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Analytical study of the equation for the longitudinal motion
of particles in a radio-frequency-quadrupole accelerator
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%'e develop a procedure based on the averaging method of Bogoliubov, Krylov, and Mitropolsky

to obtain analytical approximate solutions of the equation for the longitudinal motion of a particle

in a radio-frequency-quadrupole (RFQ) accelerator under the Kapchinskii-Teplyakov assumption.

Our analytical results, which fairly agree (within a few per thousand) with those coming from the

numerical integration of the equation under consideration, are exploited in the case of an RFQ de-

vice with N = 150 cells in which the accelerated particles are protons and for values of the efficiency

A from 0.05 to 0.5. Starting from an injection energy of 10 keV, a final energy of about 1.5 MeV is

achieved. Our procedure may be applied-to other fundamental problems arising in the project of an

RFQ accelerator, such as the study of the equation for transversal oscillations.

I. INTRODUCTION

One of the crucial points in the treatment of a linear ac-
celerator structure is the problem of conciliating longitu-
dinal and radial stability of the particle beam. ' An im-
portant idea in this direction is due to Kapchinskii and
Teplyakov (KT), who proposed in 1970 a radio frequency
quadrupole (RFQ) device where the rf field can be used
both for acceleration and transverse focusing. ' Among
the notable functions provided by an RFQ, we mention
the possibility of accepting a low-velocity beam and ac-
celerating it to an energy suitable for injection into a
drift-tube linac. ' A schematic drawing of an RFQ four
vanes resonator is shown in Fig. 1.

As far as we know, so far the equation of motion
governing the beam dynamics of a particle in the KT
framework has been investigated by means of numerical
techniques only. In this work we resort to an analytical
procedure to obtain an explicit approximate solution of
the longitudinal motion coming from the KT expansion.
Our calculation is carried out in absence of space charge

contributions. Our approach, which is based on the
method of averaging developed by Bogoliubov, Krylov,
and Mitropolsky ' (BKM},may also be applied, in princi-
ple, to the study of the transversal oscillations of the par-
ticles.

In. Sec. II we write the equation for the longitudinal
motion of a nonrelativistic particle starting from the
quasistationary KT expansion at the lowest order. In Sec.
III we exploit the averaging method to find an approxi-
mate solution of the equation reported in Sec. II. Section
IV contains a discussion on the comparison between
analytical and numerical results and some concluding re-
marks. Finally, in the Appendix details of calculation are
presented.

II. EQUATION FOR THE LONGITUDINAL
MOTION

Let us consider the scheme of Fig. 1 and assume a
cylindrical coordinate frame. Then in the quasistationary
approximation the electric potential for a four vanes reso-
nator with quadrupole symmetry is '

U(r, g,z, t) = Up(r, g,z)sin(cot +P), (2.1)

FIG. l. Schematic (front and side) view of an RFQ resona-
tor.

where ro=27r/T, T is the period of the rf and P is the
phase of the injected particle.

The assumption underlying (2.1) is verified whenever
the free-space wavelength A, of the rf is large in compar-
ison with the radial dimension of the beam.

The static part of the potential (2.1} obeys the Laplace
equation and is given by
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Uo(r, g,z)= g A, r ' '+"cos[2(2s+1)g] C = (q VAk) /(2M), (2.9)

+g g 8»I2, (nkr) cos(2sg) cos( nkz),
n s

(2.2)

U =( V/2)[X(r/a) cos(2$)

+AIo(kr)cos(kz)]sin(cot +P), (2.4)

where A„B are constants related to the shape of the
machine, I2, is the modified Bessel function of order 2s,
k =2m/PA, is the wave number, where A, and Pc are,
respectively, the rf wavelength and the speed of the parti-
cle.

Substituting (2.2) in (2.1) we obtain the so-called KT ex-
pansion which reads

U=[Aor cos(2$)+B,oIO(kr)cos(kz)]sin(cot+/), (2.3)

at lowest order. A more convenient notation for (2.3) is

and q, M are the charge and the rest mass of the particle,
respectively.

We observe that the wave number k is connected with
the velocity of the particle and is a characteristic of each
cell. Furthermore, from the synchronism condition be-
tween the particle and the rf field, it follows that the in-
tegration of Eq. (2.8) for each value of k yields the cell
length z in such a way that kz =m, which is just the half
period of the rf field itself.

III. APPROXIMATE SOLUTIONS

Equation (2.8) is a nonlinear second-order ordinary dif-
ferential equation with a periodic coefficient, which can
be suitably analyzed in our context within the averaging
method of BKM (Refs. 6 and 7). This procedure can be
applied to build up approximate solutions of equations in
the standard form

where V is the difference potential between adjacent pole
tips,

dxk

dt
=eXk(t, x»x2, . . . , xn) (k =1,2, . . . , n), (3.1)

X =1—BIO(ka),

A =(p —1)/[p Io(ka)+ID(pka)],

(2.5)

(2.6) Xk(t, x ~,x2, ~ . ~xn) —$ e Xkv(x I x2~ ~ ~ ~ ~xn) ~ (3.2)

in which e is a small parameter and Xk can be expressed
by

aU =(kA V/2)IO(kr)sin(kz)sin(cot +P),
BZ

(2.7)

and a and p are the parameters characterizing each cell
(see Fig. 2).

The longitudinal component of the electric field is
given by

where v are constant frequencies.
A brief formulation of the principle of averaging is re-

ported in the Appendix for the reader's convenience.
In order to put Eq. (2.8) in the form (3.1), let us per-

form the change of variables

where the quantity A V is the potential difference between
the beginning and the end of a unit cell.

In the case of nonrelativistic particles, from (2.7) the
equation of motion

d Z =C sin(kz)sin(cot +P) (2.8)2

arises, where

~=cot, g =kz —v. .

Then Eq. (2.8) becomes

'g 6'

dH 2
=—[cos(g —P) —cos(g+2r+P)],

where the (adimensional) parameter e is defined by

e(kclco )'

(3.3)

(3.4)

(3.5)

V+
2

dX =eF (r,X), (3.6)

which is required to be less than one in order that the
BKM method may be applied.

Using hereafter a vectorial notation, Eq. (3.4) takes the
form

where X and F are the vectors

X=(Xi,X2) (3.7)

FIG. 2. Geometrical picture of a unit cell. The role of. the
parameters a and p is shown, together with the voltage configu-
ration at a given time to.

F(r,X)=(X2,—,
' [cos(X~ p) cos—(X&+—2v'+p)]), (3.8)

with

] dX)
XI ——q, X2 ———

7
E' dv

(3.9)

where T denotes the transposed operation. As explicit
function of r, F is of period m.
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According to the BKM method, now we make the
averaging with respect to the variable ~ over the interval
(O,n ). We denote by

where sn stands for a Jacobi elliptic function of parameter
m, and

2

k=(kt k)
the solution of the resulting equation, namely

GE =eFo(g),
d~

(3.10)

(3.11)

m =sin —P+ —+ k —1
. z1 m. 1 Uo

2 2 2g co

a= —sn sin —P+ —;m1 . 1

2 2

(3.15)

(3.16)

where

+0(k) (k2 cos(kl

Starting from the initial conditions

Xt(0) =gt(0), Xp(0) =gt(0),

(3.12)

(3.13)
X=g+QPX„(r,g), (3.17)

being Uo the initial velocity of the particle.
An improved approximate solution of Eq. (3.6) can be

written as

g't ——2arcsin m sn w+a;m +P+—,
2 2 ' (3.14)

the function g can be considered as the first approxima-
tion solution of Eq. (3.6). Solving (3.11), we obtain

where the vectors X„have to be determined in such a way
that Eq. (3.6) is satisfied at any order in the parameter e,
with the initial conditions X„(0,$)=0.

As shown in the Appendix, we derived the following
higher-order contributions:

Xt ——(0, ——, sin(gt+2~+P)+ —, sin(g t+P))
Xp ——( —,

' cos(gt+2i+P) ——,
' cos(g+tP)'+ —,'csin(gt+P), (gp/4)[ —,

' sin(gt+2r+$) —,
'

sin(gt+—P) —rcos(gt+P)])

X3—( (gp/8 )[ cos( g't +2r+ P ) +cos( gt +P ) —2r sin(gt +P )—2H cos( g& +P )]
—,
'

I +, , cos[2(gt+P)] —+, cos[2(g, +2'r+P)]+ —,
'

cos[2(/|+AD)] ——,
'

cos(2$&)

+ —,
' cos(gt+P)cos(gt+2r+P) —,

' cos (g—t+P)+(r/2)sin(2$t)

+sin(gt+P) [ —(r/2)cos(g, +2~+/)+ —,
'

sin(g, +2r+P) ——„' sin(g, +P)]
+(2/2)cos(2g'&) —gq[ ——,

' sin(g't+P)+ —,
' sin(g&+2~+/) icos(gt +~~—P)sin(g&+P)] I )

(3.18)

(3.19)

(3.20)
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FICr. 3. Behavior of the parameters A and P for the whole machine (corresponding to a number of cells X= 150).
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Inserting (3.18), (3.19), and (3.20) in (3.17), we get a third-
order-approximate solution of Eq. (3.6).

IV. DISCUSSION
800—

The third-order analytical approximate solution derived
in Sec. III has been tested in the case of an RFQ device
with X= 150 cells in which we have taken protons as par-
ticles to be accelerated. The behavior of the efficiency A
and that of the phase P have been chosen as follows (see
Fig. 3):

700—
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5GG—

3 =0.05 ~ 1+—1+cosa. 1+9 Ã —1

2 119
400—

P = —85'+(X —1)
55'
119

for 1 (X& 120, and

2 =0.5, P= —30',

for 120(X(150.
Starting from an injection energy of 10 KeV, a final en-

ergy of about 1.5 MeV is achieved. The length of the
whole machine turns out to be of 3.51 m.

As one expects, since the particle velocity (in the synch-
ronism condition) is growing, then the value of the wave
number tends to decrease accordingly. This is shown in
Figs. 4 and 5, respectively, where the analytical values of
the proton energy and the wave number are quoted in
terms of the number of cells.

The solution found in Sec. III has been compared with
that coming from the numerical integration of Eq. (2.8).
The last has been integrated by means of a fourth-order
Runge-Kutta predictor-corrector method. We point out
that the values of the physical quantities (proton energy,
wave number, etc.) calculated analytically agree with the
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FICx. 5. Plot of the analytical value of the wave number k vs
the number of cells N.

corresponding ones determined via the numerical integra-
tion within a few per thousand. Anyway, we observe that
in the case in which only the lowest-order term of the ex-
pansion (3.17) is taken into account, the analytical results
turn out to be rather close to the numerical ones (within
1%). Of course, this fact might be of help to accelerator
designers, in order to obtain some useful indication for a
preliminary study of an RFQ device.

It is also important to note that e remains less than one
along the whole accelerator. Moreover, since in a nonrela-
tivistic approximation we have @=0.5(A V/Vo)'~, where
Vo is the injection voltage in a cell (eventually the first), it
follows that the accuracy of the solution does not depend
on the mass of the accelerated particle.

Both for checking the validity of the analytical solution
and its computer formulation, many solutions have been
tested with the usual algebraic test where each cell is di-
vided into a suitable number (40) of intervals and the ac-
celeration in each interval is held constant.

Clearly, an analytical solution offers the possibility of
optimizing an RFQ structure in a reasonably short com-
putation time. Finally, we remark that the procedure
developed in Sec. III may be employed in principle to
tackle other fundamental problems arising in the project
of an RFQ machine. One of these is concerned with the
study of the equation for the transversal oscillations.

I

60 80 100 12G 140
N

FIG. 4. Energy E in MeV of the particle obtained analytical-
ly vs the number of cells N.

APPENDIX

Here we report a brief introduction on the method of
averaging (see Ref. 7 for a deep analysis of the mathemat-
ical foundations), and sketch our procedure for deriving
the approximate solutions (3.18), (3.19), and (3.20).
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In doing so, let us consider the system of equations

dx =@X(t,x),
dt

{A1)

1
Xo(g) = lim —f X(t,g)dtr~~ T (A3)

The crucial point of the BKM method is that under very
general conditions (see Theorem following), the difference
x(t) —g(t) may be made as small as desired. In fact, the
following Theorem holds (see Ref. 7, Chap. 6, for the
proof):

Theorem. Let us suppose that X(t,x) satisfies the con-
ditions:

(i) for some domain D two positive constants, say M
and X, exist such that for all values of t )0 and for any
points x,x',x" of D, the inequalities

iX(t,x)
i

&M; iX(t,x') X(t,x")
i

—&A, ix' —x"
i

are fulfilled;
(ii) for all x in D the limit

(A4)

where x,X are n-component vectors, e is a small parame-
ter, and each component of X is of the type (3.2).

Let us build up the averaged equation

d
dt

=eXo(g),

where Xo(g) is expressed by
r

1
Fo(g) =—f F(r,g)d~ . (Ag)

On the other hand, the difference x (w) —g(r) is given by
(3.17). We have limited ourselves to deal with the expan-
sion

x(~)=/+FAX~(r, g)+e Xq(r, g)+e X3(&,g) . (A9)

Introducing (A9) in (3.6), expanding the function F(r,x)
in a Taylor's series in the parameter e and equating the
coefficients of the corresponding powers of e in both sides
of (3.6), we are led to the following relations:

BX)(r,g) =F(r,g') —Fo(g),
O'T

r}X2(r,g)
r)'r

(A lob)

is valid. In (A6), x =x(t) represents the solution of the
equation

dx =@X(t,x), (A7)
dt

which coincides with g(r) 'at r =0. (A p neighborhood of
a set A means the set of all points whose distances from
A are less than p. }

In our case, where Eq. (3.6) is under consideration,
F(r,x) is a periodic function of period m. We have, there-
fore,

] T
lim —f X(r,x)dt =Xo{x)T~~ T (AS)

X2 — F(r,g) —Fc Xp(r, g)
a ~ a

BP Bg'
r

exists. Thus, corresponding to any positive p and q as
small as desired and for as large a value of I. as wanted,
one may find a positive eo such that if g=g(t) is a solu-
tion of the equation

+—XX( Fr,1

BPBg~
(A10c)

where u, P=1,2 and the summation convention over re-
peated indexes is understood.

We recall that

X„(0,$)=0 . (Al 1)

ix(t) —g'(r)
i &tl (A6)

defined in the interval 0& r & ec and lying in the domain
D along with its entire p neighborhood, then, for
0 & e & eo, in the interval 0 & r &l. /e the inequality

As a consequence, X',"=0; furthermore, since F(r,g') is
linear in the variable g'q, the third term in (A10c) is van-
ishing. Finally, the quantities (3.18), (3.19), and (3.20) are
obtained respectively by integrating Eqs. (A10a), (A10b),
and (A10c) with the initial conditions (Al 1).
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