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The properties of the level set boundaries in “Z space are used to determine bounds to the intera-
tomic distances at which the electronic energy of a diatomic molecule reaches a specified value.
Bounds to the molecular electronic energy curve are obtained from that result. The procedure is
very simple and requires having only an approximate representation for the electronic density func-
tion of a single atom (the one taken as a reference to define the level set). In the case of one-electron
diatomic molecules we derive a function of the internuclear separation which is a rigorous, nonvaria-
tional, upper bound to the electronic energy. The method provides complementary results to those
global constraints on electronic energy hypersurfaces previously derived in the context of level set to-

pology.

I. INTRODUCTION

Electronic energy hypersurfaces can be studied in a
rather simple way by introducing some functional repre-
sentations whose properties are basically the same for
families of molecules. For an N-atomic molecule, the
abstract nuclear charge space ¥ Z provides a very simple
and powerful alternative, suitable for the recognition of
relationships that must hold for a large class of systems of
interest. In this space each molecule is characterized by a
vector whose components are the atomic nuclear charges,
for all molecular geometries. Consequently, the analysis
of the electronic energy functional in " Z, especially the
level set topologization of that space, has allowed us to
obtain some useful geometry independent constraints and
bounds to the entire hypersurfaces.!*2

Z-continuous representations of the energy have been
used in several fields (see, for instance, Refs. 2—4, and
others quoted therein); of particular importance for us is
the original application of such convexity relationships to
prove rigorously that the electronic energy always takes
its minimum in the united-atom limit.*—®

In this paper we will present some new results about
bounds to the electronic energy, in particular, for diatomic
molecules. In this case, using the properties of the > Z
space, and some properties of a single atom, we will derive
an implicit lower bound to the interatomic distance at
which the molecular electronic energy reaches the value of
energy chosen to define the level set. Accordingly, it is
meaningful to make here some comments about the re-
sults previously discussed in the literature on the subject.
As mentioned, the electronic energy has a rigorous lower
bound in the limit of the united atom; besides, for N-
atomic one-electron molecules it has also been proved that
the electronic energy increases monotonically with a uni-
form (or isotropic) dilatation of the molecular
geometry.*® This result, which implies that at the limit
of infinite pairwise separation the electronic energy is an
upper bound, is supposed to hold for all molecules, how-
ever, no proof has been given up till now. Recently we
have suggested that one must expect such a bound for all
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nondegenerate ground states, by making use of some
properties of the level set boundaries in ¥ Z.” On the oth-
er hand, some convexity relationships in ¥ Z have been
used to prove some other bounds for the entire hypersur-
face of a molecule in terms of atomic energies,">” or oth-
er molecular hypersurfaces.® Although these latter
bounds are useful, they can be considered as still weak for
many applications. Consequently, it is of importance to
derive tighter bounds, if possible, from simple geometrical
considerations in ¥ Z space; in particular, it would be very
useful to obtain curves that, while being bounds to the
electronic energy, would have the same limit behavior as
the function of interest (i.e., the same united-atom and in-
finite pairwise separation limits for the energy).

In this paper we shall show how some results derived
from the level set topologization of the V' Z space can be
used to deduce new and stronger bounds to molecular
electronic energies. In our case, the constraints to the en-
ergy are obtained using the properties of the constant en-
ergy trajectories (CET) in ¥ Z to get lower bounds to the
interatomic distances. Of course, these new relations in-
troduce some complications not present in earlier treat-
ments; owing to this, our present discussion will be re-
stricted to diatomic molecules. We should emphasize here
that our aim is not to derive bounds for equilibrium dis-
tances, but to obtain bounds to the electronic energy curve
making use of a formalism that provides bounds for the
interatomic distance corresponding to a given value of elec-
tronic energy. Depending on the nuclear charges and the
number of electrons, these distances may or may not be
similar to the equilibrium bond length. For instance, for
homonuclear neutral diatomics the separations may be-
long to the repulsive branch of the total energy, when the
level set is defined in terms of a neutral atom isoelectronic
to the molecule of interest. The properties of the CET’s
inthe N Z space allow us to obtain such bounds by making
use of the properties of a single atom.

The organization of the paper is as follows. In Sec. II
we review the basic results about the level set boundaries
in 2Z, which are necessary for our discussion later. In
Sec. III we derive rigorous upper bounds to the electronic
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energy of one-electron diatomic molecules in the Born-
Oppenheimer approximation (from the lower bounds to
the internuclear separation at which a given reference
value of energy is reached). Several examples are shown
as illustration. In Sec. IV we discuss how the results can
be extended to many-electron molecules using the
density-functional theory. Some examples are shown in
the context of the Thomas-Fermi approximation. Con-
clusions and further extensions of the method are found
in Sec. V.

II. PROPERTIES OF LEVEL SET
BOUNDARIES IN 2Z

Let us consider a diatomic molecule with nuclear
charges Z, and Z, (in general, not necessarily integer),
and interatomic distance R. This system can be
represented as a point in *Z space with a vector
Z=(Z,,Z,), for all R values. In this approach the elec-
tronic energy functional can be regarded as a continuous
function of the variables Z and R.

In the Born-Oppenheimer approximation, the electronic
energy of an n-electron diatomic molecule is given by
(atomic units are used throughout):

E(Z,R)=(H,(Z,R)) , (1a)
He(Z’R)=T8+Vee_ZlQ1_ZZQ2 ’ (1b)
1= |In—R|[7, Q=3 |Ir;||7", (1c)

i=1 i=1

where 1; stands for the position vector of the ith electron
and the expectation values are taken over the electronic
coordinates. The origin of coordinates has been chosen
arbitrarily on the charge Z,. All remaining terms in (1)
have their usual meaning.

The level sets are defined on 2Z as subsets of vectors Z
satisfying the condition E,'Z,R)>E,, for a given
geometry. The constant value E is, in principle, arbi-
trary, and defines the level set. This reference energy can
always be taken as the energy of an n-electron atom of
charge Z (in general, noninteger), i.e., Eg=Ey(Zy,n).

We are now in position to define the boundary of the
level set as a function in 2 Z so that E,(Z,R)=Ey(Z,n),
for a given R. Such a function establishes of course a
constraint between Z; and Z, under the condition of hav-
ing a constant value for the electronic energy; without any
loss of generality the boundary can be written as

Zz=f(Zl,R), (2)

where we have omitted all reference to E, to keep the no-
tation simpler. With the definition of such boundaries,
the 2 Z space can be partitioned into subsets and given an
algebraic topological structure.

The function f(Z,R) represents a constant energy tra-
jectory (CET) in ? Z, because, by definition, E,(Z,R) is in-
variant to changes in Z as long as Z=(Z,,f(Z,R)) for
all Z,;1i.e.,

0E,/dZ,=3%E,/3Z3= -+ =0. 3)

Result (3), together with the Hellmann-Feynman theorem,
gives the first derivative for the CET:

fUZ,R)=f(Z,,R)/3Z )x
:—(QI)Z,R/(Q2>Z,R
— [ drp(r)/||r—R]|

~ [ drp@/ie]]

where p is the one-dimensional marginal density function
for the diatomic molecule. Equation (4) indicates clearly
that f(Z,R) is a monotonously decreasing function of
Z,.

Several rigorous properties can be deduced from Eq. (4)
and other basic quantum-mechanical relationships, which
characterize f(Z,,R) completely.” The following results
hold for polyatomic molecules, even though we will be
only concerned here with diatomic ones.

(i) For all bound states, in the limit of isolated atom,
the derivative of f(Z;,R) is bounded in the interval
[—1,0]:

—~lzliimof’(O,R)gf'(O,R)gRlim f'(O,R)=0. (5a)

4)

In particular, in the limit of the united atom (R —0) we
have

f’(Z],O):—l for all OSZISZ() (5b)

These results imply that f(Z,R)>Z,—Z, for all Z,.
Equations (5) provide an alternative proof of the bounds
discussed by Mezey;! in particular, it is clear that for all
Z,<Zy—Z, the electronic energy is higher than the
reference value Ej.

(ii) For the lowest nondegenerate eigenstate belonging to
each of the irreducible symmetry representations of the
Hamiltonian, the CET’s are concave-from-below func-
tions.

Taking into consideration that the ground-state energy
of one-electron diatomic (represented simply by vector Z)
is a monotonously increasing function of the interatomic
distance,*® then, for a given value of E, satisfying
E(Z,0)<Ey<E,(Z,x), there is one and only one
CET f(Z,,R) containing Z, with 0<Z,<2Z,, Z,—2Z,
<Z, <Z,. From this result we conclude that the follow-
ing theorem holds.

Theorem 1. Let E,(Z,R) be the nondegenerate ground
state of a one-electron diatomic molecule in the Born-
Oppenheimer approximation. Let {f(Z,R)} be the fam-
ily of infinitely many CET’s associated with a reference
value Ey(Z,,n), each of which is related to a different in-
ternuclear separation R. Then, for all vectors Z, with
0<Z,<Zy, Zy—Z,<Z,<Z,, the set is bounded by the
boundaries corresponding to R =0 and 1/R =0 (lower
and upper bounds, respectively), and no crossing or oscu-
lation takes place between two of such functions; that is,

f(ero)<f(Z],R)<f(Zl’R,)<f(Zl,OO), (6)

with R,R’ both finite, nonzero, and R’ > R.

Theorem 1 holds also for one-electron polyatomic mole-
cules if the family of trajectories is defined through only
one scalar parameter characterizing a uniform dilatation
from a given initial geometry.*” Besides, strong argu-
ments suggest that it should still hold for many electron
molecules.”® A corollary of Theorem 1 follows immedi-
ately.
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Corollary 1. f'(0,0) <f'(O,R) < f'(0,R') < f'(0, ), for R
and R’ finite, nonzero, and R’ > R.

This last result shows that for a given value m €(—1,0)
there is one and only one interatomic distance R such that
f'(0,R)=m. Consequently, the function f'(0O,R) can be
used to introduce a sort of R-dependent measure of the
points in ¥ Z space. This simple idea is the key for the
discussion in Secs. III and IV. It is worth noticing that,
whereas f'(Z,R) is a function standing for an infinite
number of molecules, its limit f'(0,R) is a single-atom
property. This advantageous characteristic, together with
Corollary 1, will allow us to obtain simple, fully geometri-
cal, nonvariational, bounds to the electronic energy of a
large class of molecules.

III. LOWER BOUNDS TO R
AND UPPER BOUNDS TO THE ELECTRONIC
ENERGY

As it was discussed in Sec. II, the level set boundaries
are confined to a subset of *Z given by 0<Z, <Z,,
Zy—Z,<Z,<Z,. In the case of diatomic molecules the
abstract nuclear charge space possesses an additional sym-
metry because two vectors like Z=(Z,,Z,) and
Z'=(Z,,Z,), derived through a permutation of nuclei,
identify the same system. Consequently we have

E,(Z,R)=E,(Z',R), : (7)

a result that does not necessarily hold for polyatomic mol-
ecules. Accordingly, only the subset,

2Z '={ZEZZ IOSZl SZO,maX(Z()—ZI,Zl)SZZ SZO} ,
(8)

needs to be studied to determine all the relevant features
of the system.

Let Z*=(ZY,Z})E?Z’ be a one-electron diatomic
molecule. If its electronic energy is fixed to be equal to
Ey(Zy,n) of atom Z, then its internuclear distance R is
unique, but in general unknown. As shown before there is
one and only one CET f(Z,R) that passes simultaneous-
ly through Z* and Z,=(0,Z,), and then there is one and
only one value f'(0,R) that can be related to the vector
z.

The curvature properties of the CET’s, mentioned in
Sec. II, imply that

fZL,R)>Zy+Z|(Z5 —Z4)/ZY, 0<Z1<2Z] , 9
and consequently,

f'O,R)>(Z5 —Zy)/ZT . (10)
Let us define now a new distance x so that

fO,x)=(Z5 —Zy)/ZT ; (11)

invoking then the Corollary 1 for the monotonicity of the
derivatives, from Egs. (10) and (11), we get a lower bound
to the unknown internuclear separation R, determined by
E.(Z,R)=Ey(Z,,1), that is,

x <R . (12a)

GUSTAVO A. ARTECA AND PAUL G. MEZEY 35

Using the monotonicity of the electronic energy, the in-
equality (12a) implies

Ey(Zy,1)>E(Z*,x) . (12b)

Equations (12) are our main results. They provide valid
bounds (in the Born-Oppenheimer approximation) for
one-electron diatomic molecules, that are supposed to
hold also for many-electron molecules by extension of
Theorem 1.”° In addition, Egs. (12) also provide some in-
formation of interest on the total energy €,(Z,R), obtained
upon adding the internuclear repulsion to the electronic
energy E,(Z,R). From Eq. (12b) we get, for the reference
energy E, previously considered,

e(Z*,x)<E(Zy, ) +ZTZ5 /x , (13)

where Z; and x are related through Eq. (11). If we now
choose a reference value €, for the total energy and deter-
mine the constants x* and Z§ so that Eq. (11) and the
condition

Eet=Eg(Zo, 1) +ZTZ5 /x (14)

are simultaneously satisfied, then we have
€(Z,x) <Erp, forall x>x*. (15)

That is, x* provides an upper bound to the internuclear
separation at which the above energy inequality is violat-
ed, e.g., where the total energy €, equals the reference
value €. Relations like (15) may be useful to provide
bounds for the instability and stability regions of variable
R for the ground state of a diatomic molecule. Some pre-
vious results, involving the total energy of diatomic mole-
cules in a Z-continuous representation, have been given,
using a different approach, aimed at establishing relations
for bond strengths of various hydrides,> and for several
spectroscopic constants of isoelectronic sequences of mole-
cules. !0~ 12

In what follows of this section we want to show how
the new results are applied to one-electron molecules. In
this latter case it is trivial to obtain the reference charge
Z, which defines the level set; if Z* is the molecule of in-
terest we have

ZO:(—ZEQ)I/Z 5 (16a)
for the singlet ground state, where
—(ZY+Z3)<2Ey<min(—Z}%,—Z3%). (16b)

At the limit of the united atom the electronic density is
fixed completely by Z,; in our case it is evident that
3 —2Zyr

li =Z
Z:Top(r) 0e

/m, r=||r]| . (17)
By substituting (17) into (4), and then into Eq. (11), we ob-
tain the lower bounds to the interatomic distances R [Eq.
(12a)], for any one-electron diatomics, by taking the only
real positive solution of the following transcendent equa-
tion:

(Z2—Zo)/ZF=[e (142Zox +2Z3x2)—11/Zox
_eVZZox

—2Zyx

(142Z0x) , (18)
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where the level set reference charge is determined by
means of Egs. (16). On the other hand, for each value of
x, the value Z, obtained from (18) gives an upper bound
to E.(Z*,x) using Eq. (16a):

Ux)=Eq(Zy(x),1)=—Zn(x)*/2>E(Z*x) . (19)
Taking into consideration that Z*€2Z "’ (then Z5 >Z7),
it is immediate to deduce from Eq. (18) that

lim (1/x)=0, (20a)

Z,—Z%

lim x =0,

Z,—>(Z¥+Z¥)
that is consistent with the results for the united-atom and
infinite pairwise separation limit behavior of f'(0,x) [Eq.
(5a)]. This shows that the curve U(x) obtained from Egs.
(18) and (19) is an upper bound having the same x =0 and
1/x =0 limits as the exact electronic energy. Besides, it
can be shown that U(x) possesses also the same analytic
structure as the exact electronic energy when approaching
either limit in (20a). Upon expanding Z, in power series
of x [whose coefficients are easily determined from Eq.
(18)], and then substituting it into Eq. (19), we deduce the
following result for the upper bound U(x) in the limit of
united atom:

Ux)=—(Z+2Z,)*/24+(3)Z(Z,+2Z,)’x?

—(3Z(Z +2Z,) %3+ - (20b)

Comparison of the second and third terms of the right-
hand side of Eq. (20b) with the exact result (Ref. 13 and
others quoted there) shows that they coincide with the
latter if Z,(Z,+Z,)® is replaced by Z,Z,(Z,+Z,)? in
the second term and Z,(Z,+2Z,)* by Z,Z,(Z,+2Z,) in
the third. These results confirm that U(x) provides an
upper bound to the exact electronic energy and behaves
similarly to the latter in the neigborhood of the united
atom limit. On the other hand, we get from Egs. (18) and
(19) the first terms for the expansion of U(x) about
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1/x =0:
Ux)=—2Z3/2—Z,/x +Z}/2Z3x*+ -+,  (20c)

which reveals again a structure similar to the exact result
while providing an upper bound.

It is worth mentioning that one can expect beforehand
that the quality of the bounds will not be the same for all
molecules; the reason is very simple: The larger is the
difference Z3 —Z7, the tighter is the bound given by Eq.
(10). Accordingly, results will be better for heteronuclear
than for homonuclear diatomics. In particular, H,™ can
be considered as the strongest test for our method, so we
have chosen it as the first illustrative example.

Figure 1 displays the results obtained for the latter mol-
ecule (Z] =Z3 =1) with Egs. (18) and (19), compared
with the exact numerical electronic energy.'*!® As the
critical example, the approximation obtained can be con-
sidered as very satisfactory, provided our bound is non-
variational but simply based on basic geometric properties
of CET in abstract nuclear charge space. The evaluation
of U(x) is straightforward for all molecules, and it
represents an approach independent from the usual linear
combination of atomic orbitals—molecular orbital
(LCAO-MO) method, which makes use of similar infor-
mation.

Table I shows the lower bounds obtained for the inter-
nuclear separation corresponding to some selected elec-
tronic energy values of several molecules. The results fol-
low the behavior already mentioned: The accuracy in-
creases with Z, in the series of molecules (Z, H)*" and
(Z,He) """ For R>2 and Z,—Z, > 1, the simple
bounds obtained by the above method, relying only on
atomic properties (in the present case on hydrogenlike
atoms), are surprisingly good.

The results derived in this section involve no approxi-
mation, and represent new constraints to electronic energy
curves based on the level set topological structure of > Z.
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FIG. 1. Upper bound U (x) for the electronic energy of the ground state of H,* (in a.u.). — — —, U(x) [Eqs. (18) and (19)]; and

, exact numerical results (Ref. 14).
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TABLE I. Lower bounds x, to the internuclear separation R, for several one-electron diatomic mole-
cules, at which separation the molecular electronic energy equals the reference energy value (see Sec.

III). (All values in atomic units.)

Molecule —E(R=2) x® —E,(R=4)* x® —E/(R=6) x®
H,** 1.1026342 1.303 505 0.796 0849 3.019 887 0.6786357 5.201320
HeH?* 2.512175 1.844 85 2.2506 3.8761 2.1668 5.8763
LiH*+ 5.02+0.01 1.87+0.03 4.75+0.01 3.9+0.1

He,’* 3.183+0.002 1.51£0.01 2.525+0.005 3.61+0.03

LiHe*+ 5.515+0.005 1.87+0.01 5.005+0.005 3.86+0.04

#Exact numerical electronic energy for a given in internuclear separation R (Ref. 30).

*Lower bounds from Egs. (16) and (18).

°Exact numerical results for E,(Z,R) taken from Ref. 14.

In the case of many-electron molecules the same exact
treatment is no longer possible, because no analytic exact
expression can be given for p(r). However, the bounds
can be obtained in an approximate framework as shown in
Sec. IV.

IV. EXTENSION OF THE BOUNDS
TO MANY-ELECTRON DIATOMICS

The results obtained in Sec. III can be used to provide
upper bounds to the electronic energy as long as an ap-
proximation to the atomic electron density p(r) is avail-
able for substitution into Egs. (4) and (11). Although this
represents a potentially successful application, it is rather
complicated and cannot be accomplished analytically.
This problem will not be discussed in the present paper.

The analysis of many-electron molecules can be accom-
plished more easily if we rewrite the equations previously
deduced, in terms of another function rather than the
electronic density. The starting point is the Poisson equa-
tion for the atomic electrostatic potential ¢(7):

Ap(r)= —4mpy(r) , (21a)

where po(r) stands for the radial charge density of the
atom with reference charge Z, (Z;=0 in Sec. III). De-
fining the screening function ¢(r) as ’

elr)=—Zyp(r)/r, (21b)
Eq. (21a) leads to
polr)=2Zyd" (r)/4mr , (21c¢)

where ¢(r) satisfies the boundary conditions ¢(0)=1 and
¢(0)=0. Substituting (21c) into (4), one obtains the fol-
lowing expression for the derivative of the CET:

f(O,R)=[1—¢(R)]/R¢'(0), (22)

with ¢’(0) <0. Equations (11) and (22) allow the deter-
mination of a specific lower bound to R: the distance at
which the electronic energy of the molecule happens to be
equal to Ey(Zy,n). This bound for an internuclear dis-
tance of a molecule is determined from the properties of a
single atom. For a given reference charge Z, and for the
molecule Z* of interest we have

1—¢(x)=x¢"(0)[Z] —Z,]/ZT . (23)

Equation (22) seems to be especially useful, because it per-
mits the utilization of the result of extensive research
done on screening functions like ¢(7). In particular, the
density-functional theory provides simple expressions for
¢(r) which allow us to perform most calculations analyti-
cally. As an illustrative example, we will consider here
the simplest approximation provided by the Thomas-
Fermi (TF) model (see, for example, Refs. 6 and 16—18).
According to this model, the screening function is related
to the density py(r) as

po(P)=[Zod(r) 1372 /3(212)mr?r3/% . (24)

Substitution of this expression into Eq. (21a) shows that
¢(r) is determined by a nonlinear second-order differential
equation. In the general case of n+Z, the boundary con-
ditions must be introduced carefully in order to distin-
guish between atoms and ions (Ref. 19 and others therein).
Instead of solving that equation numerically, we will fol-
low the usual procedure consisting of introducing trial
screening functions subject to the condition:

[ prydr=n. (25)

Several analytic representations of ¢(r) are available for
atoms and ions (see, for instance, Refs. 20—24), but it is
enough for our illustrative purposes to choose the Tietz
approximation,'® which is a most elementary one. In this
case we have

d(r)=(1+A4y)~% y=(128Z,/97*)"*r =br , (26a)

where A is determined from the conditions that it should
satisfy Egs. (24) and (25):

A =(Z3m*/64n%)'3 (26b)

The variable y is chosen to be the same as in the dimen-
sionless TF differential equation. Although (26) does not
fulfill Csavinszky’s variational principle,>*?’ it is known
to be a fairly acceptable approximation to the TF field.
We will use here Eq. (26) to provide a simple illustration
of the implementation of the results in Sec. III to many-
electron molecules.

By substituting (26) in (23), we obtain the lower bound
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to the interatomic distance as the largest positive solution
of the following equation:

24°Mx' 2+ AX(14+4M)x'+2A4 (1+M)=0 , (27)

with M =(Z5 —Z,)/Z7, and x' =bx.

In order to apply Eq. (27) we must introduce the refer-
ence energy value E, of interest, and obtain the charge Z,
from it. Of course, in the case of many-electron atoms
there is no closed expression for the analytical continua-
tion of Ey(Zy,n) with Z, noninteger; however, this can
be done approximately by using the representations of the
electronic energy as a continuous function of the nuclear
charge and number of electrons, obtained from density-
functional theories. In our case we will make use of the
results from Tal and Bartolotti?® based on the superim-
posed expansions in power series of 1/Z, and 1/n'/3,
which provide a very accurate representation of the
Hartree-Fock energies Ey(Z,n) for all Z; and n > 2.

It is worth mentioning that there is a particular case of
reference energy which can be discussed very easily
without using the analytic continuation for noninteger
Z,y. If we take Z,=n in Eq. (27), the distance x will be a
lower bound to the internuclear separation for which the
electronic energy of our n-electron molecule equals the en-
ergy of an n-electron neutral atom. In what follows some
examples of the above mentioned two possible applica-
tions are shown.

A simple problem that can be studied using Eq. (27) is,
of course, the case of two-electron diatomic molecules.
Notwithstanding their simplicity, those systems are some-
what critical in our approach, because Eqgs. (24) and (26)
are known to be more accurate for large n.!%'® To illus-
trate briefly the typical results derived following our pro-
cedure, we will take H, as a working example. Let us
consider the molecules H,™ and H,, and let us verify, ex-
clusively from properties of CET’s in 2Z, that their elec-
tronic energy curves cannot cross. This analysis can be
done easily in the following way.

(i) The electronic energy of H,* [E,(H,*,R)] is taken,
for a given R, as the reference energy to define the level
sets for H,.

(ii) Then, the noninteger charge Z, of a two-electron
pseudoatom having as energy the above reference value is
determined. This can be done easily using the approxi-
mate expressions in Ref. 26.

(iii) From Eq. (27), one can determine the lower bound
x to the internuclear distance R’ at which the electronic
energy of H, equals the reference value of energy [i.e.,
when E,(H,,R')=E,(H,%,R) takes place]. If, for the
whole range of electronic energy of H,, it happens to be
that x >R (that is, R’ > R), then the entire electronic en-
ergy curve for H, will lie below that of H,*. Table II
shows the typical results obtained following the above
steps. Even though the approximation chosen is crude
and elementary, and the bounds are rather loose, the
method suffices for showing that the curves cannot cross.
It is important to remark here that this sort of constraints
for molecular electronic energies, obtained from simple in-
formation about a single atom, represents a generalization
of those previously derived from properties of the nuclear
charge space.">” Earlier treatments cannot be applied to
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TABLE II. Comparison of electronic energy curves for H,
and H,™ using the lower bounds for interatomic distances. (In
this case the electronic energy of the latter is taken as a refer-
ence energy for the former.) (All values in atomic units.)

R —‘Ee(H2+,R)a Z()b x¢
0.0 2.0 1.72173 0.3774
0.5 1.7349879 1.624 32 0.6145
1.0 1.4517863 1.51151 1.0258
1.5 1.2489899 1.42370 1.5210
2.0 1.102 6342 1.35575 2.0895
2.47¢ 1.000 1.3053 2.6864

*Exact numerical results taken as reference energy (Ref. 14).
®Reference charge calculated from E.(H,*,R) using the results
of Ref. 26.

¢Approximate lower bounds to R for H, [Eq. (27)].
9dInterpolation from results in Ref. 14.

the kind of molecules we have compared here.

In order to determine a lower bound to the interatomic
distance at which the electronic energy of a diatomic mol-
ecule equals that of an isoelectronic neutral atom, we
must know beforehand if that situation is likely to hap-
pen. That fact can be predicted accurately using a simple
approximate result recently shown:’ If Z*€2Z’ and
Z3 <(Z}*—2Z?1"7)}/7, then one should expect that there
exists a finite R at which E,(Z*,R)=E,(Z,,n). We use
this criterion to choose the appropriate examples to apply
the equations shown above.

As an illustrative example we have chosen some 13-
electron diatomics (fulfilling the condition of finite R)
which are of some interest in atmospheric and interstellar
chemistry (Refs. 27—29, and others quoted therein). Re-
sults are displayed in Table III. The lower bounds x are
valid when compared with full quantum-mechanical cal-
culations in all the cases where the information is avail-
able. As mentioned before, the bounds are tighter for
heteronuclear diatomics, but can be considered in general
as satisfactory. It must be stressed that in the examples
chosen here, the distance R corresponds to the repulsive

TABLE III. Approximate lower bounds (in a.u.) for intera-
tomic distances of 13-electron diatomics, taking as electronic en-
ergy reference the value E;(13,13)= —242.2862 a.u. of the neu-
tral Al atom (Ref. 31) (Notice that for the various molecules the
interatomic separations corresponding to the reference energy
fall on the repulsive branch of the total energy.) For bounds
corresponding to different values of the reference energy see Sec.
Iv.

Molecule x? Molecule x?

N,* 0.076 69 NO?+ 0.180 39
co+* 0.091 74 CF*+ 0.22379
FB+ 0.11416 BNe?t 0.29500
LiNa*t 0.22379 LiMg?+ 0.832 84

“Lower bound to the interatomic distance calculated with Eq.
(27) (a.u.).
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branch in the total electronic energy; for similar examples
with lower number of electrons (or with larger molecular
charge) that distance is nearer to the internuclear separa-
tion at equilibrium. The complete curve representing the
upper bound for the above molecules can be built easily
following the same procedure already described for the
analysis of the molecule H,. In this case, use should be
made of the expressions in Ref. 26 for the extension of the
electronic energy of atoms to noninteger nuclear charge
values.

V. FURTHER COMMENTS AND CONCLUSIONS

An extension of the rigorous results derived in Sec. III
(for one-electron molecules) to many-electron diatomics
has been given in Sec. IV employing a simple approxima-
tion. The examples provide an elementary illustration of
how the original ideas can be applied.

Even though we have considered a crude representation
for the atomic charge density, in all the cases the results
obtained follow the predicted behavior. This fact suggests
that a better representation of ¢(r) in Eq. (23) could lead
to an improvement of the results. Notwithstanding that
latter possibility should be explored, we believe that the
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more significant improvements could be achieved if a
stronger lower bound to the derivative in Eq. (10) could be
found. The development of such a new bound requires
the investigation of more detailed analytic properties of
the CET’s, and work along this line is being done at
present in our laboratory.

It is worth mentioning that the study of global con-
straints for the entire energy hypersurface has been
motivated mainly because of their potential use in com-
puter aided synthesis planning and the theoretical analysis
of chemical reactions and molecular conformations. In
particular, the approach based on the properties of the en-
ergy functional in the abstract nuclear charge space has
shown to be fruitful to derive simple and general con-
straints. In this paper we have discussed one of the possi-
ble ways along which those constraints can be given a
more detailed analytic structure.
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