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Gluing bifurcations in critical flows: The route to chaos in parametrically
excited surface waves
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It is shown that the system of parametrically excited surface waves falls into the class of "criti-
cal flows" whose dynamics and transition to chaos can be understood from first-return maps de-
rived in the vicinity of one saddle point in phase space. The onset of chaos is via "gluing bifurca-
tions, " which are also common to Lorenz-like flows, but these are intermingled here with usual
period-doubling bifurcations. Similar parametrically excited systems might show the full array of
routes to chaos which appear in critical flows.

The three "usual" routes to chaos, i.e., period doubling,
intermittency, and quasiperiodicity, are ubiquitous in
physical systems. ' Recently, however, it has been
stressed that in flows generated by vector fields which pos-
sess two homoclinic orbits biasymptotic to a saddle point,
one can expect an infinity of other generic scenarios,
which appear as the unfolding of a cascade of symmetric
gluing bifurcations. Dynamical systems of this type
(hereafter "critical flows") can be analyzed using discon-
tinuous maps of the interval. These maps exhibit both the
usual scenarios and others, and were used to unify the re-
normalization techniques used to calculate universal prop-
erties of experimental interest. Although examples of
transitions to chaos in critical flows have been introduced
in the context of Rayleigh-Benard convection and
reaction-diffusion systems, none of these correspond to a
concrete experimental system. The aim of this Rapid
Communication is to fill this gap.

A case that appears to fall in the relevant class of criti-
cal flows is the system of parametrically excited surface
waves. An experiment by Ciliberto and Gollub' used a
cylinder containing water which was mounted on a cone of
a loudspeaker, and was oscillated accurately in the verti-
cal direction. When the amplitude of the oscillations ex-
ceeded some (frequency-dependent) threshold value, the
free surface was deformed by surface waves. The two pa-
rameters controlled experimentally are A, the amplitude
of oscillations, and mf, the frequency. A fairly detailed
theoretical analysis of this experiment, in the vicinity of a
codimension-two point in which the neutral stability
curves of two surface modes intersect, was presented in
Ref. 11. The theoretical analysis culminated in deriving
"amplitude equations" for the time dependence of the
competing modes. These were used to rationalize the ex-
perimental observations. We shall first show here that the
flow induced by these equations is a critical flow, and ex-
amine its scenario for the onset of chaos by reducing it to
a map of the interval. It turns out that for the experimen-
tal setup we do not get "clean" cascades of gluing bifurca-
tions; the usual period-doubling bifurcations interfere
with them. Moreover, due to symmetry, we see only one

type of gluing bifurcations. We therefore discuss later
some possible modifications of the experimental conditions
that can lead to cleaner and richer scenarios. It is
noteworthy that with this study we accomplish a complete
reduction, hydrodynamic equations, low-dimensional evo-
lution equations, and one-dimensional map, for the system
of parametrically excited surface waves.

The evolution equations for the competing modes
read"
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where p, b anco, b
—tof/2, co, and cob being the natural fre-

quencies of the modes, and I ~, h~ are proportional to A.
We recall that to linear approximation the actual ampli-
tude g, (t) [gb(t)] of the surface deformation is given by
the imaginary part of a(t)e"I [b(t)e"I ll

Equations (1) are invariant under the symmetry trans-
formations (a,b) ( —a, b), (a, —b), and ( —a, —b).
Thus any solution which breaks any of these symmetries
coexists with its symmetric counterparts. We note that
the first two symmetries stem from the rotational symme-
try of the fluid system. The nature of the observed flows
can be understood from the schematic diagram in Fig. 1.
There are three saddle foci in phase space, one at the ori-
gin (denoted by 0) and the two denoted by Sb—.These
two are symmetric under (a, b) (a, —b), and corre-
spond to situations where only the b mode is excited. The
coordinates are chosen such that z and x are in the direc-
tions of the unstable eigenvectors of 0 and Sb—,respec-
tively. The coordinates y and s are orthogonal (physically
x and y are related to the a mode, whereas z and s are as-
sociated with the b mode). In addition, there are four
symmetric mixed-mode fixed points of which only the one
in the first quadrant, denoted by M, is shown. The latter
undergo a Hopf bifurcation leading to limit cycles which
grow in size as A is raised. A key concept for the under-
standing of the transition to chaos is that of a gluing bifur
cation; it refers to a process in which two periodic orbits
of periods T~ and T2 approach a saddle point, form a pair
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quence by denoting turns to the right (left) of S+ b R
( ). Thus, the first bifurcation shown in Fig. 2 corre-
sponds to the gluing of two asymmetric orbits, (R) and
(L), to form a single (RL) orbit. The latter has to un-
dergo a symmetry-breaking bifurcation before a succes-
sive gluing can take place. This bifurcation is illustrated
in Figs. 3(a) and 3(b). The next two gluings and the cor-
responding symbolic sequences are shown in Figs. 3(c)
and 3(d)an ( ). A closer look at the gluing bifurcations reveals
that before gluing the asymmetric orbits undergo a cas-
cade of period-doubling bifurcations. At gluing and in
some parameter interval above it the orbit is chaotic. At
higher parameter values the glued periodic orbit is
recovered. The relative size of the intervals over which
chaotic behavior persists grows as the sequence of gluings
proceeds and eventually the chaotic motion becomes dom-
inant. A schematic illustration of the transition to chaos
is given in Fig. 4.

In critical IIows of this type one can gain a better under-
standing of the transition to chaos by focusing on a first-
return map in the vicinity of Sb . In principle, we have a
our-dimensional Bow and a Poincare surface of a t'

s ou be three dimensional. However, the trajectories of
interest pass near 0, where s is strongly enslaved by z. As
long as x is small, s continues to follow z. As a conse-
quence we And that a section at z const yields an
eff'ective two-dimensional plane denoted by P. Moreover,
we And numerically that orbits intersect this plane such
that all intersection points fall on a curve R. %'e
parametrize this curve with a parameter q running be-
tween -1 to I, and compute the first return map q

'=f( )
n example is shown in Fig. 5. We note that due to the

strong contraction in the y direction (see Fig. 1), the curve

X

FIG. 1. Fixed points of Eqs. (1) at A, cof values corresponding
to dynamic mode competition.

of homoclinic orbits to that point, and then "glue" togeth-
er to produce a single periodic orbit of period Ti+Tz. In
the present case the invariance of the equations under the
transformation (a,b) ( —a, b) implies that the glued

+orbits about Sb—should also be invariant under the trans-
formation. Thus, successive gluing bifurcations may
occur only if they are followed by symmetry-breaking
ones. In the following we shall consider projections of the
Oow onto the x -z plane. The transforrna-
tions (a,b) (+ a, ~ b) then translate to (x,z)

(~x, ~z).
Let us describe now the phenomenology of the transi-

tion to chaos as observed by integrating the equations of
motion. The transition involves a sequence of gluing bi-
furcations, the erst of which is illustrated in Fig. 2. No-
tice that both glued and unglued orbits are not symmetric
under (x,z) (x, —z). It is only the upper saddle focus

+Sb around which all bifurcations occur. The higher bi-
furcations deform the orbits only in a small neighborhood
of Sb+. The time signals x(t) reIIect these bifurcations
most clearly; we can assign to each signal a symbolic se-

0.0319

0.0318

0.0317—

0.0316—
-00001 O OOOOI

( I I

(d) (RLLRLRRL)~

—0 0001 0 0 0001
X

I I I

(RLLR)
0.0519

(c)

0.0318

0.02—

0.0517
Z 0—

—0.02— 0.03I6 '-

-O.OOOI 0 0.0001

X

-O.OOOI 0 O.OOOI

X00' I I I I I

-0.02 -O.OI 0 O.OI 0.02
X

I i I

-0.02 -O.OI 0 O.OI 0.02
X

FIG. 3. (a&) and (b) A blow up of a small neighborhood
around Sb—which shows the symmetry breaking of the (RL)
orbit. (c) and (d) Higher glued orbits and the corresponding
symbolic sequences.

FIG. 2. (a) Gluing of two asymmetric orbits (R) and (L)
to form (b) a single symmetric (RL) orbit.
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FIG. 4. Schematic illustration of the transition to chaos along
a line of constant frequency. White (black) segments corre-
spond to periodic (chaotic) motion. The horizontal bars denote
the beginning of period-doubling cascades.

FIG. 5. Numerical first-return maps for (a) the (RL), and
(b) the (RLLR) orbits. Notice that the map is antisymmetry
and nonmonotonic. Gluing occurs when the left and right
branches of the map start overlapping.

R on P lies very close to the x axis and therefore, to a very
good approximation, we can consider the map as acting on
that axis. The nature of this map can be understood
analytically. The linearized equations around Sb+ read

X ='g)X

n3y

Z = 'g2Z+ NS

S = —g2$ —NZ

(2a)

(2b)

(2c)

(2d)

1nxp (3b)

g2/gI
' . N

s ~
= xp sin lnxp

gl
(3c)

We now expand the x coordinate of the mapped point on
P in Taylor series around (y ~, zi, s~) =(0,0,0). Using the
fact the yp &&xp we obtain the one-dimensional map

f(x), x &O, —
f( x), x &0, — (4a)

f(x) fo —cx 'cos(gzlnxo+ y)+h. o.t. , (4b)

~her~ g~=rtztrti, gz=ro/rti, and h.o.t. represents higher-
order terms. We determine the coefficients c and itr in Eq.

where all the g; s are positive and satisfy the inequality
g3 P g1 ) g2 & N & 0. Consider now a small neighbor-
hood around Sb+ within which Eqs. (2) are valid. We re-
scale the coordinates such that the maps of interest are re-
turn maps on the plane P = {(x,y, z, s);z =1, s =0) and x
varies between -1 to 1. Suppose a trajectory starts at a
point (xo,yo, 1,0) on the curve R in P. At time
t = —(1jri~) lnxo it intersects the volume V= {(x,
y, z, s);x 1). The coordinates of the intersection point
are (l,yi, zi, s~), where

g3i gl (3a)

(4b) by fitting that equation to numerical first return
maps evaluated at diferent A values. We find that c is a
linear function of fo while y is constant (specifically,
c =0.337+0.756fo and y= —0.282). Notice the follow-
ing. (a) The maps are discontinuous at x =0. This stems
from the fact that orbits which start at x = ~ 0 follow op-
posite directions of the unstable manifold. (b) The maps
are antisymmetric due to the (x,y, z, s) ( —x, —y, z, s)
symmetry of the equations of motion. (c) The maps are
nonmonotonic in the vicinity of x=0. It is this feature
which is responsible for the period-doubling cascade and
the subsequent chaotic behavior around gluing. (d) Glu-
ing occurs when the right and left branches of the map
start to overlap each other.

The map (4) reproduces accurately the phenomenology
described above. It also illuminates the role the eigenval-
ues of Sp+ play. The appearance of period-doubling bifur-
cations and a subsequent chaotic motion stems from the
fact that $2~0 and g~ & 1 (Shil'nicov's condition'). The
former inequality is responsible for the nonmonotonic
character of the map. When gi & 1 the gluing bifurcation
is not accompanied by chaotic behavior since the first
derivative of the map, f'(x) ~x ', vanishes as x goes to
zero. If, in addition, gz =0 or is pure imaginary, complete
cascades of gluing bifurcations, characterized by universal
numbers which depend on gi, precede the onset of
chaos. Since the eigenvalues of S~+ depend on experi-
mental parameters (A, coy, size and geometry of cell, etc.),
all these modifications of the transition to chaos are, in
principle, realizable experimentally. Of particular in-
terest is the experimental setup which gives rise to a sad-
dle point with gz=O (or pure imaginary), gi & 1, and
whose rotational symmetry is broken. By breaking the ro-
tational symmetry (working, for example, with an irregu-
larly shaped vessel) one would achieve an asymmetric
discontinuous first return map. An asymmetric map may
also be achieved by exciting a pair of even modes,
a =(2m, 2n) and b =(2n, 2m) (or a pair of odd modes) in
rectangular geometry. " This would lead to equations
which are not invariant under the transformation
(a, b) ( a, b) In such —cases o. ne can study the rich
variety of codimension-2 routes to chaos which were con-
sidered in Ref. 6.
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