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Exact matrix elements of the Uehling potential in a basis
of explicitly correlated two-particle functions
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Exact analytical expressions are derived for the matrix elements of the Uehling potential in a basis
of explicitly correlated two-particle wave functions (geminals) used for the approximate solution of
the quantum-mechanical three-body problem within the framework of the integral transform
method. The derived formulas may be used to include corrections due to polarization of the vacuum
in calculations of the binding energies of muonic molecules.

I. INTRODUCTION

Due to the involvement of ddp and dtp molecules in
nuclear fusion as fusion catalysts, there is an increasing
interest in the literature in the calculation of the energy
levels of small muonic molecules. ' The salient feature
of the problem is the high accuracy required, which is of
the order of 10 eV. '

In several recent works on this topic, ' a version of the
integral-transform method, very close to that developed in
this laboratory, ' has been applied and found successful.
The authors seem to have achieved impressive numerical
accuracy.

However, the physical relevance of their results still
remains open to discussion, due to the purely Coulomb
form of the interaction potentials used. In fact, the in-
teraction between the muons and nucleons is known to de-
viate from purely Coulombic, due to the polarization of
the vacuum. " The first correction to the interaction po-
tential (quadratic in the fine-structure constant a) is usu-
ally referred to as the Uehling potential. '

As follows from previous calculations, ' ' less ela-
borate than those of Frolov and Efros, ' the polarization
contribution to the interaction energy is the leading
correction to the binding energies of muonic molecules. It
may amount to as much as 0.4 eV in some states, and in
all the states of interest it exceeds 0.001 eV, which is the
requested accuracy of the results. This seems to indicate
that, in order to obtain results of physical relevance, it is
imperative to include the Uehling term in the calculations.

However, the Uehling potential is given as a nonele-
mentary integral over a parameter. "' A series expansion
of this potential is available, " as well as a representation
in terms of transcendental functions, ' and there are vari-
ous numerical approaches which allow one to evaluate
it. ' ' Nevertheless, the fact that the potential is not
available in a closed form greatly complicates its applica-
tion in actual calculations which necessitate the computa-
tion of the matrix elements.

The Uehling potential, describing the vacuum polariza-
tion contribution to the interaction between two-point
particles, reads'

VU(r) = 2ae—/(3trr)

X f dx(x —1)'r [1+1/(2x2)]e r» /x

where a is the fine-structure constant, and y=m, c/R,
with m, standing for electron mass.

In the approach to the integral-transform method usu-
ally applied to solve the quantum-mechanical three-body
problem, ' ' the radial part of the wave function is ex-
pressed as a superposition of the explicitly correlated
two-particle functions (geminalsj:

teak r tr2 exp( otkrl Pkr2 1 kr) (2)

where ak, pk, and yk are nonlinear variational parame-
ters, and ij are integer numbers. In the case of a muonic
molecule such as ddp or dtp, r] denotes the distance be-
tween the first nucleon and the muon, r2 the distance be-
tween the second nucleon and the muon, and r the dis-
tance between the two nucleons.

The Hamiltonian of the molecule contains terms
describing the nucleon-nucleon and nucleon-muon interac-
tions, and the corresponding matrix elements are neces-
sary for the calculation of binding energies and wave
functions. The integrals for the Coulomb part of the in-
teraction potential are well known. ' ' All the matrix ele-
ments of the Uehling potential in the basis set described
above consist of integrals of the form

Fortunately enough, the matrix elements of the Uehling
potential in the basis set used in this particular implemen-
tation of the integral-transform method' ' ' may be ex-
pressed in an analytical form, although the potential itself
may not. In this paper we will present their derivation.

II. UEHLING POTENTIAL
AND ITS MATRIX ELEMENTS

I(l,m, n)= f f du, du2r, r2r" exp( ar, br2 cr)—f dx—(—x —1)' [1+1/(2x )]e &"'/x

where I, m are natural numbers or —1 and n =0, —1. dv& and dU2 denote the infinitesimal volumes corresponding to r~
and r2.
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III. AUXILLIARY INTEGRAL

All integrals defined by Eq. (3) may be generated from I( —1, —1, —1) by partial differentiation with respect to a, b,
and c, just as it is usually done in the case of the Coulomb potential. ' Consequently, the basic integral to be calculated
1S

I( —1, —1, —1)= f f duidv2(r&rzr) 'exp( ar—, br2 —cr)—f dx(x —1)'i [1+1/(2x )] exp( 2yxr—)/x, (4)

which, by changing the order of integrations over x and v &, U2, may be recast into the form

I( —1, —1, —1)= dx[1+1/(2x )](x —1)' x f dv, du2(rirqr) exp[ —ar& brz —(—c+2yx)r] .
1

(5)

The integral over U& and U2 may be calculated analytically and reads'

16m /[(a +b)(a +c +2yx)(b +c +2yx )],
so that

I( —1, —1, —1)=16' /(a +b) f =16~ /(a+b)I( —1, —1, —1) .
x (a+c+2yx)(b+c+2yx)

By the standard substitution

(x —1)' =t(x —1),
the integral I( —1, —1, —1), defined by (6), is reduced to the form

I( —1, —1, —1)= 4 (4B—3A ),
(a +c +2y)(b +c +2y)

where

(t' t')dt—
(t'+ 1)'(t ' —p )(t' —q )

B= t4(t~ 1)dt—
" (t'+1)'(t' —p)(t' —q)

(6)

(8a)

(8b)

(8c)

with p = —(2y —a —c ) /(2y+ a +c ) and q = —(2y b —c)l(2y +—b +c ).
As integrals of rational functions may always be expressed by elementary functions, it is readily seen from Eq. (8) that

I( —1, —1, —1) may be calculated analytically. In order to do that, we decomposed the integrands into sums of partial
quotients with respect to t, and integrated term by term. After some straightforward although tedious algebra, this
yielded

z 2
[arctan(1) rr/2]+-(3+p+q —pq) I

(q + 1)'(p + 1)' 2(p + 1)(q + 1)

+Cln 1 1/2

+E ln
I+p

1/2

]/2 +K I arctan[( —p) 'i ]—rr/2 I

+L [ arctan[( —q) ]—~/2 j, (9)

where

0 ifp&0
C = 1/2(p —1)p if p)0,

2(p + 1)'(p —q)

0 if q&0
)

1/2
if q)0,

2(q + 1)'(p —q)

0 if p)0
p(p —1) ifp &0,

(p + 1)'(p —q)

0 if q)0
q(1 —q) if q&0,

(q + 1)'(p —q)
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and

1/2 1/2
8 =P[arctan(1) —n/2]+R In»z +Sin1/2 1/2

+ T{arctan[( —p) ' ]—~/2I + UI arctan[( —q)
' ]—m/2] +Q, (10)

where

P= 2p +2q +5pq —1 1

2 2+
4(p + 1) (q + 1) 2(p —q)

q'(q —1)(q +3) p'(p —1)(p +3)

(q +1)' (p+1)'
T

1 7p +7q + 19pq —5 1

24 (p + 1) (q + 1) 2(p —q)

0 if p&0
3/2 S=

if p)0,( —1)
2(p + 1)'(p —q)

q (q —1) p (p —1)

(q +1)' (p + 1)'

0 if q(0
3/2(

if q)0,
2(q + 1)'(p —q)

0 if p)0
T — 2

ifp(0,( —1)

(p + 1)'(p —q)

U=
0 if q)0

q q, ifq(0.'( —1)

(q + 1)'(p —q)

The above formulas, along with Eqs. (6) and (8a), are the sought analytical expressions for the basic integral
I( —1,—1, —1).

IV. GENERATION OF OTHER INTEGRALS

I(0,0, —1)= 8 I( —1, —1, —1)
BaBb

1 (8p+ —', )pq —(p+ —,
'

)p —(p+ —,
'

)q —( lop+ —, )
=4F(o,o, —1) [gi(q) —gi(p)]+

(p —q) (q + 1)'(p + 1)'

[g (q) —g (p)] g' (q) (gp+ —)pq —(10P+ )p (P+ )q (19P+
+4q'F(0, —1,—1)

2 +
(p —q) (p —q) (q + 1)'(p + 1)'

g' (p) (8p+ —, )pq —(p+ —,
'

)p —(10p+ —,
'

)q —(19p+ —, )

(p —q)' (q + 1)'(p +1)'(p —q)'
I

gi(q —gi p gi p +gi q

(p —q)' (p —q)'

(8p+ —, )pq —(10p+ —,
'

)p —(10p+ —, )q —(28p+ —', )

(q +1)'(p + 1)'

As has been mentioned at the beginning of Sec. III, other integrals involving the Uehling potential may be generated
from I( —1, —1, —1) by differentiation with respect to a, b, and c. Once again, the procedure is tedious but straightfor-
ward.

For instance, the integral I(0,0, —1), generated in this way, reads

where p =arctan( 1 ) —m. /2 and

F(l,m, n)= f f du~dU2r~r2r" exp[ —ar& br2 —(c+2y)r]— (12)

is the integral appearing in the standard three-body problem with Coulombic potentials which can be analytically calcu-
lated from

F( —1, —1, —1)=16m. /[(a +b)(b+c +2y)(a +c+2y)]
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by differentiation with respect to the parameters
g &

(x ) is defined by

g, (x)=(x +1) gp(x),

where
1/2

g (x) 2p(x4+2x 3 3x ~) +2x 2x ~+ (3x —x +x —3x )
—o'x ln +( 1 —o ) arctan[( —x) ' ]——

2

with

1 if x)0
'O ifx (O,

so that the derivatives which appear in Eq. (11) read

g&(x) = —4(x +1) 'g2(x)+(x +1)

with
1/2

g'(x)=2p(4x +6x —6x)+Sx —4x+ 4t7(21x —5x +3x —3)x
2 1+x

2
~ (3x 3 x~+x 3)x ~~~/(1 —x)+(1—t7)(12x —3x + 2x —3) arctan[( —x) ' ']——

p' and q' denote the derivatives of p and q with respect to
a and b, respectively, and read

p'=(2y+a +c) '+(2y —a —c)(2y+a +c)

q'=(2y+b+c) '+(2y b —c)(2y+—b+c)

Other integrals necessary for the calculations of the

binding energies of J =0 states [i.e., I( —1,0,0) and

I(0, —1,0)] may be readily found by the appropriate in-

terchange of parameters a, b, and c. For the J =1 states

further integrals are needed. They can again be calculated

analytically from the formulas derived from Eq. (11) by

subsequent differentiation.

V. CONCLUSIONS

We have shown that the matrix elements of the Uehling

potential in the basis of explicitly correlated two-particle

functions [defined in Eq. (2)] used in calculations of the

binding energies of muonic molecules may be expressed in

I

an analytical form, although the potential itself may not.
The resulting expressions are rather complicated.
Nevertheless, their evaluation is likely to be less time con-
suming and possibly more accurate than numerical in-

tegration. The derivation of the corresponding expres-
sions for the variational functions with J ~ 0 will certain-

ly be very tedious, but may easily be done with computer
programs for symbolic operations, like MAcsYMA,

ALTRAN, or MAPLE. Application of the resulting expres-
sions in actual calculations of the binding energies of
muonic molecules would allow one to include the contri-
bution to the binding energy which arises due to the polar-
ization of the vacuum and seems to be the most important
correction to the Coulomb model. This would be likely to
increase considerably the physical relevance of the results.
We intend to undertake such an attempt in the future.
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