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Stability of a rotating relativistic electron beam
in a waveguide near the cyclotron resonance
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The stability of a thin electron beam in a uniform magnetic field is studied. It is found that if the
conducting wall is close to the beam, the cyclotron-maser action occurs in a fast wave structure. For
given geometrical parameters, there is a critical current density below which the beam is stable to
perturbations.

The concept of a cyclotron maser was introduced in
1959 by Schneider' and first realized experimentally by
Hirshfield and Wachtel. Because of its simplicity and its
often surprising experimental demonstrations, the cyclo-
tron maser has become one of the most widely studied and
best understood devices for intense microwave generation,
both in linear and nonlinear regimes. However, many
questions in the rigorous analysis of the cyclotron-maser
theory remain unanswered and our aim is to address one
of them.

The cyclotron-maser action arises from a relativistic ef-
fect (i.e., co, =eBplymc) and is described as follows: we
start with relativistic electrons gyrating in a uniform mag-
netic field with random initial phases and zero drift velo-
city in the direction of the magnetic field. Those elec-
trons which are accelerated by the rf wave become heavier
and rotate more slowly; similarly those deaccelerated by
the rf wave rotate more rapidly. The net result is phase-
space bunching which brings about the coherent genera-
tion of radiation. It is generally accepted that the az-
imuthal phase-space bunching is the principal mechanism
for the coherent radiation emission by electrons in a mag-
netic field. This has been demonstrated for a beam so
tenuous that space charge can be neglected.

We propose here to investigate, as a viable model for
the instability of a rotating electron beam in a uniform
magnetic field, the thin electron beam with emphasis on
the collective instability of the beam. Although the
present study is applicable to cyclotron-maser theory, it
can be used for similar problems associated with mi-
crowave generation and, thus, is of general interest.

The model we study assumes the electron beam to be a
compressible fluid, so that charge bunching can be incor-
porated in the analysis. Moreover, from the fluid equa-
tion, it is possible to determine the precise expression for
the density variation with respect to perturbations. We
have chosen to study a thin electron beam model because,
by employing a Lagrangian description of the perturba-
tions, boundary conditions at the moving interface can be
treated exactly. A similar model in the Lagrangian vari-
ables was studied by Sprangle; however, his model was
characterized by the absence of the fluid equation. Our
result complements much recent work on cyclotron-
maser theory based on the relativistic Vlasov equation.

The fundamental physical process by which the cyclo-
tron maser operates is surprisingly easy to comprehend in
this model; indeed, the essential physics will be described
by only two equations which are presented in this paper.

For simplicity, we consider the beam surrounded by
perfectly conducting cylinders of radii a+ and a which
are aligned with the external magnetic field B,„,=Boe, .
In a conventional cyclotron-maser device the inner con-
ducting wall is absent; however, the effect of this wall on
the beam stability is negligible.

The basic equations we study are

d e v—(yv) = — E+—XB
dt m c

—(y) =—,(E.v),d e

dt mq2

Bp +V (pv)=0
Bt

(2)

(3)

where the notations are standard, together with Maxwell's
equations.

If we now introduce perturbations in Lagrangian vari-
ables in the form r=rp+g(rp, t), where rp describes the
unperturbed trajectory of the fluid element at time t and g
is its displacement, then the perturbed density to first or-
der becomes p(rp+g)=p(rp)(1 —V g). For a thin beam,
this can be integrated along the radial direction to give

crp(rb )(1—V'g) =t7p+0'~, (4)

where the gj are assumed to be independent of r. Here rb
is the average radius of the beam.

To obtain the equations of motion and boundary condi-
tions, the following additional relations are necessary:

V=Vo —Vok Vo,
av(ro+ g') =vo(rp) +vo Vog +

(5)

n(rp+ g') =n(rp) +nn. Vg.n —Vop' n,
'V =TO+Pl

where y'=(1 —Ig ) ', yt «yp, and V and Vo are the dif-
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( vo'Vo)vo=—
@pm

Fp"'+ ~ ap"'Vp

C
(9)

ferential operators with respect to r and rp.
We may now linearize the equation of motion. The un-

perturbed motion is given as

where cr= crp(1 —Vp g).
In what follows we consider only the long-wavelength

limit k=0 in the z direction and defer the more general
case with Uz/U~~ &&1 to a future study. The jump condi-
tions for the TE mode then yield

~+E„E„—= 4~—i crok gag, E p E@——— 4~—i o okay„,
and the first-order equation reads

a'g ag
z +2vo Vo +("o'Vo)(vo Vo)g

Bt

E, —E,+=0, 4gjB o Bp—= — op(co —lco, )g, ,
C

@pm

vo 1E+ X B+ vo'Vog'+ X Bp"
C c Bt
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(10)

UoEe

where yp ——(1—Po)
' and Po ——vp/c. Here E and 8 are

the first-order electromagnetic fields. Notice that we have
neglected the self-fields, which can be justified for a thin
beam.

Next, if we set Ep"' ——0, then Eq. (9) gives vp r&co——,e&,
where r& is the average beam radius and co, =eBp/ypmc.
The small perturbations can all be taken as f e" '.
with co to be determined and g=(g„,g@,g, ).

If we now consider the TE mode, which couples strong-
ly with the beam, Eq. (2) gives the first-order relativistic
correction term as

B, B, —= (icog@+co,g„)',

4mo.pkg

b++b ,
' (b+ b—) —g„+igo

where k~ ——l/rb and the hat in the rf fields implies the
first order.

It is to be noted that in the limit k=O, Eq. (14) be-
comes redundant; Eqs. (12) and (13) completely describe
the onset of instability.

In order to obtain a dispersion relation, the rf fields in
Eqs. (12) and (13) must be expressed in terms of g„and g@.
The first step in this procedure is to replace the rf fields
with the mean fields E„=—,(E „++E„) and

Eo = —,(E p +E o ).
If we now introduce the wave admittance

b+ ——+(ikpc/cp)B; /E@ for the TE mode, " then the
mean fields take the form

pygmy co —lcd2
+b b+g„ (19)

(E„+f3pB, ) i go-
y pm co —lo),

ico, (co—lco, )g„—+(cp —lcp, ) gp ——
3 Ep,e

ypm

(12)

(13)

(cp —lcp, ) g, = (E,—PoB„),
ypm

(14)

where the rf fields are all in the first order.
The boundary conditions that we adopt at the inter-

face ' are

nX(B+ —B )+(n p)(D+ —D )= K,4'
C

n (B+—B ) =0 (15)

n X (E+—E ) =0, n (E+ —E ) =4~cr

where K= cro( 1 —Vp g)v( rp+ g).
It is to be noted that the surface current K conserves

charge, i.e.,

C)C7
+(Vp Vpg Vp) K=O

at (17)

Equations (4) and (11) together explain the essence of the
cyclotron-maser action.

Substitution of the assumed form for the perturbed
terms yields the results

(co —lcd, ) $„+i cp, ( co leo, )gp—

4~~ pk

b++b g„+i/@ —, (b+ —b —)g', (20)

It is now possible to derive a dispersion relation that
determines the onset of instability. First, substitution of
Eqs. (19) and (20) into Eqs. (12) and (13), the use of the re-
lation E„+PpB,= [I+Po(co/k@c)]E„, which was derived
by using Faraday's law for the free-space waves, leads to
the dispersion relation. In practice, the dispersion relation
involves higher transcendental functions of co for a given
mode number and other physical quantities. However,
one important simplification is possible, for Eq. (11) sug-
gests that the radiation emission by an electron in a mag-
netic field is at its peak near the cyclotron resonance
co=leo, +is, so that the normal modes associated with the
eigenvalues computed in some small region around the
resonance will display an exponential growth for the wave
in resonance. Therefore, the wave admittance functions
b+ can be approximated by evaluating them at ~=leo, .
Second, if this frequency is written as co=leo, +6'~ with
6~~ small, the dispersion relation reduces to a polynomial
in 6'~ of order seven, which can be easily seen by inspec-
tion of Eqs. (12) and (13).

The detailed expressions of the coefficients of the poly-
nomial are complicated functions of k~ and other physi-
cal parameters. Thus the determination of eigenvalues
presents a difficult problem that must be treated numeri-
cally. It is, however, to be noted that in spite of their
complex expressions, the coefficients are all real and
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hence the roots will be either real or will occur in complex
conjugate pairs. This serves to check the numerical accu-
racy of the solutions to the polynomial.

For given physical quantities (see the legend in Fig. 2),
numerical studies show that the polynomial possesses, in
addition to three real roots, two pairs of complex conju-
gate roots depending on the mode number. This con-
clusion is borne out by a detai1ed numerical study in
which geometrical and other parameters are varied to
check the numerical stability. Full details will be present-
ed elsewhere, ' and we summarize here certain features of
the results. First, the instability invariably occurs for
long-wavelength perturbations when the conducting walls
are close to the beam. In particular, there are two fast
growing waves. Each wave has its own domain of the
mode number for which the instability occurs. One is
stable to long-wavelength perturbations (up to I= 1 1) but
is unstable to short-wavelength perturbations (see Fig. 1).
The other depends, in a complex way, on the wave admit-
tance (see Fig. 2). Second, in addition to the above fast
growing waves, there are two slow waves; one of which
has a negative phase velocity.

We may now understand what physical mechanism
drives these instabilities. From Eq. (11), it is not difficult
to see that the fast wave, which is stable to long-
wavelength perturbations, arises from the relativistic ef-
fect (i.e., the cyclotron-maser action). This follows from
the fact that if a microwave is emitted by the electrons
through the cyclotron resonance interaction, the frequen-
cy of the wave is determined by ~=leo, . Hence, for a
given magnetic field, the interaction at higher cyclotron
harmonics is necessary to generate microwaves. This has
been tested by varying the external magnetic field
strength. We notice that for given geometrical parameters
the maximum growth rate is found near the mode number
1=28 for which b++b =0. One can see from Eqs. (19)
and (20) that the maximum of the mean rf fields passes
through the peak position i=28; these rf fields are the

prime driving force for the space-charge bunching. The
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FIG. 2. The growth rate for the fast wave is plotted against
the mode number.

other fast growing wave arises from a strong coupling of a
fast wave to the slow wave with negative phase velocity,
which is well known. The slow wave, which is a space-
charge wave, can modify the TE mode supported by the
waveguide. This explains why this fast wave depends
strongly on the wave admittance. Here again the max-
imum growth rate is found near the mode number /=28.
It should be noted that in the short-wavelength limit
(1&40) the instability can be damped out by viscosity or
other dissipative processes. Thus the instability in this re-
gime may not be as important as the one in the long-
wavelength perturbations.

One may further ask whether the two waves can be dis-
tinguished in experiments. The answer is no, because
their phase velocities become almost identical in the wave-
length regime in which the two instabilities occur simul-
taneously.

Most interesting is the critical charge density,
uo ——l. 7 & 10 statC/cm, below which the beam is
stable. Perhaps, below the critical charge density, the
fluid density is too low to support the azimuthal charge
bunching, which seems plausible but has not been proved.
Finally, we note that if one moves the outer conducting
wall to a sufficient distance (12.5 cm), the beam becomes
stable to long-wavelength perturbations (up to 1=7),
which is in qualitative agreement with the analysis by
Levy. '
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FIG. 1. The growth rate for the cyclotron modes is plotted
against the mode number I for given geometrical and other
physical parameters (see the legend in Fig. 2).
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