.26

0.094
0.189
0.472
0.945
1.890
3.780
6.803

10.58
18.90
23.62
24.56
27.21

0.0378
0.0756
0.189
0.378
0.756
1.512
3.023
4.535
6.047

11.34
15~ 12
24. 19
34.01

o(2p (/2~2s)/2)

0.028
16.4
44.2
46.6
43.4
29.5
19.5
11.2
9.01
7.57
6.51
5.79
5.20
4.48
3.74
2.94

2.17
72.7
84.0
64.5
40.6
20.8
14.4
10.5
8.30
6.93
5.98
4.27

30.6
2.39X 10'
3.22 X 102

2.28 X 10'
1.44X1o'

86.6
55.4
39.2
24.6
20.5
19.8
18.3

5.17 X 10'
5.93 X 10'
9.17X 10'
7.01 X 10'
4.64X 10'
2.91X10'
1.76 X 10'
1.29 X10'
1.03 X 10'
6.24X 10'
4-93 X 10
3.24X 10'
2.51X 10'

Ar" +

S15+

Mg" +

C'+

o.(2s &/2 ~2p3/2 )

1.0X 10-4
5.8 X 10-'
0.46
1.86
3.50
3.65
3.66
3.64
3.45
3.31
3.10
2.78
2.54

2.81 X 10—'
0.292
2.61
6.51
6.80
6.41
5.79
5.33
4.82
3.81

0.06
3.60

15.6
27.1

28.7
26.0
20.2
17.7
17.4
16.4

7.40
1.53 X 10'
5.18 X 10'
8.99X10'
9.61X10'
8.75 X 10'
7.83 X 10'
5.71 X 10
4.79X10'
3.51X 10
2.79 X 10'

~(2p 1/2 ~2p3/2 )

6.5 X10-'
5.1X10-'
0.437
0.946
0.871
0.687
0.582
0.495
0.440
0.392
0.329
0.257
0.181

1.89 X 10
0.326
1.78
1.78
1.20
0.851
0.661
0.521
0.433
0.265

0.06
4.32
9.69
8.02
5.29
3.66
2.07
1.60
1.54
1.38

6.26
2.07X10'
4.10X 10'
3.40X10'
2.04X10'
1.40X 10
1.07 X 10
5.73 X 10'
4.30X10'
2.57 X 10'
1.86 X 10'
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TABLE III. ( Continued ).

Er(eV) Z o (2p )/p ~2s )/2) o (2s &/2 ~2p3/p ) cr(2p &/2 ~2p3/2 )

0.0068
0.0204
0.034
0.068
0.340
0.680
1.701
3.40
6.80

10.20
13.61
23.81
34.01

4.67 X 104

1.38 X 10'
1.80X 10'
1.70X10
7.30X 10
4.58 X 10'
2.34X 10'
1.36 X 10'
7.76 X 10
5.56 X 104

4.34 X 104

2.72 X 10
1.98 X 10'

He+
0.12
1.02 X 10
6.95 X 10'
5.59 X 104

2.28 X 10'
2 55X10
1.97 X 10'
1.37 X 10'
8.77 X 104

6.59 X 104

5.32 X 104

3.50X 104

2.66 X 10

15.2
2.91 X 10'
5.41X 104

1.09 X 10'
6.55 X 104

2.82 X 10
1.41 X 10'
7.20X 10'
4.82 X 10
3.64X 10'
2.03 X 10'
1.42 X 10'

1 l. 12(1—~()o ~ —ln (32)

Using (32) we solve for go, the value of the g parameter
where the cross section passes through a maximum. Dif-
ferentiating (32) with respect to E and setting the result-
ing expression to zero, we obtain the transcendental equa-
tion for go,

3
go ——1.12 exp

2(1 ergo)— (33)

whose solution is $0=0.112. Using (31), the value of go,
and the level splittings given in Table II, we calculate
E '", the value of the collision energy where the 2p&&2-

100

on collision to the time scale of the induced atomic transi-
tion. Thus the vanishing of the cross sections is a conse-
quence of the transition becoming adiabatic at small col-
lision velocities. At large collision energies the
Coulomb-Born approximation predicts the excitation
cross sections to behave as

2s&/2 cross sections are at a maximum. The results for
E '"/Z are 0.48 eV for Ar' +, 0.31 eV for Mg" +, 0.14
eV for C +, and 0.03 eV for He+. These values for E
are consistent with the cross sections illustrated in Fig.
2(a). Although the Coulomb-Born approximation predicts
successfully the approximate location of E '", it gives
poor results for the absolute value of the cross sections,
primarily because of the violation of unitarity. In Fig. 3
the cross sections calculated using the Coulomb-Born ap-
proximation for the dipole transitions induced by proton
impacts on Ar' + are compared with the close-coupled re-
sults. Despite the deficiencies of the Coulomb-Born ap-
proximation, it does explain, qualitatively, the sensitivity
of the dipole-induced cross sections to the value of g. The
value of g is very different for the two transitions at a
given collision energy because of the disparity in the tran-
sition energy defects, the 2p&&2-2s «z being 10 to 30 times
smaller than the 2s&/z-2p3/2 energy defect for the ions
under consideration. Thus, when the 2p&/z-2s&/z cross
section is at a maximum, the 2s ~/2-2p3/p transition is still
adiabatic, the cross section becoming appreciable only at
an energy E =E

&

'"(b,ez/b, e, ), where the subscripts 1 and
2 refer to the 2pI/2-2s)/2 and 2sj/2-2p3/2 transitions,
respectively. The ratio of the maxima is given by

N 00
O

o(2p)n~2s)g2)m, „ 1 E, '"

o(2sl/2~2p3/2)max 2 E~
(34)

V)

C:

O 10..-

0
LLJ

O
CL

0 20 40 60 80 100 120 140 160 180 200
ENERGY (o.u. )

FIG. 3. Comparison between the Coulomb-Born approxima-
tion (dashed line) and close-coupling approximation (solid line)
for dipole transitions induced by proton impacts on Ar' +.

where we have used (32) and included the statistical factor
of —,'. With the values of E&

'" and E2'" obtained from
the close-coupling calculations, expression (34) roughly
predicts the correct ratios, = 10, over the range of ions we
have considered.

In Figs. 4(a)—4(c) we present the results for the
electron-impact-excitation collision strengths of the n =2
fine-structure levels. The electron-impact cross sections
differ from the proton-impact cross sections in being fi-
nite at the transition energy thresholds.

In the limit of high collision energies, an adequate
description of the electron-impact-excitation cross section
can be obtained from a Born-approximation treatment
and the use of multipole potentials that are sufficiently
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the electron collision velocities of interest in this paper the
collision time Ro/U is on the order of, or less than, the
atomic period I/b, E and the collision strengths (35) are
sensitive to the energy defects of the transitions. The di-
pole electron-impact-excitation collision strengths become
statistical at high collision velocities when U/Ro ))AE, .

In Figs. 4(a)—4(c) we reproduce the unitarized
Coulomb-Born-approximation calculations of Burgess
et al. for electron-impact-excitation collision strengths
and compare them to our close-coupling values. The
Coulomb-Born results for the dipole excitation 2p&/2-
2s&/q and 2s»2-2p3/p collision strengths are consistent
with our values for the excitation of He+, and for the ex-
citation of Ar' + the Z = oo calculation of Burgess et al.
is also in agreement with our values. For the quadrupole
transition, there is close agreement between the Z = oo

C3 C4
A=c&ln(E)+c2+ + E2 (36)

An analogous fit may be performed for the proton-
impact-excitation cross sections. For the quadrupole tran-
sitions the coefficients c& are zero. Using the calculated

calculation of Burgess et al. and our results for the
2p&/2-2p3/2 excitation in Ar' +. For He+ the agreement
is less satisfactory, especially near the transition threshold
where close-coupling effects are significant. However, ex-
change effects are also important near threshold. More
accurate calculations are needed.

The high-energy, asymptotic, electron-impact-excitation
collision strengths may be obtained by a least-square fit of
the calculated close-coupling results to the functional
form,

TABLE IV. Proton-impact-excitation rate coefficients for the n=2 levels in the ions Ar' +, S' +,
Mg" +, C +, and He+. The Z scaled rates are expressed in units of 10 cm sec ', as a function of
the scaled temperature 0=kTZ (a.u. ).

0.025
0.05
0.10
0.20
0.40
0.80

Z C(2pl/2~2sl/2)

1.27 x 10'
1.38 x 10-'

1.31x 10'
1.17x 10
9.90x 10'
8.16x 10

Z C(2s&/z~2p3/2)

Ar" +

1.70x10'
7.35 X 10
1.87 x 10'
3.28 x 10'
4.48 x 10'
5.19x 10

Z C(2p&/2~2p&/2)

1.08 X 10'
3.21x 10'
5.54x 10'
6.68 x 10'
6.39x 10'
5.25 x 10'

0.025
0.05
0.10
0.20
0.40
0.80

1.38 x 10'
1.45 x 10'
1.35 x 10'
1.19x 10'
1.01 x 10'
8.28 x 102

S15+

2.85 x 10'
1.04x 10'
2.36x 10'
3.86x 10~

5.00 x 10'-

5.53 x 10'

1.80x 10'
4 59X 10'
7.08 x 10'
7.90x 10'
7.22 X 10'
5.79 X 10

0.025
0.05
0.10
0.20
0.40
0.80

0.025
0.05
0.10
0.20
0.40
0.80

0.025
0.05
0.10
0.20
0.40
0.80

1.55 x 10'
1.55 x 10'
1.42 x 10'
1.23 x 10'
1.04X 10'
8.51 x 10'

1.95 x 10'
1.81 x 10'
1.59x 10'
1.35 X 10'
1.12x 10'
9 08x 10

2.54 X 10
2.21 X 10
1.86x 10
1.52 x 10'
1.22 X 10'
9.62 X 102

Mg" +

C5+

He+

6.62 X 10'
1.85 x 10'
3.53 x 10'
5.12 x 10'
6.12 x 10
6.39x 10'

3.20 x 102

5.57 X 10
7.64x 10'
8.85 x 10'
9.12x 102

8.67X10'

1.35 x 10
1.57 x 10'
1.62 x 10'
1.54 x 10'
1.37 X 10'
1.19x 10'

4.06 X 10'
7.59 x 10'
9.76 x 10'
9.90x 10'
8.58 X 10'
6.72 x 10'

1.46 x 10'
1.71 x 10'
1.62 x 10'
1.35 x 10
1.04 X 10'
7.67 x 10'

3.16X 10'
2.65 x 10'
2.06 x 10'
1.55 X 10'
1.14x 10'
8.20x10'
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c(i~j )=
1/2 ' 2

8kT 1

pm kT

QO E
Ecr z E exp — dE . (37)

These rate coefficients are listed in Tables IV and V.
Deexcitation rate coefficients can be obtained using the
principle of detailed balance. In Table VI we compare our

cross sections for the fine-structure transitions by protons
and electrons, we obtain the excitation rate coefficient for
a transition from state i to state j as an average of the
product of the cross sections and the projectile velocity
over a Maxwellian distribution of the impact velocities at
temperature T,

rate coefficients for the 2p &
/2-2s

& /2 and 2s &/z-2p 3/2 tran-
sitions by proton impacts on Mg" + and S' + with the
semiclassical calculations of Beigman et al. The 2si/2-
2@~~2 excitation rate coefficients for Mg" + calculated by
Beigman et aI. are about 20% larger than our rate-
coefficients transition at a temperature kT of 98 eV and
the semiclassical 2s &/2-2p3/2 rate coefficient is about
twice as large as our rate coefficient. At higher tempera-
tures, the semiclassical rate coefficients and close-
coupling-calculation rate coefficients seem to converge.

In Figs. 5(a)—5(c) we present the close-coupling results
for the proton-impact excitation of the n =2 fine-
structure levels in Ar' + with the proton-ion interaction
given by the Debye-Hiickel potential (28) with Debye
lengths A= lao, 3ao, and 10ao. The cross sections for
the long range A= oo case are included for comparison.

TABLE V. Electron-impact-excitation rate coefficients for the @=2 levels in the ions Ar' +, S' +,
Mg" +, C +, and He+. The Z' scaled rates are expressed in units of 10 cm' sec ', as a function of
the scaled temperature 0:—k TZ (a.u. ).

0.025
0.05
0.10
0.20
0.40
0.80

Z C(2pl/2~2sl/2)

1.36x 10'
1.09 X 10
8.55 x 10'
6.58 x 10'
4.98 X 10'
3.72 X 10'

Z'C (2s &/z ~2p3/2 )

Ar" +

1.50x 10'
1.23 x 10'
9.95 x 10'
7.90x 10'
6.17x 10'
4.76 x 10'

Z'C(2p (/2 ~2p3/2 )

5.94
4.20
2.90
1.98
1.34
9.10x 10- '

0.025
0.05
0.10
0.20
0.40
0.80

1.38 x 10'
1 ~ 11X10
8.74 X 10'
6.72 x 10'
5.09 x10'
3.81 X 10'

S15+

1.57 x 10'
1.30X 10'
1.05 x 10'
8.30 X 10'
6.48 x 10'
4.97 x 10'

5 ~ 89
4.19
2.91
1.98
1.35
9.13x 10'

0.025
0.05
0.10
0.20
0.40
0.80

1.43 x 10'
1.17 X 10
9.20 X 10'
7.07 X 10'
5 ~ 34 X 10'
3.98 x10'

Mg" +

1.70x10'
1.42 x 10'
1.15x 10'
9.12x 1O'

7.07 x 10'
5.41 x 10'

5.60
4.10
2.88
1.98
1.35
9.14X 10

0.025
0.05
0.10
0.20
0.40
0.80

1.78 x 10'
1.39x 10'
1.06 x 10
8.02 x 10'
5.99x10
4.42x1O'

c'+
2.35 x 10'
1.88 x 102

1.48 x 10'
1.14x 10'
8.69 x 10'
6.52 x 10'

6.82
4.67
3.16
2.11
1.41
9.46 X 10

0.025
0.05
0.10
0.20
0.40
0.80

1.87 x 10'
1.56 X 10
1.23 x 10'
9.36x 10'
7.01x10'
5.19x 10'

He+
2.84 x 10'
2.40X 10'
1.91 X 10
1.48 x10'
1.12x 10'
8.36x 10'

8.32
6.02
4.06
2.64
1.70
1.09
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3;+ grIC;, =q;+ QN~rlC, ;,
J J

(38)

where A; is the radiative decay rate out of level i, q is the
electron and proton number density, C;J is the sum of the
rate coefficients for electron- and proton-impact excita-
tion of the transition from level i to level j, and q; is the
rate at which level i is populated from states external to
the set included in the summations. We restrict the sum-

mations to the fine-structure levels of the n =2 state of an
impurity hydrogenlike heavy ion. The spontaneous decay
rates 3; are the sum of the 2s&/2-1s»z two photon elec-
tric dipole rate and the single-photon magnetic dipole
rate ' and the 2p&/2 3/2 1s&/2 single-photon electric dipole
rates. The rate coefficients C;J are those presented in
Tables IV and V. For q; we adopt rates correpsonding to
electron-impact excitation from the 1s level. A more
comprehensive study for Mg" + has been carried out by
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FIG. 7. The P parameter as a function of the electron density for the ions (a) Ar' +, (b) S'~+, (c) Mg" +, (d) C +, (e) He+. The

temperature of the plasma corresponds to the values of B=kTZ (a.u. j of 0.025, 0.05, 0.1, 0.2, 0.4, and 0.8.
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1

2

rC
1+ (~ 1/9) + C12 + C13

rC)3/2
1+ (3 ) /'tl )+C12+C13

(39)

where r is the ratio q&/q2 ——2q&/q3. An expression of

Ljepojevic et at. in which levels up to large principle
quantum numbers were included. The values of P differ
from those attained in the four-state model by about 5%.

In Fig. 7 we present the calculated f3 ratios as functions
of the electron density for various values of the tempera-
ture T of the ions He+, C +, Mg" +, S' +, and Ar' +.
As shown by Beigman et al. , Vinogradov et al. , and
Ljepojevic et al. , the ratio departs from the statistical
value for a range of densities at which the collision-
induced transition rates lie between the radiative decay
rate of the 2s~/2 state and the radiative decay rates of the
2p &/2 3/2 states. The collision-induced transitions are
dominated by proton impacts and the departure from the
statistical ratios occurs because the rate coefficients for
2s&/2-2p&/2 and 2s~/2-2p3/2 transitions are very different
in magnitude.

A simple formula may be derived that demonstrates the
role of the proton collisions. The rate coefficients for
transitions between 2p&/2 and 2p3/2 are small compared
to the other transitions. Because the 2p»2 and 2p3/2 lev-
els decay rapidly by electron dipole radiation, we may at
low density ignore the collisional transfer out of them.
Thus if we designate the 2s&/2, 2p&/2, and 2@3/2 levels by
the numbers 1, 2, and 3, respectively, we may put C23,
C32 C2t, and Cs~ equal to zero. Then Eq. (38) can be
solved to yield

more general applicability has been given by Boiko, Pikuz,
and Faenov. At low temperatures, C&2»C&3 and we23

may further simplify (39) to the expression

1 rC)2P= —1+
2 (2 t /g)+ C)p

(40)

1 0.7
2 1+2)/qC, 2

(41)

These simple formulas fail at high densities.
Departures of P from 0.5 have been observed for Mg" +

in solar flares. Phillips et a/. ' measured a ratio of 0.64.
To obtain such a ratio from Eq. (41) requires a density
exceeding 10' cm which is 2 orders of magnitude
larger than is plausible. Thus, although proton impacts
can produce departures from O.S, they are not responsible
for the departures observed in solar flares. Ljepojevic
et al. have shown that the inclusion of contributions
from the 2s&/2 magnetic dipole radiation and from satel-
lite lines of heliumlike Mg' + does not resolve the
discrepancy and it appears that the assumption of an opti-
cally thin plasma in steady-state equilibrium must be dis-
carded.
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