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Conjecture on the dimensions of chaotic attractors of delayed-feedback dynamical systems
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The Lyapunov dimension of chaotic attractors is found to be almost equal to the delay time di-
vided by the correlation time of the feedback driving force for three dynamical systems:
Mackey-Glass model for white-cell production, optical bistable hybrid system, and nonlinear ring
cavity. This discovery will enable experimentalists to estimate the complexity of a high-dimension
system much more easily than by time-series methods, as illustrated by a hybrid experiment.

Three dynamical dissipative systems driven by a force
proportional to a delayed nonlinear feedback were found
numerically to exhibit finite-dimensional chaotic attrac-
tors with similar behaviors of their metric entropies h and
their Lyapunov dimensions dL, when the delay r~ is large
enough with respect to the dissipative time y '. ' Ex-
plicitly, h was found to be nearly independent of r~, and
dz was found to increase linearly with the delay. Farmer'
was the first to observe this for a system modeling white-
b1ood-cell production attributable to Mackey and Glass.
He foresaw that the behavior of both ergodic quantities, h
and dL, should be related to a sampling time other than
iR. The other two examples are optical systems, the
plane-wave ring cavity ' and the electro-optic hybrid,
which may exhibit either bistability or periodic behavior
followed by a chaotic regime, depending on the delay and
the strength of the driving force. These systems have an
asymptotic solution

pt
x(t) =y„du e '"f[x(t —u —r~)], (1)

where x(t) is an observable and f[x(t)] the deterministic
driving force. The results of the theoretical study of the
statistical properties of the chaotic regime of a hybrid de-
vice have led us to generalize our results to other delayed-
feedback systems.

The correlation time 8 of the driving force f, which is a
signature of the sensitivity to initial conditions, must
characterize the dynamics of the system and the strange
attractor. The correlation time has been found to be in-
dependent of and much smaller than zg in the limit

y ~~ && 1, leading to an insightful and intuitive understand-
ing of chaos. The interaction between the system and its
feedback can be seen as a set of "kicks" of mean duration
6'; after each time interval 8 the system is ready to under-
go a new kick of the feedback and so on during the time
interval rtt. Loosely speaking, the r~/8 kicks are indepen-
dent events; the nth kick during the kth round trip is only
correlated with the nth kick of the (k+ l)st round trip, as
confirmed by the secondary extrema of the feedback
correlation function at approximately r~, 2z~, 3~~, . . . .
It follows intuitively that the number of independent kicks
should be the eA'ective number of degrees of freedom.

j =dy(t)/dt = —r[y(t)+&(y) I «» I
'],

A (p) = [exp[al(p —1)]—1]/al .

(3)
(4)

The intensity I E(t) I
is scaled to the olf-resonance atom-

ic saturation intensity, Ep ls the internal input field ampli-
tude, p(t) is proportional to the energy stored by the
atoms and p(0) =0, and R is the refiectivity of both input
and output mirrors. The complex linear index is
X=al(l —ih)/2, where a ' and l are the olf-resonance
absorption and cell lengths, respectively; d, =2trT2(v,
—vf) is the detuning between the atomic and the light

Furthermore, the description of the dynamics as a series
of independent events during an interval ~g allows us to
conjecture that the entropy is just the average amount of
information stored during the memory time 6, and thus is
independent of zg.

We conjecture that the dimension of the attractor is
equal to r~/B. This conjecture is supported by numerical
calculations for all three delayed-feedback systems; the
correlation time was determined from the correlation
function of the feedback, and the ratio rR/8 was com-
pared with dL for diAerent strengths of the driving force.

For high-dimensional attractors, the Lyapunov dimen-
sion dL is, among all the approaches proposed for theoreti-
cally determining the information dimension, the easiest
to calculate accurately. ' The Lyapunov dimension,
which is an upper bound to the information dimension, is
defined with the help of the Lyapunov exponents, X;, by
dL =j+ I Xz+ 1 I 'gX;, where the summation is from 1

to j, where the integer j (defined such that gX; ~ 0)
represents the number of degrees of freedom. It displays
two advantages: Its integer part has a clear meaning, and
it can be obtained exactly because the computation of j
converges fast enough.

Let us focus the discussion on the plane-wave ring cavi-
ty because its dynamics has a simple physical explanation.
The equations " that describe a plane-wave ring cavity
containing a cell of gaseous two-level atoms are a bound-
ary condition for the electric field amplitude E(t) and a
differential rate equation for the phase p:

E(t) =En+RE(t —rid) exp[iZ[p(t —Tp) 1][, '(2)
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= —' [(E*(t+z)E(t))+c.c.] . (5)

To obtain I (z), 1 or 1.5 million points have been accumu-
lated, after the transients have died away, corresponding
to about a thousand zR. The initial conditions were E(t)
=Ep during the first ~R and all the atoms in the lower
state at time t =0. Figures 1(a)-1(c) display the central
portion of the normalized correlation functions

I-( ) —1&E) I

'
r(0) —1&E) I

'
for three chaotic solutions. Each I f exhibits a peak about
i =0 whose shape was found to be nearly independent of

For yrR =20, the curves reproduce very well the cor-
responding ones in Fig. 1, with a slight change in the tail
of the central peak. Figure 1(d) shows the secondary ex-
trema which occur at approximately rR, 2~R, . . . . Let us
define the correlation time 8 by the half-width of the peak
at I (8') =e '. This definition is somewhat arbitrary, but
the uncertainty in the numerical values are less than 2%.
For F.p =1.1, I f is obviously not a decreasing exponential
while it nearly is for Ep =2.5.

Table I shows that the conjecture dL = zR/8 works very
well in spite of the roughness of the determination of 8'.

The Lyapunov exponents were calculated using the Farm-
er algorithm. ' lt has also been pointed out that zR/dL
=6 is nearly equal to the power-broadening relaxation
time z, =[y(1+Io)] of a single atom driven by an in-
tense continuous electric field (Io=Eo »1). The rela-
tionship dL=zR/8' has the satisfying interpretation that
the dimension of the attractor is simply the number of ac-
tive modes of the cavity with frequency spacing rR

The relationship dL = zR/8 seems quite general and ap-
plies even in the limiting case yrR 1 where dL is no
longer linearly proportional to rR.

frequencies scaled to the homogeneous half-width
(2trTi)

The correlation function I (z) of the field amplitude is
given by the time average

RT
I (z) = —,

' lim — dt E*(t+z)E(t)+c.c.
a T& 0

TABLE I. Ring-cavity numerical results supporting the con-
jecture that dL = zR/ti a.l 4, R 0.95, ts, 3ir, and dt. calculat-
ed for several yzR from 1 to 20 for Eqs. (2)- (4).

F.p

1.1

1.7
2.5

JL
yzR

0.75
3.8

—7. 1,7.2

0.95
4.2
7. 1

1+Io

2.2
3.9
7.25

Valid for
yzR

It may be impossible to observe chaos in a ring cavity
containing two-level atoms under conditions satisfying the
plane-wave assumption of our theoretical analysis, but we
are able to compare theory and experiment in a hybrid de-
vice. The output voltage x(t) is a solution of Eq. (I)
with a feedback

f(x) =x@[1+Re so( x+xb)],

where the bifurcation parameter p is proportional to the
product of the laser intensity and the feedback gain, R is
an extinction coefficient, and xb is the bias voltage. Be-
cause the dynamics is governed by a single diA'erential
equation with a feedback periodic in x, the mechanism
leading to chaos can be understood more easily than that
in a ring cavity. When x(t) varies monotonically by an
amount equal to (or less than) tz, f(x) undergoes a half-
period motion. If x(t) is periodic with period T, then
f(x) exhibits the same period. But if x(t) varies mono-
tonically by an amount just a little larger than tz, dephas-
ing between f(x) and x occurs, and chaos follows. From
this argument, we can predict that chaos would appear for
pR = 1 and that the correlation time would be of the same
order of magnitude as the mean time interval required for
x(t ) to change by an amount of tz.

The property of linear increase of dt with the delay to-
gether with a constant entropy has been numerically
verified for a large range of p and R (2 5p ~ 30; R = 5,
—', , and 0.95). The bias xb was set equal to tz/2. Figure 2
shows that dL/yzR obeys the linear law 0.85(yh)
Strikingly enough, this law works well with in both limits
of small chaos (pR =2) and large chaos (pR =—30). '

The correlation function I I(z) was also found to be nearly
invariant with rR for any r&& rR.

Eo= I. I Eo=2 5
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FIG. l. If(z) as defined by Eqs. (5) and (6) for the ring cav-
ity with yzR =10, R =0.95, al =4, 4 3x. Note that I f(z) in

(d) is drawn on a compressed time scale to exhibit the
memory. For this set of parameters, two regions of chaotic be-
havior appear as Eo is increased; Ep 1.1 lies in the lower region
and Ep 1.7 and 2.5 in the upper region.
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FIG. 2. The Lyapunov dimension scaled to yzz as a function
of the correlation time inverse b ' for the hybrid; 8 is the half-
width at e ' of the autocorrelation of the feedback.
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The hybrid device contains a helium-neon laser whose
beam passes through an electro-optic modulator before it
is coupled into a 1.1-km optical fiber. The light emerging
from the fiber 6 ps later is detected by a silicon photo-
diode, and the resulting delayed voltage is amplified and
fed back to the electro-optic modulator. The gain of the
amplifiers is the experimental control parameter p. A
beam splitter samples the laser intensity between the
modulator and the fiber: This represents the feedback
function of the system. The feedback signal is detected by
a photomultiplier which has a much higher bandwidth
than the amplifiers or the silicon detector.

The autocorrelation of the feedback signal was deter-
mined for various settings of the device through two in-
dependent techniques. In all cases, xb =tr/2 and R =0.98.
The straightforward time-domain method is described
first. For each setting of the device, a time series consist-
ing of 262000 data points was obtained using a computer-
ized data-acquisition system. Subtracting off the dc com-
ponent (which only alters the dc level of the autocorrela-
tion) yields the working time series VJ. The sampling
time t, was 85 ns in most cases, the delay time zR =6 ps,
and response time y

' either 1.2 or 2.5 ps. ' The unnor-
malized autocorrelation I /(r) where r =it„was comput-
ed by the summation I/(r) =XV/VJ+t over 250000 j's;
the largest value of i was 125, so the maximum z exceeds
10 ps. The alternative technique (same parameter set-
tings) involves determining the power spectrum of the
feedback function and finding its Fourier transform to ob-
tain the autocorrelation, yielding If(r), in good agree-
ment with the time-series result.

Figure 3 exhibits the agreement between experimental
and theoretical correlation times li of the feedback. This
demonstrates that the hybrid device is described well by
Eqs. (I ) and (7) and allows us to estimate the Lyapunov
dimension of the experimental chaotic attractor by the
conjecture dL = rtt/iJ. This conjecture should be especially
interesting to experimentalists since it is much easier to
measure 8 than to calculate the correlation dimension

—20—l
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FIG. 3. Linear dependence of (y8) ' vs p, where y
' is the

system response time, 8 is the half-width at e ' of the auto-
correlation of the feedback function, and p is the hybrid-device
bifurcation parameter. Filled circles represent theoretical re-
sults; filled triangles, experimental time domain; filled diamonds,
experimental power spectrum transform.

from the time series, for dimensions larger than a few
units. s The validity of dL =rR/8 was also confirmed for
the Mackey and Glass equation with Farmer's parameters
for which dL increases linearly with rtt. Since dL = rtt/8 is
obeyed for both a periodic feedback (hybrid) and short-
range force (Mackey and Glass) as well as both periodic
and short-range forces in a ring cavity, we conj ecture that
it should be valid in any delayed feedback d-ynamical
system which exhibits deterministic chaos.
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