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Quantum chaos in the Lorenz equations with symmetry breaking
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The role of phase diffusion for quantum chaos in the quantum-mechanical model of the laser in
the Haken limit is discussed. Fractal properties of the support of the asymptotic attracting proba-
bility d&stribution for the system are studied.

I. INTRODUCTION

We will use the term "quantum chaos" to denote the
behavior of a system which at a classical level shows
chaos. Our interest will be in quantum dissipative sys-
tems. It is usual to describe the evolution of such systems
in terms of density matrices and master equations. '

Moreover, it is expected that in these systems the density
matrix evolves to a time-independent steady state. The
support of the asymptotic distribution may be fractal, '

and the short-time response chaotic.
The Lorenz system has played a key role in the study

of classical chaos. It can be derived as the "semiclassi-
cal" limit of a fully quantum-mechanical theory of the
laser. In this limit fluctuations in the electromagnetic
field are ignored. Consequently we can return to the
quantum-mechanical laser theory and allow for fluctua-
tions in the electromagnetic field. The natural generaliza-
tion of the Schrodinger equation to the situation where
there is dissipation is the master equation. For a single-
mode homogeneously broadened laser the density matrix p
satisfies in the interaction picture a master equation,

just a ground and excited state. y, is the Einstein A coef-
ficient, y, is the pumping rate, yo is the phase decay rate
due to collisions, tc is the cavity damping rate, k is the
wave vector of the field mode, xj is the position of the jth
atom, and g is the atom-field coupling constant. («j+,«j )-
are the Pauli matrices associated with the jth two-level
atom and a is the field mode destruction operator. The
quantum states of the system lie in an infinite dimensional
Hilbert space spanned by states of the form

In&II Ia, &,

where aj is (+1,—1) and n is a non-negative integer.
Moreover,

+1I +1& / I j&,

'
I
"& II I

1p=i-p= .~ tH p]+~(lap a']+(a pa'1)+ j ~p,

and

H =igni g (e 'a r e'arj+)—
j=l

where the Harniltonian H is given by N

&II I

X(5,+2 )+5a, z )),

A~p= —,
' g I)'i(l»,+ pr, ]+t»,'p «, ])

+)'i(I:»j p»j+1+ f»j p «,+])

+'Yo([«j &p"j ]+[ "j p& "j ])]

The terms not involving Hin Eq. (1) give rise to dam'ping
which follow from the standard theory of quantum darnp-
ing. Here X is the number of atoms in the laser cavity.
The atoms are taken as usual to be two-level, i.e., to have

1=1,2, . . . , N .

Haken has shown that in the semiclassical limit the
Lorenz equations can be deduced from Eq. (1). If we
evaluate the expectation values of arbitrary operators for
the system described by the density matrix satisfying Eq.
(1), then such quantities give the true quantum analogue
of the Lorenz equations.

It has been recognized for some time that the operator
equation (1) can be written in terms of c-number stochas-
tic equations when the number X of atoms is large. In
particular, this can be accomplished as follows. We intro-
duce a generalized c-number Wigner distribution P by
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Tr(~p) = f dC. f dC, f dr. f dF, f d~&(F,S' ~,C,C*)exp[t (00+0 0 +k 0 +8+'9'9 ]

where g is the "characteristic operator"

N

X(g,g', g, g, g*)= exp g t(g rz e "+rjr&+grz e ") exp[i(g at+pa)] .

In the limit of X large, P, in terms of the scaled variables
2—m= 'g

~N

2 Vl+2+p
V =V1+lV2 =—

y,
~— —1/2 ~X =X1+EX2=Pi p

C=g X/a.y, ,

n, =y,m/g~c,
—1/2a'=+p a

1/2

satisfies the partial differential equation

a~ a
(u) +mx) )+yg (uz+mxz)+Ic

Bt Qu) BV2

8
(xi —a+2Cui )+ (Xz+2Cuz)

BX1 BX2

+y~ ~

(m —cT U)x )
—uzxz —)

Bm

+yg(2Cxn p)

8 8 8X —
z + z +f z (1—om) of —u)+ uz

Bm Bv1 BU2

Ic 8 3+,+, &, (5)
4+o Bx1 aX,2

where dm = —y~~[m —o ——,(u *x+u x *)]dt
1=27p+ 2 fg,

o=(yi y~)/(y —i+y&),

y((=yr+ys ~

VJ.

(aCnp)'

(u dWy+udW ~)

27l
From Eq. (3) it is clear that the c-number moments of

P are the quantum-mechanical expectation values associat-
ed with the density matrix. The final link in the logic
which allows us to treat the quantum theory in terms of
stochastic differential equations will now be supplied.
Equation (5) is a Fokker-Planck equation (FPE) for I' and
when the diffusion matrix is effectively positive definite it
is well known that the moments of such a P can be ob-
tained from the solution of Ito-Langevin equations which
can be uniquely associated with P. These equations are

+(1— — f uu')' dW

where W„= W1 +i W2, W~ = %3+iW4, and 8', = 8'5.
W1, 8'2, . . . , W5 are independent Wiener processes.
Closer correspondence to Lorenz-type systems can be ob-
tained by changing variables to

' 1/2
b

X = — X
2

Kdx = v(x a+—2Cu)—dt+
2np

1/2

dW~,
y =(2b)'i Cu,

z =2Cm,

du = yz(u+rnx )dt + —
&&z

d JF~,
2(xCnp)'

(6)
and the parameters b, cr, C, and r are defined by
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b=
Vl

r Vl+7t
'Vy —'Yg

r =2Co .

The equations (6) then have the form
' 1/2

dx =o(y x)—dt— 2
C

o.ed W

dy =(xz y)dt+—2edW~,

dz = —[b (z r)+xy—*+x'y]dt

(y*dW +ydW, )
bra
4C'

(8)

+(8b)»" 1 —"'
4C

2

32C4

1/2

d8', ,

cr(o+b +3)
(o —b —1)

It is easy to show that

where
1/2

7 )+'Vie=C
y,N

The expectation values of products of x, y, and z are pro-
portional to the quantum-mechanical expectation values
of the corresponding symmetrized product of the electric
field, atomic polarization, and inversion operators.

In our use of the term quantum chaos we have required
that the parameter values of the system are chosen such
that in the classical approximation the system is chaotic.
The development summarized in Eq. (8) requires that N is
large. For consistency it is necessary to check that this re-
quirement is compatible with the constraints on the pa-
rameters riecessary to obtain classical chaos. The Lorenz-
Haken ' criterion for chaos is

using should give an acceptable description of the
quantum-mechanical behavior of a system which, at the
classical level, gives the Lorenz system well known to
have chaotic solutions. Moreover, for physically sensible
values of b (0& b &2, in the context of lasers) the dif-
fusion matrix is effectively positive definite. By our cri-
terion for quantum chaos we have a description of it for a
nontrivial dissipative system.

When we are dealing with fluctuations it is important
to realize that Eq. (1) has a built-in special symmetry,

a~ac'&,

r r e'~, (12)

3 3
rj ~rj.

and similarly the conjugate transformation for the adjoint
operators. This symmetry is, of course, reflected in Eq.
(8) (x~xe'~, y~ye'~). It will turn out to be a crucial
symmetry for the quantum theory. In order to under-
stand the nature of this symmetry it is important to in-
corporate a symmetry-breaking interaction. In the
quantum-mechanical problem this is achieved by having a
classical external field a (with a definite phase) coupling
to the resonant field mode in the laser cavity. The master
equation (1) is then modified by the addition of a term to
L of the form

—~(a[a,p]+a*[p,a ]) . (13)
This change leads to a corresponding modification of Eq.
(8). Specifically the equation for x becomes

1/2
2 o'e d W„, (14)dx =o( —x+y+Q)dt—

where
' 1/2

b o.

~n,
but the y and z equations remain unchanged.

It is clear from inspection that the symmetry represent-
ed in Eq. (12) no longer holds. Without loss of generality
from now on we will choose our phase convention so that
Q is real. In the absence of fluctuations (represented by
the Wiener processes) it is possible to consider the fixed-
point structure of Eq. (14). The fixed points satisfy

r' (y, +y, )'

4e' »()'~ ri)'— (10) with

For a given set r, o, b, and e the minimum N (N;„) is

given by

br /x
/

=( [x [+n)(b+2/x /2),

0= —,
' (~+a ),

(15)

27 r
&min =

~2

since y, =5y, for the minimum. For o.=5, b = 1,
r =15.1, and e as large as 0.1, X;„is 76954. Equations
(5) and (8) are valid for such N. Even for e= 1, N;„ is
770 and the FPE is again expected to be valid. The con-
tent of a quantum theory can be expressed in terms of ex-
pectation values of operators and the use of Eq. (8) allows
us to calculate these expectation values for Eq. (1). Hence
the stochastic differential equation description that we are

/y /e'+= /x /e'e —0,
=0,

and

br

b+2
f /x

(17)

The 5)&5 stability matrix in terms of a basis ordering

I /x f, /y /, z8@j is
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Z —1

0

—b

0
0
0 (18)

0

0

0

fx fz

(
f

f+Il)
—fx fz

We find the phase and amplitude parts of the matrix
decouple. The eigenvalues corresponding to the lower
2&2 submatrix and to the stability in the phase directions
of x andy are

fx fz cr

2 1/2
x

f
z 0'

(
f f

+II) 4(TZA

(19)

dimension is due to the phase degree of freedom. More-
over, for @=i, the probability distributions of Rex and

f

x
f

were shown to have a radically different structure
from that for small e and so quantum chaos has a
smoothening effect on the attractor. From Eqs, (10) and
(11) we see that this smoothening occurs at parameter
values which are consistent with the large-N approxima-
tion. In this situation it is important to have a parameter
explicitly in the system which can control the phase dif-
fusion. The term in Eq. (13) just provides this control.

II. THE QUANTUM ATTRACTOR

+ ( fy f+&)

fx fz

1/2
4o.zQ

2

The (+) and (~) signs distinguish between the 8=0 case
(the upper sign) and 8=m (the lower sign). When Q=O
the eigenvalue of Eq. (19) becomes zero and the other
eigenvalue negative. Moreover, there is no longer just two
fixed points but a ring of equivalent fixed points with

f
x

f
=

f y f, / =8, and z = 1. The zero eigenvalue corre-
sponds to motion around the ring and the negative eigen-
value corresponds to the relaxation of the difference of
phases of x and y. In the quantum theory of the laser
fluctuations induce a random walk along the ring, and
this is termed phase diffusion.

The upper 3&&3 submatrix of Eq. (18) gives the stability
criterion of the real Lorenz equations, and Eq. (9) gives
the criterion for chaos. Just as phase diffusion is impor-
tant in the region of stable fixed points when fluctuations
are present it is expected that they will play a major role
in quantum chaos. Our intention is to thoroughly exam-
ine the role of phase diffusion. Preliminary work on Eq.
(8) has given strong circumstantial evidence that quantum
fluctuations manifest themselves mainly in the form of
phase diffusion. Indeed the probability distributions for

f

x
f

and
f y f

were found to be less affected by varia-
tions of e (the strength of fluctuations) than Re(x) and
Re(y). Moreover, a fractal dimension of the attractor
jumped by about one as e was made nonzero. The value
of that fractal dimension was independent of e except for
large e (e.g., e-l.O). This suggests that the increase in

As we move from the realm of classical to quantum
chaos we can no longer refer to a deterministic strange at-
tractor. The expectation values of operators take the
place of values of phase-space variables. For the case of
interest to us these expectation values are derivable from
moments of probability distributions. The concept of a
strange attractor is replaced by a stationary probability
distribution with a support which may have a complicated
structure except at the finest scales. A good indicator of
chaos in classical systems is given by Lyapunov ex-
ponents' which characterize the exponential fast separa-
tion with time of two points on the attractor which are in-
itially close to each other. Our main aim is to demon-
strate phase diffusion in our example of dissipative quan-
tum chaos and it will turn out to be useful to develop an
analogue of the Lyapunov exponent for the quantum at-
tractor. Instead of two points initially close to each other,
we take two very sharply peaked distributions with their
peaks very close to each other and observe the rate of
separation of the peaks and this rate will give the analo-
gue of the Lyapunov exponent. In a standard way it is
possible to define a Lyapunov dimension' in terms of the
Lyapunov exponents. ' '" Fractal dimensions of the sup-
port of the attractor in the presence of symmetry breaking
are important .because in the symmetric situation it was
just such a dimension which strongly suggested that an
additional degree of freedom was coming into play (even
when the fluctuation strength e was small). In addition to
the Lyapunov dimension we will calculate a fractal di-
mension DF, proposed recently, which measures the
clustering properties of points on an attracting set.

There are many forms of stochastic differential equa-
tions (SDE), and the one that arises naturally in our prob-
lem is due to Ito. A one-dimensional SDE has the form

dx (t) =a(x (t), t )dt +b(x (t), t )d W(t) .

In discretized form the Ito SDE is
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TABLE I. Lyapunov-exponent calculations for r =20 and @=0.

DL

0.0
1.2
2.4
3.3

0.469
0.459
0.441
0.372

0.0
0.0
0.0
0.0

0.0
—0.01
—0.06
—0.12

—6.00
—5.99
—5.94
—5.89

—7.47
—7.46
—7.44
—7.36

3.078
3.075
3.064
3.043

x(t+bt) x(t) =—a(x(t), t)At+b(x(t), t)

&& [W(t+b, t) W(t)] —.
In particular

(x(t+bt) x(t))—=(a(x(t), t))At

(22)

(23)

=0. (24)

Equation (24) follows since x(t) does not depend on the
Wiener increment [ W ( t +b t) W(t) ] and—( W (t +b t)
—W(t)) is zero. The property of Eq. (23) does not hold
for non-Ito SDE's. The SDE's of Eqs. (8) and (14) have
multiplicative noise. The solutions of these SDE's are
based on approximating them by the discretized form of
Eq. (22). The Wiener terms are generated through a stan-
dard pseudorandom-number generator (of a multiplica-
tive-congruential type). Our work will concentrate on the
parameter values o.=5 and b =1 which are possible for a
laser. The threshold for chaos in the deterministic Lorenz
system is then r =15. We study the cases r =16 and
r =20. By continuity the classical equations for suffi-
ciently small Q must show chaos at these parameter
values. However, as 0 is increased there is a threshold
above which there is a stable fixed point coexisting with a
chaotic attractor. For r =16 and 20 the threshold values

of 0 are given by 0=0.143 and 0.695, respectively. At
still larger 0 the chaotic solutions are metastable and
eventually decay on to the fixed point. Numerical experi-
ments indicate that for r =20 and 0=0.72 the decay
time is in excess of 2.5 && 10 time units.

An important though minimal aspect of quantum fluc-
tuations is that they force the variables x and y to be
complex. The complex Lorenz equations (with no sto-
chastic terms) has phase symmetry as we have already dis-

cussed. The Lyapunov exponents reflect the presence of
this symmetry. With full symmetry there are two zero
Lypunov exponents, one due to the behavior of trajec-
tories which are infinitesimal time translates of the other,
and the other due to lack of "stiffness" in the phase rota-
tion direction. There i.s also an additional negative ex-

since

( b(x (t), t )[W(t +b t) W(t)] )—
=(b(x (t), t) ) ( W(t +b t) W(t) )—

d
dt

58(t) =g'(8(t))68(t)(g(t) ) =0

and so the Lyapunov exponent is zero. There will be
another zero Lyapunov exponent. in general for our system
of stochastic differential equations. If we take an initial
5-function distribution and allow it to evolve for an infini-
tesimal time interval and take this as the second distribu-
tion (whose peak is close to the first one) then the average
rate of separation of the peaks is zero. This can be illus-

trated by the following example:

x(t) =f(x (t))+g(x (t))g(t), (27)

where f is twice differentiable

t
x(t)=x(o)+ f f(x(t'))«'+ f g(x(t'))dW(t'), (28)

ponent that the standard (real) Lorenz equations do not
show. This has value —(o+1) and is associated with the
relaxation of phase differences between x and y. As the
field is introduced the positive exponent is slowly reduced,
one of the zero exponents becomes negative and the other
is unchanged. The new negative exponent is associated
with the relaxation of the phase of x and y towards the
preferred one (that of the input field). Table I summa-
rizes these results which hold for the deterministic situa-
tion.

If phase diffusion is the main effect of quantum fluc-
tuations in the chaotic regime we would expect the zero
Lyapunov exponent for phase diffusion to be unaffected
for nonzero e, but Q=O, since from Eq. (19) we have al-

ready seen that the deterministic restoring force for the

phase is zero. We can see this from considering a stochas-
tic differential equation

8(t) =g(8(t))g(t), (25)

where g(8) is some differentiable function and g(t) is a
Cxaussian white-noise process.

Given two 5-function peaked distributions with the

peaks infinitesimally close to each other [the separation
being M(t)] we need to average the local rate of separa-
tion of the positions of the peaks over the probabilistic at-
tractor. This rate of separation is given by

TABLE II. Lyapunov-exponent calculations for r =20 and Ll =0.

A3 DL

0.0
10

3 &&
10-'

0.469
0.456
0.461

0.0
0.0
0.0

0.0
0.0
0.0

—6.00
—6.00
—6.00

—7.47
—7.46
—7.46

3.078
3.076
3.077
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TABLE III. Lyapunov-exponent calculations for r =20 and o.0= 1.2.

A j k2 A3 k4 k5 DL

0.0
10

3 ~10-'

0.459
0.444
0.452

0.0
0.0
0.0

—0.01
—0.02
—0.03

—5.99
—5.99
—5.99

—7.46
—7.44
—7.45

3.075
3.071
3.071

(x()+6() x()—)) =( f f(x(('))d)'l

—(f(x(t) ) )«,
for infinitesimal b, t. Consequently,

(29)

mensions. It is possible to introduce the Lyapunov dimen-
sion' DL,

nI

(31)

(x (t +6t) x(t) ) = ( If—'(x (t))x(t)+ —,
' [g(x (t))]'

dt

Xf"(x(t))I )«
where the Lyapunov exponents k; satisfy

nl

(32)

since for Ito stochastic processes

(30) gA, ;)0,
i=1

(33)

df(x (t))=f'(x (t))dx(t)+ —,
' [g(x (t) )] f"(x(t))dt .

Since At is infinitesimal Eq. (30) shows that d
( [x(t +b t) —x (t) ] ) Idt is infinitesimal. Hence the
Lyapunov exponent vanishes. The general method that
we have used to calculate these exponents numerically is
given in the Appendix. Our Lyapunov-exponent calcula-
tions are summarized in Tables I to IV. For Eq. (8) we
find that the two zero Lyapunov exponents do indeed sur-
vive the presence of the noise which is in general multipli-
cative. [The multiplicative nature of the noise is enhanced
for small values of C. From Eq. (7) we note that the
minimum value of C is r/2 and the typical values of y
and z on the chaotic attractor are of the order of +r /2
and so the magnitude of the noise terms may vary by a
factor of 3.] By taking f (x) in Eq. (27) to be —kx it is
easy to show that the phase diffusion Lyapunov exponent
(which vanishes when k =0) becomes —k. Our numeri-
cal calculations with Eq. (14) show that with nonzero 0
and the resultant suppression of phase diffusion one of the
zer'o Lyapunov exponents becomes increasingly negative
with increasing 0 (see Tables III and IV). This body of
numerical calculations strongly supports the importance
of phase diffusion in the presence of quantum fluctua-
tions.

The increase of fractal dimension by about one men-
tioned at the beginning of this section is thought again to
be a signal of the additional phase degree of freedom. We
will now report further calculations involving fractal di-

nl +1

g A,;(0.
i=1

(34)

nl gives the integer part of DL. For large classes of
deterministic systems Pesin's identity' gives

(35)

However, for our quantum system this does not hold.
Quantum effects force us to have x and y complex. Even
when e=O since the Lyapunov exponents "know" the
presence of the phase degree of freedom Dl exceeds Dz
by one. DL varies very little with noise. In particular,
very small scale effects where the attractor should be
dominated by noise do not contribute to Dl. This can
make DL a good indicator of quantum chaos in some sys-
tems. DL is well defined in the presence of nonzero 0
since the Lyapunov exponents are.

For the behavior of D~ to be consistent with the inter-
pretation in terms of phase diffusion, it is necessary that,
for length scales large compared with l~, the DF is that of
the deterministic attractor. Here lz is a typical length
scale associated with phase diffusion. This Dz should rise
by about one to reflect the additional phase degree of free-
dom for scales of the order of l~. The D~ should be rela-
tively flat and then at very small scales should rise to five
reflecting the domination of the support of the probabilis-
tic attractor by noise. With the breaking of phase symme-
try by introducing nonzero 0 the scale l& should decrease

TABLE IV. Lyapunov-exponent calculations for r =20 and 00=3.3.

0.0
10

3&&10—'
0.372
0.406
0.389

0.0
0.0
0.0

—0.12
—0.11
—0.11

—5.89
—5.91
—5.91

—7.36
—7.32
—7.35

3.043
3.050
3.049
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TABLE V. ((Imx )2mx ) for various values of e.

((Imx)2)

2.0
- 0.5 0.0

I
log R

0.0
10-4
10

3 X10-'
10

0.0
0.35
0.62
0.95
1.42

0.0
0.6
0.8
0.97
1.19

FIG. 2. D+ vs loG. 2. D~ vs log~OR for e= 10 with Q =wit Q =0. 1 and 0.48.
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APPENDIX: CALCULATION OF LYAPUNOV
EXPONENTS

We sha11 follow very closely the method proposed by
Eckmann and Ruelle, ' and consider a set of m-
dimensional continuous-time stochastic differential equa-
tions,

dx (t)
dt

=F(x (t) )+G(x (t) )g,

where x(t), F(x(t))H R, and G(x(t)) is an m Xm ma-
trix. By reasoning similar to that given with Eq. (23) the
separation of the peaks u (t) of distributions which were
initially infinitesimally close 5-function distributions is
given by

ponent A, to T~(o~ is of the form e ' and for this not to
vary too much for A, of different magnitudes it is neces-
sary that ~ is small. However, in order to have Lyapunov
exponents averaged over the attractor it is necessary to
iterate a number (n) of times in the discrete system. n is
of the order of r ', T„"(o~ is a product of n matrices. For
reasons of computation time n should not be too large and
correspondingly ~ too small. We have found that ~ of the
order of one is satisfactory and defined the discrete sto-
chastic map f by

f(x)=f'(x)

Clearly the characteristic exponents of f are r times the
corresponding ones for f.

Now we have

(A2) T"'=T'(f" '(x)) . T'(f (x))T'(x) . (AS)

D„(,~F is the matrix of partial derivatives of the m com-
ponents of F. We will refer to this as the tangent space
equations, and they enable us to find a time average of the
rate of separation (which gives then an average over the
attractor for long enough time). It is possible to write a
solution of (Al) for a particular realization of the noise as

T2 ——T(f(x))Q( (A9)

For convenience of notation we shall suppress the
dependence in the above from now on. The matrix T(x)
can be "QR decomposed" into a product of an orthogonal
matrix (Q& ) and an upper triangular one (R~) with non-
negative diagonal elements. We define

x (t) =f'(x (0) ) .

We then have

u (t) =(D„(oj')u(0)

(A3) and QR decompose T'2,

Tz ——Q2R2 .

In this way
A4)

(A 10)

and can define

T„'=D„f'. (A5)
T„"=Q„R„R)——Q„R . (A 1 1)

Hence Eq. (A2) implies that

g

dt Tx(0) ( x(tIF)Tx(0) ~ (A6)

It can be shown' that the diagonal elements of R (which
are just the products of the corresponding elements of the
R~ ) satisfy

The initial condition T ~o~ is taken to be the unit matrix
and represents the m-independent directions of the initial
separation of the peaks. Eckmann and Ruelle proceed by
obtaining first an effective discrete time dynamical sys-
tem. The time step w of the discrete system has to be
chosen with care. The contribution of a Lyapunov ex-

1
lim —lnR;;

where A, ; is a Lyapunov exponent of f. There are readily
available routines which can effect a QR decomposition
and the method outlined above has been found to be nu-
merically satisfactory.

'Also at Clarendon Laboratory, University of Oxford, Oxford
OX1 3PU, United Kingdom.
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