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A possible class of traveling-wave solutions to the Maxwell-Bloch equations is presented and
discussed. These are given by periodic solutions of the Lorenz equations; in particular, solutions
for negative values of the parameter o give stable traveling-wave solutions with phase velocity less

than the speed of light.

It is well known that the amplitude of a homogeneously
broadened single-mode laser can become unstable only in
the bad-cavity limit where the linewidth x of the singly
excited resonant cavity mode exceeds the sum of the re-
laxation rates of the polarization (y,) and population
(y1).' This criterion is removed for multimode laser as
first demonstrated by Risken and Nummedal? for the case
when the initially excited single cavity mode is exactly res-
onant with the gain medium, and by several other au-
thors? for the case when an additional detuning parameter
is introduced into the system. For the latter case, there
are two types of instability regions, now generally known
as regions of phase instability and amplitude instability.*
The region of amplitude instability can be considered a
simple extension of that first studied by Risken and Num-
medal. The region of phase instability occurs immediately
above threshold in a manner similar to that observed in in-
homogeneously broadened laser systems. The stability
properties of the initially excited single mode have been
extensively reviewed in Refs. 2 and 3, and it is not our in-
tention to discuss these further here. Rather, we consider
one possible class of final-state solutions to the laser equa-
tions, namely, traveling waves simply related to the set of
periodic orbits of a low-dimensional dynamical system:
the Lorenz equations.’

In appropriately normalized units, the laser equations
for a resonant ring cavity system are?
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Here E and P are the slowly varying envelopes of the
(complex) electric field and polarization, respectively, S is
the (real) population inversion, and A is a pump parame-
ter (A=0 at threshold, and is greater than zero above
threshold). The cavity mirrors impose the periodicity con-
ditions

Fx+L,t)=F(x,t) , )

where F is either E, P, or S. Equations (1) have a
constant-amplitude solution whose stability properties
have been discussed elsewhere.>"* This solution corre-
sponds to continuous laser operation in a single mode. We
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consider traveling-wave solutions of the form
E(x,t) =60 —x/v) ,
Plx,t)=PG—x/v) ,
S(x,t)=8G —x/v) ,

in which case Egs. (1) are replaced by
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where x'=x/(1 —c/v). Notice that these are the single
mode equations, apart from the replacement of x’ for «.
Note also that even if x is very much less than y, + 7y,
there is no such restriction on «’ for values of the phase
velocity v less than ¢, ¥’ can even be negative.

The boundary conditions (2), when applied to the
traveling-wave forms assumed in deriving Eqs. (1'), mean
that

6(1)=6G+T) ,
P()=P(z+T) , 2"

() =80(+T) ,
with
t=t—x/v .

In other words, the traveling-wave-type solutions of (1)
are periodic orbits of Egs. (1) with basic period 7=L/v
(v unknown).

In this paper we take & and P to be real; in a future
publication® we show that the general case with complex
fields and with the presence of detuning between the
atomic resonance and the cavity modes can be treated in a
similar way, and present the corresponding relationship
with quasiperiodic solutions to the complex Lorenz equa-
tions.” It is then more convenient to use the simple trans-
formations given in Ref. 1 to rewrite Egs. (1') in the
“standard” form normally considered in dynamical sys-
tems, first quoted by Lorenz:>

X=0c(Y—X) ,
Y=0—-2Z)X-Y, 3)
Z=XY—bZ .
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Here o=x'/y.=x/(0—c/v)y., b=y/yL, r=r—1,
X=bE, Y=VbP, Z=1—1-S5, and t=(t—x/v)/7,.
Differentiation is with respect to .

Consider the superluminal case first (v > ¢), in which
case o is positive. It is known?® that when » > 1, Egs. (3)
have two symmetric fixed-point solutions, which are stable
in the region 1 <r <r,,

o= o(c+b+3)
¢ o—b—1
Several authors”® have studied the Lorenz equations in
(r,b) parameter space for a fixed value of o (5=10).
Here we fix b, x (but not '), and L and study the Lorenz
equations with o as an eigenvalue (i.e., o must be such
that the periodicity condition is satisfied) and have r as
the variable control parameter. Equation (4) is quadratic
in o; the fixed points are then unstable in a region
o1 < o< o0, and it is known that these become unstable
by a subcritical Hopf bifurcation. It is not difficult to
show that the homoclinic explosion that produces the limit
cycles involved in the Hopf bifurcation occurs at two
values of 6(ohc1 < 01, Onez > 02).
Fixing r and b we can plot the period T as a function of
o for all the periodic orbits of Eqs. (3); using the
classification scheme described in the book by Sparrow?®
we show such plots for a few of the simpler orbits in Fig.
1. Any such periodic orbit is an acceptable solution to the
laser equations (1) provided that the period of the orbit is
equal to L/v, as required by (2'). This criterion is most
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FIG. 1. Period of three simple orbits in the Lorenz equations
plotted against o (for 5=0.5 and r=16). Here we plot the
period of the X orbit, XY symmetric orbit, and the symmetric
principal periodic orbit for negative o. T, [Eq. (5)] is also
shown in this figure for both positive and negative o (broken
curves). There is a Hopf bifurcation of the origin at o= —1,
and two Hopf bifurcations of the fixed points C; and C; at
01,02. The first homoclinic orbit of the origin occurs at
0==0.9217, there is a second one at 0=44 (not shown). A
heteroclinic orbit connects C; and C; at o= —3.31 (notice the
different horizontal scales for negative and positive o).
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usefully represented graphically by noticing that

T.=L/v=L/c (5)

o—«x/7.
— .

A plot of T, vs o is also shown in Fig. 1. Intersections
of T, with the curves for periodic orbits give acceptable
solutions, which satisfy Egs. (1) and (2).

As well as the positive-o solutions considered above, it
is also possible to have o <0, corresponding to subluminal
traveling waves. The Lorenz equations (3) are now stud-
ied for negative o. The linear stability of the origin is
easily carried out and reveals that there is a Hopf bifurca-
tion (supercritical) at o= —1 for all values of r> 1.
Moreover, numerical studies indicate that there is a
codimension-one heteroclinic orbit of the Sil’nikov type’®
linking the two symmetric fixed points.

Our numerical investigations reveal that the periodic
orbit born in the Hopf bifurcation at o= —1 acquires ex-
tra turns around the unstable manifolds of the fixed points
and eventually becomes the (symmetric) heteroclinic con-
nection; that is, the “principal periodic orbit” in the
language of Glendinning and Sparrow.® This behavior is
shown in Fig. 2, where the asymptotic behavior toward the
heteroclinic orbit for some specific value of r and b is indi-
cated. The evolution of the period against o for this orbit
is also shown in the left-hand side of Fig. 1. The periodici-
ty condition (2') must still hold; consequently, we show
also the plot of T, [Eq. (5)] for o < 0. The intersection of
these two curves gives again an acceptable solution which
satisfies both Egs. (1) and (2). In addition to the sym-
metric principal orbit, there exists an infinite class of
asymmetric and period-doubled orbits winding their way
up to attain homoclinic status, in agreement with Glendin-
ning and Sparrow.® We concentrate on the symmetric
principal orbit in this paper.

Having found and classified all these types of
traveling-wave solutions to Egs. (1) it is necessary to con-
sider next their stability. At present, we do this by substi-
tuting the appropriate traveling-wave solution into Egs.
(1) and simply observing whether the wave form persists
indefinitely. Some periodic solutions for the region o> 0
are stable, but studies to date indicate that most are un-
stable. One exception is the simple pulsed solution found
by Risken and Nummedal, which corresponds to a simple
x-type orbit of the Lorenz equations, and which is labeled
RN in Fig. 1. In contrast, the traveling-wave solutions for
negative o would appear to be stable, and have been ob-
served to act as attractors for the system (1). Integrating
numerically the partial differential equations (1) and (2)
we have observed several instances when an initial wave
form from the region o> 0 becomes unstable, a transient
regime ensues for a while before the system settles down
to a different type of traveling wave which can be
identified as one of the periodic orbits for the o < 0 case.

We believe certain results recently published by Lugia-
to etal.'! are related to our periodic orbits for o <0 (in
their paper, they present a “square-wave” periodic solu-
tion found by numerical integration to a set of partial
differential equations closely related to our system), even
though their model is slightly different from ours in that
cavity losses are considered discreet rather than uniformly
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FIG. 2. The symmetric principal periodic orbit for o <O in the Lorenz equations. This orbit is born in a Hopf bifurcation of the
origin (6= —1) and eventually becomes the heteroclinic connection between C; and C2 (t— o). The Z-X projection is shown for
several stages in the orbit evolution, together with a plot of the period against o. In this figure, » =16 and b =0.5.

distributed as here, and our gain media is assumed to fill
the cavity.

The subluminal waves are also likely to be the “slow”
solutions reported by Hillman and Koch'? when looking
for bichromatic states in homogeneously broadened lasers.
It is interesting to note the presence of multistability at
very low pump values above threshold, where the cw solu-
tion coexists with the subluminal waves (the symmetric
principal orbit exists for r values just above threshold).
These results may account for the behavior experimental-
ly observed by Hillman etal !® In particular, the spon-
taneous split in frequency (and disappearance of the cen-
tral resonant peak), multistable operation, and hysteresis

loops can be explained by the model. A more detailed
study of this particular point is in progress and results will
be presented elsewhere.
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