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Squeezed-light generation in a medium governed by the nonlinear Schrodinger equation
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A first-order perturbation calculation is performed on a generalized nonlinear Schrodinger
equation in order to investigate the degree of squeezing that can be obtained for a medium de-
scribed by such a field theory. Expressions for the amount of squeezing in the normal and anom-
alous dispersion regimes are obtained. In particular, it is found that the amount of squeezing is
greater in the anomalous dispersion region than in the normal dispersion region. By keeping
fourth-order derivatives in the field, the squeezing when the pump is located at the zero-dispersion
wavelength is also investigated.

Squeezed light, in which the quantum noise in one am-
plitude component is reduced below the vacuum noise lev-
el, has been generated using parametric processes in opti-
cal materials, ' including optical fibers. The theory of
squeezed-state generation in optical fibers has been dis-
cussed by Levenson et al. and Shelby et al. , in which the
frequency dependence of the index of refraction was ig-
nored. Here we study the efI'ects of frequency-dependent
dispersion in order to determine the bandwidth over which
squeezing can occur. The approach taken is phenomeno-
logical, starting with the nonlinear Schrodinger equation
which is often used to model light propagating through
optical fibers. When such a dispersive, nonlinear medi-
um with a third-order susceptibility is pumped with a
continuous-wave (cw) beam, squeezing results. We find
that the degree of squeezing oscillates as a function of
fiber length in the normal dispersion regime, whereas in
the anomalous dispersion regime, it grows exponentially
with fiber length. Similar results have been found by
Drummond.

By restricting ourselves to the nonlinear Schrodinger
equation we neglect losses and Brillouin scattering pro-
cesses which degrade the amount of squeezing that can be
generated with real fibers. Shelby etal. have, however,
devised techniques for overcoming these problems. We
also investigate the squeezing when the pump beam falls
at a wavelength such that first-order dispersion is zero
(ZDWL). Keeping higher-order dispersive terms, we ob-
tain the somewhat surprising result that the squeezing is
not aff'ected by odd-order dispersive terms, but small
values of even-order dispersion can significantly increase
the frequency range of the squeezed light.

Our starting point is the generalized equation

E(z, r) =A(z, r)e '""+At(z, r)e (2)

i +P ' A+ 3 A =0
az ar, c

where A(z, r) describes the evolution of the amplitude
components of the electric field E(z, r),

[b(o, co), b t(o, ro')] =S(ro —ro'),

[b(0,~),b(0, ~')] =o,
(5)

and eo converts the right-hand side to electric field units.
Equation (1) has the classical steady-state solution

W(z) =Woe'",

where

y= ' ' I&ol'
C

(7)

In the undepleted pump approximation, the field ampli-
tude operator has the form

W (z, r) =W,e'r'+a(z, r),
where the quantum noise is

a(z, r) =so„drub(z, ro)e

(8)

and is assumed to be small relative to the pump amplitude
I &o I

Substituting Eq. (8) into Eq. (1) we obtain the linear-
ized equation

velocity), coo is an optical carrier frequency, n2 is the non-
linear index of refraction, and c is the velocity of light.
The dispersion constants are given by the Taylor series ex-
pansion

' n

p; g
p'"'

(3)ar „ i nt ar

where Pi"1=ate"1P/acoi"reevaluated at coo.
To a good approximation ' ' the field amplitude

operator for the light incident on the optical fiber can be
written in the form

A(o, r) =so drub(o, ro)e (4)

where the b(o, ro) satisfy the usual boson commutation re-
lations

Here r is related to the time t and position z along the
medium via r=t —pt'1z (pt'1 is the inverse of the group

i +P i a+2ya+ye' +"' at=0,. aO . a
az . ar, (lo)
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where the pump phase 8 is defined by Ati= IAoIe'. In
the frequency domain this becomes

i ' +p(co)b(z, co)+2yb(z, co)
. Bb(z, co)

Z

+ye' "+"'bt(z, —co) =0, (11)

So, using Eq. (12) one sees that the boson creation and
annihilation operators evolve according to

b(z, co) p(z, co)b(o, co)+v(z, co)bt(0, —co), (22)

where

or introducing

c(z, co) =e '"+"'b(z, co) . (i 2)
p(z, co) =e' ' " "' cos[8(co)z]+i [P, (co)+ yzj i [p, (co)+ y]

8(co)

p(co)+ y+
c(z, co)

p(- )+y, .t(., — )
=o . (i3)

We look for solutions of the form

c(z, co)
IA,Z

C (2, co) C2
(i4)

Equation (11) and its Hermitian conjugate can be written
together in matrix form as

&) c(z, co)

O —i ct(z, —co)

x sin[8(co)z] (23)

i [p (ru)+ yz+2e]
. e

v(z, co)-i
( )

ysin[8(co)z] . (24)

It is useful to note that since p, (co) and 8(co) are even
functions of co while p, (co) is odd, we have the following
symmetries (these symmetries are, in fact, required by un-
itarity):" "

The eigenvalues X are obtained from the characteristic
equation y ~ v —N

(2s)

—X+p(co) + y y

y X+p( —co)+ y

and have the form

P, (co) + JP,'(co)+2yP, (co)

(is)

or

if P,'(co)+2yP, (co) ~ 0,

~~ =P. (co) ~t 4 IP'(co)+2yP. (co) I (i7)

where

if P,'(co)+2yP, (co) ~ 0,

( ) p(co)+p( —co)
S

2
'7

p. (co) = p(co) —p( —co)

The calculations will now be carried through for the case
given by Eq. (16). The corresponding calculations for the
case starting with Eq. (17) follow similarly but only the
results will be given.

Introducing

p(z, co) v(z, —co) =p (z, —co) v(z, co) . (26)

The squeezing or noise reduction in one amplitude com-
ponent of an electromagnetic field can be detected with a
homodyne detector' ' in which an intense local oscilla-
tor light at the optical carrier frequency mo is made to in-
terfere with the signal light on the surface of a photo-
detector. In the case under consideration the intense car-
rier or pump beam with amplitude Ao can serve as the lo-
cal oscillator, provided a method, such as used by Shelby
et al. , is devised for shifting the carrier phase relative to
quantum noise a(z, z).

Generally, a unit quantum e%ciency homodyne detec-
tor' ' measures the operator

p L1N

dco[b(z, co)e' e '"'+b (z, co)e '~e' ']

(27)

where p is the local oscillator phase.
We will now evaluate the expectation value of I for the

case when at frequencies other then the carrier frequency
only vacuum fluctuations enter the fiber, that is, the state
vector I 0), is defined by

8(~) =O'I p,'(~)+2yp. (~) I ~ (2o)

c(z, co) =e' ' " cos[8(co)z]

the solution of Eq. (13), given the initial condition, c(o,co)
1S

b(o, co)
I
0) 0 for all co .

Further,
I
0) is normalized such that

&oIo) =i .

(2S)

(29)

i [p, (co)+ y]+ sin[8(co)z] c(o,co)8 co

From Eqs. (22) and (27) it is evident that I is linear in
b(o, co) and bt(o, co). Hence,

ip (a))

+i sin[8(co)z]ct(0, —co) .8 (co)

&o II I o) =o, (3o)
(2i)

that is, the quantum noise has a zero mean value. The
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+2Re[p(z, co) v(z, —co)]e"~ (32)

Squeezing occurs at frequency co if there is a local oscilla-
tor phase III for which

S(N) & 1

The noise power at frequency ro is maximized or mini-
mized by choosing the local oscillator phase so that

Re [p(z, to) v(z, — n)Ie'"] = ~
I p (ro) I I v(co) I, (33)

second moment is
Nh, N

(0
I
I'10& =J d~[ I p(~) I

'+
I v(~) I

'

+ 2 Re [p (z, ro ) v(z, —co)e' ~]} . (3 1)

The power spectrum of the quantum noise is thus '

S(~) =
I p(~) I

'+
I v(~) I

'

1.0

,8—

I [ I [ I [ I
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Jl jl
Jl J 1

J q I

J I
I y I
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I
I
I
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l
I
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I
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/

that is,

S .„, ;.(ro) = [ I p(a)) I

+.
I v(co) I ] ' . (34)

0 I I I I I I I I 1 [ I I I I I I I I
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I p(z, a)) I
= 1+ y sin'[8(co)z]

8'(ro)

I v(z, ro) I
= y

I sin[8(co)z] I .
&(ru)

(35)

For the case of anomalous dispersion [P, (ro)+2yP, (co)
« 0], I p(ro) I and

I
v(ro)

I
are given by

r

2

I p(ru) I
= 1+ sinh'[B(co)z]

8'(ro)
(36)

I v(ro) I
= y sinh[8(co)z] .8 (co)

From Eqs. (34)-(36) it is evident that S m~;„(co) de-
pends only on P, (ro), that is, only even order terms in the
dispersion contribute to the squeezing. These expressions
are general. However, we now apply them to a specific ex-
ample in optical fiber communications. We consider a
conventional optical fiber, ' in which the ZDWL
(Pt ) =0) occurs at 1.3 pm. We consider three regions:
(a) large anomalous dispersion dominated by P
&0(—1.5 pm), (b) large normal dispersion dominated

by P &0(-l pm), and (c) near the ZDWL (—1.3
pm), where P contributes to the stIueezing. From pub-
lished' results, we will calculate P and P . At 1.5
pm, P = —20 ps /km, and for illustration purposes we
use y

=3 corresponding to 200 mW of pump power and a
propagation distance z =0.5 km. The numerical compu-
tation for S;„versus frequency is given in Fig. 1. The
solid line corresponds to the squeezing for the anomalous
region. At co=0 the noise reduction is about 90%, and
varies as yz. The dashed line corresponds to the squeezing
occurring in the normal region at 1 pm, where P =20
ps /km. All other parameters are the same as before.
The features of the squeezing in the normal dispersion re-
gion are qualitatively similar to those of the anomalous re-
gion except that the frequency range in the normal case is

For the case of normal dispersion [P, (ro) +2yP, (co) ~ 0],
I p(m) I and

I
v(co) I are obtained, from Eqs. (23) and

(21), as
' 1/2

FIG. 1. Solid (dashed) line is the squeezing as a function of
frequency for anomalous (normal) dispersion.

less that of the anomalous region. In the normal region,
the squeezing reaches 85% at -0.3 THz, whereas in the
anomalous region this value is extended out to -0.8 THz,
which is nearly three times the squeezing bandwidth ob-
tained at 1.0 pm. This results from the nonlinear and
dispersive interaction. The nonlinearity broadens the
spectrum through self-phase modulation (SPM). '

Squeezing results from the interaction of a coherent state
with its conjugate. In the normal region, the dispersion
acts to separate the frequency components created by
SPM; whereas the opposite occurs in the anomalous re-
gion resulting in greater squeezing bandwidth. Details
will be presented in a later paper. ' When a pulsed pump
beam is used this interaction of nonlinearity and anoma-
lous dispersion can give rise to solitons.

We now examine squeezing near the ZDWL (1.3 pm).
This region s significance arises from its proposed use in
future optical communication systems. Our analysis
shows that P ) will not contribute to squeezing; therefore
we examine P( ). The effects of other perturbations will
be presented elsewhere. ' A value of P = —2X10
ps /km was extrapolated from delay measurements. ' In-
itially we choose a pump beam exactly located at the
ZDWL (Pt ) =0). Figure 2 shows the squeezing at or
near the ZDWL in which all other parameters are the
same as in Fig. 1. The solid line corresponds to the exact
ZDWL case. We find that the spectrum of the squeezing
is greatly enhanced with respect to Fig. 1. The 85%
squeezing value occurs at -30 Thz, nearly 40 times that
of the anomalous region shown in Fig. 1. The P term
brings in the fourth power of the frequency, whereas PI )

requires only the second power of the frequency. Thus,
even small values of Pt ) can significantly influence the
squeezing. However, in practice it is very difficult to have
the pump beam exactly at the ZDWL; therefore we exam-
ine a region about the ZDWL and choose realistic values
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FIG. 2. Squeezing as a function of frequency. Solid line:

P 0, P —2X10 ps /km. Dashed line: P 2 —0.02
ps~/km, pt ~ —2x 10 ps4/km. Dot-dashed line:

P +0.02 ps /km, P —2X 10 ps /km.

of P
t2) = ~ 0.02 ps /km. The dashed line in Fig. 2 corre-

sponds to p ) = —0.02 ps /km and p( = —0.0002
ps /km. As can be seen from Eq. (20), p dominates the
squeezing, yet p plays a significant role. In Fig. 2 the
qualitative features are similar to those in Fig. 1. Howev-
er, the 85% squeezing occurs at —22 THz less than the—30 THz for p alone because the effects of p( ) have
tempered those of p . The dotted line corresponds to
P(2) =0.02 ps2/km and P ) = —0.0002 ps /km. The
qualitative shape of the squeezing is strikingly difI'erent
from previous results. At low frequencies ~ 15 THz, p(z)
dominates, but at higher frequencies ~ 20 THz, the
effects of p( ) are significant and increase the squeezing at
-38 THz to -90%, which is greater than the squeezing
at 0 THz. The squeezing at -55% extends all the way
out to —45 THz. The details of the interaction of this
perturbation on squeezing will be presented elsewhere. '

In conclusion, we have calculated the noise squeezing
for physical systems governed by the nonlinear
Schrodinger equation. We then applied them to an opti-
cal fiber communication system, finding a greater fre-
quency spectrum for squeezing in the anomalous disper-
sion region than in the normal dispersion region. Some-
what surprisingly we found that odd-order dispersive
terms had no eAect on squeezing. However, small values
of higher-order even terms had significant eAects on
squeezing.
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