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Convection in binary mixtures: A Galerkin model with impermeable boundary conditions
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We derive an eight-mode model with horizontal boundaries that are impermeable to the con-
centration current and free slip for the velocity. Its properties are elucidated and compared with
theoretical results obtained for other boundaries. Impermeable boundaries cause an additional
coupling between temperature and concentration gradients which significantly changes linear and
nonlinear properties as compared to those of permeable boundaries.

Binary fluid mixtures heated from below display, '

close to onset of convection, interesting behavior caused
by interacting momentum, heat, and concentration cur-
rents. Except for stability analyses of the conductive
state done for no-slip impermeable (NSI) boundary con-
ditions all theoretical ' work uses free-slip permeable
(FSP) conditions. These approaches ignore the coupling
between convective temperature and concentration gra-
dients that arises when the vertical concentration current
which is a weighted sum of these gradients is forced to
zero at an impermeable horizontal boundary. Its effect is
studied here with a Galerkin approximation. Since such
models' for one-component fluids do not depend much on
the slip properties of the boundaries we consider here for
convenience free-slip impermeable (FSI) horizontal boun-
daries.

To describe small-amplitude Soret-driven convective
flow in the form of straight rolls seen in experiments we
truncate the spatial mode expansion appropriate to FSI
conditions: rY(t) = —

q Y(t)+[r —Z(t)]X(t), (2b)

kinematic viscosity, g the gravitational acceleration,
P~ (P2) the thermal (solutal) expansion coefficient at con-
stant concentration (temperature) and pressure, and y the
separation ratio.

Since the horizontal variation of the fields is given by
A(t)e '""+c.c. the convective roll pattern of amplitude

~
A(t)

~
is standing if

~ p(t) ~
=const where p(t) is the

phase of A. For p(t) =tat a pattern of amplitude
~
A(t)

~

propagates with constant speed p/k. The general spa-
tiotemporal behavior of

~
A(t)

~
cos[kx —p(t)] can be

more complicated.
Projecting the standard Oberbeck-Boussinesq equa-

tions9 (without Dufour effect) onto the eight modes re-
tained in (1) one obtains a generalized Lorenz model

k
r

rX(t) = —crq X(t)+ o (1+y)Y(t)+ U(t)
g 7r2

(2a)

w(x, z;t) =[w, )(t)e '" +c.c.]J2sin(trz),

O(x, z;t) = [O) ) (t)e '""+c.c.]

x v 2sin(ttz) + Op2(t) J2sin(2trz),

(ia)
(2d)

rZ(t) = —b[Z(t) —X(t) Y(t)] (2c)

rU(t) = ——k U(t)+q yY(t)+ V(t)X(t),
3

rV(t) = —b[-,' X(t) U(t)+ -', yZ(t)+(L/4)V(t)]. (2e)

I;(x,z;t) = [g)p(t)e '""+c.c.]+gp)(t) JZcos(ttz) . ( 1c) Here the critical modes

Here w is the vertical velocity and 0 the deviation from
the conductive temperature profile. Instead of the convec-
tive concentration c(x,z;t) we use the field g=c —yO
with an expansion of its z dependence in terms of
cos(ntrz). Of course the truncation (I) is inadequate for
localized convective states. Since g~t and (p2 do not
drive the modes in (1) they are not considered here. The
critical modes w~~, O~~, and g~p excite via nonlinearities
the current-carrying modes Opq and gp~. The mode Op~ is
damped away.

Note that (lc) guarantees impermeability of the hor-
izontal boundaries at z =0, 1 since the vertical component
of the diffusive concentration current, j, = LVi;, van-—
ishes there. For finite Lewis number I this constraint
causes additional coupling between concentration and
temperature.

We have scaled length by the layer thickness d, time by
d /tc where tc is the thermal diffusivity, temperature by
vtc/P&gd3, and concentration by vtc/P2gd . Here v is the

X =(X(,A2) =(I/q, ')(Rew, (, lmw), ),
Y = (Y(, Y2) = (q, /R, ) (Re O~ ~, Im O~ t ),
U = (U t, U2) = (trq, /2 J2R, ) (Re(&p, imp~ p)

(3a)

(3b)

(3c)

are combined into two-component vectors. The current-
carrying modes

Z =( —z42/R, ) Op2, V=(tr /242R, )gpt (3d)

are scalars in this notation. The constants (k, ) =tr /2,
(q P) 2 (kP) 2+ tt2 RP (q P)s/(k P) 2 r I/(qP) 2

b =4tr /(q, ) are critical quantities at @=0,and o is the
Prandtl number. We reduced the Rayleigh number R and
the wave number k by

r =R/R, , k =k/k, , q =(k +tr )/(q ) (3e)

With the truncation (1) the Nusselt number is given by

N(t) =1+2Z(t)/r .
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The system (2) looks similar to the FSP model. "'2
However, the differences, e.g. , in the U equation, are
significant. Moreover, U and V are here modes of the
field g. Setting X2 = Y2 =U2 =0 yields a five-mode model
which allows only standing patterns. Like the FSP mod-

11,12el the system (2) is invariant against simultaneously
rotating or inverting the vectors X,Y,U which reflects the
invariance of the convective pattern (I ) against horizontal
translation or reAections at the plane x =0. Thus proper-
ties caused by these symmetries show up here as well.12 8

The conductive state, i.e., the zero state of (2) loses sta-
bility against monotonous growth of a roll pattern of wave
number k with a degenerate pair of real eigenvalues
becoming positive at

r„„(k)=(q /k )[I+@+ (y/L)(8/rr )] (5) 0.01 0.02

r.„(k)= (q'/k') (I+~) (I + Z ) (I +Z/~)

x [1+o + y(1+ o —8/rr ) ] (s)

There two degenerate pairs of complex conjugate eigen-
values cross the imaginary axis with a frequency cu given
by

~"'/q'= —z' —(8/~') y(I+z)(~+z)

if y is bigger than the polycritical value

y~(k) = —(I+ ~) [I+ ~+ (I+~) (8/~'Z) ~(8/ 'Z')] -
I

(6)
Here L = (k /3q )L.

The critical wave number of (5) vanishes for y~ yo
=L(16/rr L) ' and is—given for y ~ yo by

(k;„,)'= [(I+y)z —(16/rr') y]

x [(1+y) L + (8/ ) iver] (7)

In Fig. 1 we compare (k,'„,) and the critical Rayleigh
number r,'t, t with a one-mode NSI variational result. We
also compare our r, t t(k) at @=yo with the NSI result
and the FSP boundary (q /k )(1+@+@/L) ' which
diverges for k 0 in contrast to the two impermeable re-
sults. Since the latter two are similar to each other the
slip condition is less influential than the boundary condi-
tion on the concentration current.

A Hopf bifurcation occurs at

FIG. l. (a) Stability curves r,&„(k) for @=0.016, L =0.03,
cr=0.6. Boundary conditions are FSI (our result), NSI (Ref.
6), and FSP (Ref. 9). Arrows mark the critical values. (b) y
dependence of (k;t, t) (FSI, solid curve; NSI, dashed curve),
and of r,'tgt (FSI, dotted curve; NSI, dash-dotted curve).

structures with wave numbers diAering by a few percent
[cf. Fig. 2(b)] can grow there. That might cause interest-
ing spatiotemporal behavior. Furthermore, at this inter-
section of r', t, t and r'„, the Hopf frequency although being
small is nonzero. The two convective states which can
grow there are structurally and dynamically distinct. This
degeneracy of the codimension-two point of the permeable
system is lifted by impermeable boundaries. Only where
r„„(k) and r„,(k) intersect with a common fixed k
[cf. Fig. 2(b)] does cu vanish. Thus the stability behavior
of the conductive state depends for y& 0 sensitively on the
boundary condition of the concentration Aux.

We now address the nonlinear properties of our model.

J%

0.98 1.0 4 1.02

1.028

1.027
C

x [1+cr+y(1+cr —8/rr )] ' (9)

as long as y (@pe(k). At yp, (k) [Eq. (6)], i.e., the inter-
section of ros, (k) and r„„(k)the frequency vanishes such
that four eigenvalues are simultaneously zero. The wave-
number dependence of r„,(k) [Eq. (8)] is for not too
large I yI very similar to the NSI and FSP result.

The critical wave number of (8) is for small L given by

(k'„,)'=I —[(1+o)/(3cr)]L+O(L') .

1.05-

1.0-0.003

FS

—0.002 —0.001

In Fig. 2 we compare our critical curves r,'t, t and r'„, in
the r —y plane in the vicinity of their intersection with
NSI and FSP results. For both impermeable condi-6 9

tions, FSI and NSI (Refs. 6 and 7), k;„,pek'„, at this in-
tersection point so that two spatially diA'erent convective

FIG. 2. (a) Stability boundaries of the conductive state„r'„,
(dashed lines) and r,;,& (solid lines). Parameters as in Fig. l.
(b) Stability curves r„,(k) (dashed line) and r„„(k) (solid line)
of our FSI model for y= —3.205 x10 where r' =r'
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Its fixed points are given by

q NtN2(X +aX +p)X=0, (loa)

Y =rN~X, U rye(L/2)q —
3 X 1N~NzX,

Z rNtX, V= —ry(q + 9 k L)N~N2X, (10c)

N, =(q'+X') ', N, =(-.' k'L 2+a')

a q +(L /6)k —(k /q )rtl+y —(32/3x )yj, (10e)

P=(k /6q )L [q —k r(1+y)l —4Lry(k /q x ). (10f)

As in the FSP model' there is a continuous family of con-
vective fixed points with X,Y,U being nonzero and col-
linear. Without symmetry-breaking perturbations the ini-
tial conditions select the common direction of these vec-
tors, i.e. , the final phase of the convective pattern. Had we
added an inhomogeneity' aq g in (2a) the right-hand
side of (10a) would be g, thereby selecting'2 the fixed-
point phase.

The bifurcation to stationary convection is forwards for

(lob)

(10d)

P& Pr= 1+ ~ ~ + ~+98 6 8 q k

9rrL L L k, q

tricritical at y„and backwards for y& y, &0 with a sad-
dle node located where a 4p.

Before we discuss the dynamics of (2) note that includ-
ing into the FSP five-mode model the modes X2, Y2, U2
that are required by symmetry renders the upper branch
of overturning convection at y & y, unstable for
r & rFsp r'„,."' There one real eigenvalue becomes
positive. '2 In our FSI model the situation is difTerent (cf.
Fig. 3): The overturning branch is stable (unstable) for
small (large) r. The instability occurs at r'(y) & ro«via a
Hopf bifurcation involving one complex conjugate pair of
eigenvalues. The location r'(y) varies strongly with y,

e.g., r'(y 0) connects to the Hopf bifurcation of the
standard Lorenz model' at large r. The bifurcation at
r '(y) is also present in the five-mode version (X2

Y2 U2 0) of our model. Thus at r'(yr) a nonlinear
standing-wave (SW) solution bifurcates: X,Y,U oscillate
collinearly around the unstable overturning convection
fixed point with a frequency m' given by the imaginary
part of the eigenvalue pair describing this instability. We
have checked for a few L, cx, y that immediately above
r'(y) the system runs into a nonlinear SW limit cycle.

For larger r, however, a modulated-traveling-wave
(MTW) solution is selected at large times unless one
chooses special initial conditions, e.g. , X,Y,U collinear
(then also X,Y,U are collinear so that the phase cannot
change). In Fig. 4 we show a stationary MTW at
r 1.05r' in the (A' t,A'2) plane. Therein, the field ampli-
tudes X and Y of w and 8 oscillate around the unstable
fixed-point circle of overturning convection with a fre-
quency co& 10.89 that is 4.6% smaller than co'. The
Nusselt number (4) basically being determined by X os-
cillates twice as fast. There is a small phase difference of
about 0.01m between X and Y. The phase velocity p of X,
and similarly of Y, i.e., the propagation speed p/k of the
MTW is not constant: p oscillates with frequency co~ and
amplitude 0.12 around the mean (p) 0.413 which is close
to the difTerence co' —co~ 0.53. Furthermore, (p) seems
to be incommensurate with the amplitude oscillation. The
oscillations of U, i.e., of the fields g and c are slightly more
complicated than those of X and Y.

For r & r'„, the transient growth behavior out of the
conductive state is similar to that of the FSP model. ' For
special initial conditions a standing wave, X Xoe"
x cos (cot ), or a traveling wave grows with

X (X~,X2) —e"'(cosrot, sinrot)

rotating on a circular spiral. Typical initial conditions,

0.2-
. Jn,

1.1 1.2 1.3 1.4 1.5

FIG. 3. Nusselt number for steady overturning convection in
the eight-mode FSI and FSP (Refs. 11 and 12) models for
y —0.12, L 0.015, o. 18.4. Stable branches are shown by
full lines, unstable ones by dashed lines. The instabilities at r'
are explained in the text. The Hopf bifurcation of the conduc-
tive state occurs at r' .

FIG. 4. Stationary MTW solution in the X&,X2 plane for a
time interval of 15.75 (y, L, rJ as in Fig. 3, r 1.05, r'=1.452).
Stationarity is not reached before 150 diffusion times. The cir-
cle shows the unstable axed points of overturning convection.
The oscillation frequency of amplitude X and phase velocity p is
~g =10.89. The mean rotation rate (p)=0.413 seems to be in-
commensurate with co~.
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however, lead to a MTW where X rotates outwards on el-
liptic spirals around the origin. Its initial rotation period
is given by the Hopf frequency ro [Eq. (9)l and the growth
rate y is determined by the corresponding real part. The
elliptic motion causes a 2' oscillation of X and of the
Nusselt number. Also the phase velocity p oscillates with
2ro around (p) =re. At longer times p decreases'z and
goes to zero when approaching the stable overturning con-

vective fixed point at r ( r' or the S%' limit cycle immedi-
ately above r'. Also when the final state is a MTW as in
Fig. 4 the phase velocity first decreases almost to zero.
But it grows again and approaches in an oscillatory
fashion its final-limit cycle dynamics.
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