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We derive an expansion of the scattering matrix for any reasonable atomic potential V(r) by using
the Sturmian expansion of the Coulomb Green's function. We demonstrate the method for the case
where V (r) is a Coulomb potential plus a Yukawa potential.

The purpose of this paper is to describe a simple
method for calculating, in a discrete basis set, the irregu-
lar solution ukt(r ) to the radial Schrodinger equation for a
long-range potential V(r). From this solution we may
calculate the scattering matrix for V(r ) on both the physi-
cal and unphysical sheets. While results were previously
obtained' for potentials that decrease as 1/r and 1/r at
large distances, to our knowledge we give the first demon-
stration that a convergent expansion of the scattering ma-
trix can be obtained, using a discrete basis set, for poten-
tials that are Coulombic at large distances. We do not in-
voke complex coordinate techniques, nor do we require
our basis functions (Sturmian functions) to be square in-
tegrable in the usual sense.

Using atomic units throughout, we assume that

where W(r ) is a short-range potential, that is, rW(r ) van-
ishes for r —~. We also assume that W(r) has a uni-
formly convergent expansion in powers of r:

l
qkt(r)=e'"' g u„r",

n= —l

where the coefficients u„are determined by substituting
the above expansion into Eq. (3) and equating similar
powers of r using Eq. (2). This yields the recurrence rela-
tion

,' [l(l + 1—) n(n +—1)]u„+&

—(Z+ ink)u„
n+1 —1

+ g Wu„~ ——0,

with u„=0 if
~

n
~

&1. We start this recurrence relation
by fixing the value of u l, the value we choose is linearly
related to the boundary conditions, and so we may take
u t ——1 if we later adjust u t to satisfy Eq. (4).

We now convert Eq. (3) to the integral equation

ukt(r ) = W;r t+ ~ ~2( 2ikr )—
+ dr'gkl r r' W r ukl r

W(r)= g W r
rn = —1

(2)
where gkt(r, r') is the Coulomb radial Ctreen's function ap-
propriate to the boundary conditions satisfied by ukt(r)
We have '

Note that any reasonable potential in atomic physics has
the above form. The irregular function ukt(r) satisfies the
radial Schrodinger equation

1 d l(1+1) Z+ ——+ W(r) Eukt(r) =0,—
2 dr 2r r

subject to the boundary conditions

(k)
ukt(r ) =1VW;r t+ t~2( 2ikr )e—, r —ao

S„t(r)S„t(r')

t+, Z +ink

where the Sturmian functions S„t(r ) are defined as

S„"(rt) =A„t( ikr)'+'—
&( e '"' ~F ~ (1+ 1 —n, 21+2, —2ikr ),

' 1/22'+' (n +1)!
(21 +1)! (n —1 —1)!

(9a)

(9b)

where W', b (z ) is the irregular Whittaker function and X
is a normalization constant. Here k=V2E; we draw a
branch cut along the positive real E axis and take the
branch of k which is positive when E is on the upper edge
of the cut. This defines the physical energy sheet. In Eq.
(4) we introduced the quantity y =Z/k, and the addition-
al phase shift 5t(k) due to the potential W(r)

To determine the form of ukt(r) in the region near the
origin, we expand in powers of r beginning with r . We
cannot expand beyond r owing to the presence of a loga-
rithmic term Thus for. r-0 we have ukt(r)=Pkt(r)
where

with the normalization

J dr S„"t(r)(1 lr)S„"t(r ) =5„.„. (9c)

Note that for E real and positive, the S„"t(r) are un-
damped outgoing waves, and are not square integrable in

the usual sense. If E=
~

E
~

e' &', where tr/2(ttt-
+sr/2, the integral dr'gtt(r, r')f(r') has a convergent

.0
Sturmian expansion if' the function f4(r)=f(re'4') is
such that f4, (r)/r is bounded for r-0 and the integral

r dr f&(r) is finite. We must therefore subtract from
0

ukt(r) the irregular part Pkt(r), and so we introduce a new
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wave function

ukl(r ) ukl(~ ) ti'kl(r ) (10)

which vanishes more rapidly than r' for r -0. It is con-
venient to decompose W(r)ski(r ) into irregular and regu-
lar parts, Akl(r) and Bkl(r), respectively,

However, the condition for this cancellation to occur fixes
the appropriate value of u I. Considering the cancella-
tion of the r term, we should have ( I +akl )d
+f l

—u l =0. Since akl and f l are each proportional
tO u I, we require

W( r ) ti kl ( r ) A kl ( r ) +Bkl ( r )

I —1

Aki(r ) =e'"' g A r
m= —I —1

(1 la)

(1 lb)

To determine ukl(r) we write

ukl(r) = g a„S„"l(r),
n =1+1

(16)

m+1
Am= g Wm nun

n= —I

I
Bki(r)=e'"" g u„r"

n= —I

I —n —j

W(r) — g W r
m= —1

(1 lc) and substitute this expansion into Eq. (13). Using Eq. (8)
and the orthonormality relation expressed by Eq. (9c) we
find that the a„are given by the matrix equation

g C„„a„=b„, (17a)
n'

=0(r') .

We showed previously that

dr'gkI r, r' AkI r' =ukI~ry, I+i/2 —2ikr

I

+ elk!' g f rnl

m= —I

where the f satisfy the recurrence relation

—,
' [m(m+1) —1(1+1)]f +i+(Z+imk)f =A

(12a)

where
oo

kb„= dr(1/r)S„i(r) ( I+a«) W, ~ i+l iz( 2iki —)
I

(1+~ )elk!' g d rm

+ (Z+ink) 'rBki(v)

C„„=5„„—(Z+ink )
' f dr S„l(r ) W(r )S„"l(r) .

(17c)

(12b)

( Z+ilk )fl ——Al (12c)

and hence the f are uniquely defined by the A and are
linearly related to u I. The coefficient akI is given as'

~ki= f l~d l— (12d)

where the coefficients d are defined by Eq. (14) below.
It follows from Eqs. (7), (10), (1 la), and (12a) that

ukl(r) =( I+akl ) Wir i+i~2( 2ikr )—
I

+e' " g f r Al(1)—
m= —I

+ J dr'gkl(r, r')[Bkl(r') + W(r')uki(r')] . (l3)

Equation (13) is an integral equation for the regular part
ukl(r) of ukl(r). Since e ' "ukl(r) vanishes more rapidly
than r for r —0, the terms in r "e'"",

~

n
~

& 1, must cancel
in the inhomogeneous part of this equation. We can,
therefore, write the inhomogeneous part as

I

( I + izkl ) Wiy, l+ 1y2( 2lkr ) e'""—g d-
m= —I

where, with (a) the Pochhammer symbol,

with f =0 if
i
m

i
) 1. Putting m =1 in Eq. (12b) we im-

mediately obtain

i I (1+1 iy )—
gkl( r'r) = —

k 1
M;r l+, ~, ( —2ikr )

k (21 +1)!
X WIr l+, )2( 2ikr ), — (18)

where M, b(z) is the regular Whittaker function, it fol-
lows immediately from Eq. (7) that

ukl(r ) =(1+Dkl ) W;y, l+ l/p( —2i«),
i I (1+ 1 il )—
k (21 +1)!

dr M;& I+&&2
—2ikr W r Qkl

Comparison of Eq. (17a) with Eq. (4) reveals that
Sr(k)

Ne = 1+DkI .

(19a)

(19b)

(20)

All of the above integrals can be expressed very simply in
closed form. Note that while the coefficients a„ tend to
zero as n increases, they do so slowly. The expansion of
Eq. (16) is deficient in that it cannot incorporate the loga-
rithmic branch-point singularity of ukl(r) at the origin.
Recall that ukl(r) behaves as r +'ln(r) for r-0. More-
over, W(r)ukl(r)lr'is not bounded at r=0 if W i&0; it
diverges as W, ln(r), and consequently the replacement
of gkl(r, r') by its Sturmian expansion on the right of Eq.
(13) is not completely justified. This difficulty would not
occur if V(r) were an analytic potential (that is, expand-
able in powers of r ) for then ukl(r) would not have a log-
arithmic singularity.

If we write gkl(r, r') as

( 2l k) (1 m)'
I"(I+1—iy) (1+m)!

(14)

However, we do not know N, nor its phase, and so we
cannot yet determine 5l(k). Indeed, we cannot determine
5l(k) from a consideration of the outgoing wave solution
ukl(r) alone, since the phase shift is defined through the
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TABLE I. Diagonal [N, N ] Pade approximates to the s-wave

phase shift 50(k ), with k in a.u.

5o(k )

TABLE II. Diagonal [N, N] Pade approximates to the p-
wave phase shift 6~(k ).

6](k )

k =0.50 k =1.0 k =0.50 k =1.0
1

2
3
4
5
6
7
8
9
10
11

—0.552
—0.363
—0.437
—1.54

1.53
1.27
1.44
1.35
1.35
1.34
1.35

1.12
1.12

—0.647
—0.668
—0.824

0.195
1.40
1.41
1.33
1.33
1.36

1

2
3
4
5
6
7
8
9
10
11

—1.04
—0.682
—0.325
—0.396
—0.379
—0.636
—0.574
—0.573
—0.557
—0.557
—0.566

1.14
—0.478
—0.666
—0.651
—0.670
—0.617
—0.594
—0.645
—0.546
—0.567
—0.571

interference of ingoing and outgoing waves. We now in-
troduce the regular standing wave pk/(r), which satisfies
the boundary condition pk/(r)leak/(r)~A as r~0, where
A is any reaI number and /)//k/ is the pure Coulomb stand-
ing wave. Hereafter we assume that k is real and positive.
We may analytically continue to complex k; in particular,
we can analytically continue onto the unphysical energy
sheet, because all integrals can be reduced to analytic ex-
pressions. Since uk/(r ) and [uk/(r )]* are independent
solutions of Eq. (3), we can write

Nk/(r ) =puk/(r )+a [uk/(r )]' .

Now pk/(r) is regular at the origin and, therefore,

P4k/(r )+/I[4k/(r )]' =o .

(21)

(22)

Considering just the r ' term we have pu I+qu' I
——0.

It follows that

yk/(r ) =p I u//(r ) —exp(2/k/) [uk/(r )]*I, (23)

where gk/
——arg(u /). From Eqs. (14) and (15) we have

gk/ ——lm'/2 —g/(k) where r//(k) =arg[I (I+1 iy)] is—the
Coulomb phase shift. Since pk/(r ) and /t/k/(r ) both satisfy
real boundary conditions, they are both real (for real k)
and we have

/t/k/(r ) =B sin[kr —,
' lvr+ y ln(—2kr ) +g/(k )+5/(k )],

r —oo (24)

4'k/(r)=
l p l

[uk/(r )e +C.C. ], (25)

where c.c. means complex conjugate. Inserting the
asymptotic form of uk/(r) from Eq. (4) into Eq. (25), us-
ing Eq. (22), and the asymptotic form of the Whittaker
function, we obtain Eq. (24) provided that the phase of N
is unity. It follows that 5/(k) =arg(1+Dk/).

where B is a real amplitude. Now since pk/(r) is real we
must have, up to an overall sign,

To evaluate Dk/ we insert the expansion of uk/(r) into
the integrand on the right of Eq. (19b), and interchange
sum and integral. The integrals are straightforward to
evaluate. However, since the expansion of uk/(r) is not
uniformly convergent, owing to the logarithmic singulari-
ty, the resulting sum may diverge. Nevertheless, because
F(r)=M;r /+/~2( —2ikr)W(r) is an integrable function,
the sum can be made to converge either by expanding
F(r) in terms of a finite number of damped outgoing
waves or by using Fade summation. ' We chose the latter
technique because it yields more rapid convergence,
though it may be less economical since Eq. (17a) must be
repeatedly solved to generate the Pade sequence.

We have tested our method for the potential 8'(r)
=Pe "Ir, where //3=4. 0, A, =2.0, and Z=2. Results are
shown in Tables I and II for the s- and p-wave phase
shifts at two energies. Convergence to within a few per-
cent is fairly rapid, though very high accuracy is difficult
to achieve. We hope to present results of a more thorough
investigation in the future, but we note for now that con-
vergence is slow when k ~&1+—, (near threshold) or
k &&Z (near the accumulation of bound states) or k »X
[F(r) highly oscillatory], though in the latter case the
distorted-wave Born approximation can be used to corn-
pute 5k(k).

Note that in the method of Johnson and Reinhardt, '

Fade summation was used to convert an originally diverg-
ing series into a converging one. In the method of Rescig-
no and McCurdy, ' Pade summation is not required. The
latter authors diagonalize the Green's function, which has
outgoing wave character, in a complex basis consisting of
both outgoing and ingoing waves; in our method gk/(r, r')
is expanded in terms of outgoing waves, while pk/(r) is a
linear combination of ingoing and outgoing waves.
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