
PHYSICAL REVIEW A VOLUME 35, NUMBER 9 MAY 1, 1987

Renormalization of period doubling in symmetric four-dimensional volume-preserving maps
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%e have determined three maps (truncated at quadratic terms) that are fixed under the renormali-
zation operator of pitchfork period doubling in symmetric four-dimensional volume-preserving
maps. Each of these contains the previously known two-dimensional area-preserving map that is
fixed under the period-doubling operator. One of these three fixed maps consists of two uncoupled
two-dimensional (nonlinear) area-preserving fixed maps. The other two contain also the two-
dimensional area-preserving fixed map coupled (in general) with a linear two-dimensional map. The
renormalization calculation recovers all numerical results for the pitchfork period doubling in the
symmetric four-dimensional volume-preserving maps, reported by Mao and Helleman [Phys. Rev. A
35, 1847 (1987)]. For a large class of nonsymmetric four-dimensional volume-preserving maps, we

found that the fixed maps are the same as those for the symmetric maps.

I. INTRODUCTION x'= —a iy +2f (x,u),

Since the discovery of self-similarity and universality in
period doubling, the renormalization group has played a
central role in the study of transition to chaos. The fixed
map of the period-doubling renormalization operator for
one-dimensional dissipative maps, ' and for two-
dimensional (2D) invertible area-preserving maps have
been found. However, the fixed map for symmetric four
dimensional (4D) volume-preserving maps has not been
determined yet, even though a numerical period-doubling
study for such maps, reported in Ref. 3, suggests that
there exist three such maps.

In this paper, we find (up to quadratic terms) three
fixed maps for that class of 4D maps. The E map con-
sists of two uncoup/ed 2D area-preserving maps. The L
map consists of two coupled (in general; uncoupled only if
the map is "symplectic") 2D maps, one of which is the
(nonlinear) area-preserving fixed map, and the other being
a linear map. Finally, the U map is the same as the L
map but with different coefficients in the linear part. All
scaling properties (such as Feigenbaum constants 5's and
a' s,P's) numerically found for that class of 4D map are
recovered here by these three fixed-point maps within 1%
error or so.

We have also extended the renormalization scheme to
nonsymmetric DeVogelaerelike 4D maps. These maps
contain two nonsymmetrically coupled 2D DeVogelaere
maps. For these maps, we found the fixed maps are the
same as those for the symmetric maps mentioned above,
i.e., the E, L, and U maps.

II. SYMMETRIC FOUR-DiMENSIONAL
VOLUME-PRESERVING MAPS

u'= —a2v +2f (u, x),
(2.1)

T=R(T), R(T)=BT B (2.2)

where T and R(T) are maps within the truncated space.
Thus R is the period-doubling operator that is composed
of squaring ( T, i.e., composing with itself and truncating
back to the chosen space) and rescaling (B) operators.
The truncation does not commute with all choices of B,
so that thought must be given to the desired definition of
R.

These maps have a number of symmetries. They can be
factored into the two involutions

f(x,u)=b+cx+dx +eu +fu +gxu .

This can be regarded as a truncation from the full
infinite-dimensional space of maps to an eight-
dimensional space. The parameters ai, a2, b, c, d, e, f,
and g, are the coordinates of this space. The truncation
of the map at quadratic terms in x and u, and terms in y
and U, provides a space of maps that is large enough to
provide a quite good approximation to the true fixed
maps of the period-doubling operator. At the same time,
this space is small enough to be tractable.

We search for maps that satisfy the renormalization
equation

Consider the following two symmetrically coupled 2D
area-preserving maps:

T =(TSI )Si,
Si —1, (TSI ) =1, (2.3)
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where S] is given by X=X, U=U,
Ix =a ]y, u =a2v

1
X, V

a)

and also into the involutions

T =(TS2)S2,

S2 ——1, (TS2) =1,
where S2 is given by

I Ix =a2U, u =a )y,1, 1
u, v = x

a) a&

(2.4)

(2.5)

(2.6)

Y= Y— F(X, U),
1

V= V— G(X, U),1

2

(2. 1 1)

X'= —A i Y+F(X,U),

Y' = [X F(X—', U') ],
1

U'= —A2 V+ G (X, U),
(2.12)

V'= [ U —G (X', U')],
2

which is a DeVogelaere transformation, makes the fixed
plane of TS~ of Eq. (2.3) and (2.4) above a coordinate sur-
face, Y =0. Thus our map becomes

This second symmetry depends on the change of order of
the arguments of the function f in the first and third of
Eqs. (2.1). Now S& and S2 commute, and their product
C =S]S2 commutes with T. The latter is given by

x =u, u =x
a2 a)

U, U

a] a2

(2.7)

X= —,(x +u), U= —,(x —u),

There is a two-dimensional plane, x —u =0 and
a&y —azU =0, that is fixed under C. If an orbit starts on
this plane, it remains there forever. These orbits are
called "in phase. "

The orientation of the rescaling that goes with period
doubling is closely associated with the symmetries of the
map. Thus the rescaling operator B can be simplified
upon choosing coordinates for the maps in which the
symmetries are simple. Thus we introduce the new coor-
dinates

where F(X,U) and G(X, U) are expressed in Eq. (2.10).
In this coordinates the dominant period doubling occurs
along the X axis, and the rescaling operator B is diagonal.

This map is volume preserving, but additional condi-
tions are required for it to be symplectic, that is, for the
map to be a canonical transformation. Specifically, when
the canonical pairs of variables are chosen to be (x,y) and
( u, U) the map is symplectic when 2 A2F =A

~
G. There are

many other possibilities for writing maps of this class as
canonical transformations, each with its own condition.

III. RENORMALIZATION CALCULATION

Iterating the map (2.12) twice, truncating the expres-
sions for X" and U" at terms of order X,U, Y, V, and
rescaling X, Y, U, V by a&, P&,az, /3z, respectively, we have
for the new map R(T):

X"= —Y 2 A &(C+2B) + [2a~B (1+C +B)]

1 1Y= (a ~y +aqu), V= (a &y
—

aalu),

2Ai 2Ap

in terms of which the map is given by

X'= —A i Y+2F(X,U),

Y= 'X,
U ' = —A 2 V+ 26 (X, U ),

(2.8)

(2.9)

+X[—1+2C(C+2B)]+X (C+2B+C )

+U' 2 F(C+2B+E')
CX2

U"= —V 2 A2(E+GB) +U[ —1+2E(E+GB)]
P2

+XU G(E+GB +CE)2
0.'&

(3.1)

Here a symmetry of the map of Eq. (2.1) takes the form
that F(X,U) is even in U and G (X, U) is odd in U.
These functions are truncated at quadratic terms, yielding
a new set of parameters:

Truncation for the expressions for Y" and V" are chosen
to preserve the form of Eq. (2.12), and are thus not in-
dependent. This new map R(T) should have the form of
map (2.12). Thus R is a map from

F(X,U) =B+CX+DX'+FU',
G (X, U) =EU+ GXU .

(2.10)
to

P =(A, , A2, B,C,D,E,F, G)

These coordinates have the effect of making the fixed
plane of the commutator C of Eq. (2.7) a coordinate sur-
face, U= V=O. A further transformation,

P' = (A ', , A 2,B',C', D', E',F', G'),

and from Eq. (3.1), it is given by
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Y: A'i ——2 A, (C+2BD),

1: 8'= 2aiB (1+C +BD),
X: C'= —1+2C(C+2BD),

2 D(C+2BD+C ),X D'=

U: F'=2 2F(C+2BD+E ),
CX2

CX2
V: A2 ——2

~ A2(E+GB),

U: E'= —1+2E(E+GB),

(3.2)

eigenvalues of the following (parameter) perturbation
about the fixed maps:

aP'
BP p

(3.3)

This 8)& 8 matrix has eight eigenvalues, A.;, i =1,2, . . . , 8.
Four of them are I, corresponding to

BF'
BF p

(3.4)

The remaining four eigenvalues are eigenvalues of the fol-
lowing two 2&2 matrices:

XU: G'= 2 G(E+GB+CE) .
B(B,C) p

The accumulation value of parameter (denoted by P )

can be determined by setting P'=P=P in Eq. (3.2) and
solving it for P . Then A&, A2, D,F sets the scales of
Y, V,X, U, and thus are arbitrary. Hence these equations
also determine a„P„a2, and P2. We found, see Appen-
dix, 16 solutions for P„(and a' s,P's) listed in Table I.
The map (2.12) or its equivalents, the map (2.1) and (2.9)
with the 16 different P 's are the fixed maps of the
period-doubling renormalization operator. But, as will be
discussed in Sec. IV, only three of them are fixed maps of
the pitchfork period-doubling renormalization operator.

For all these 16 fixed maps, one can determine the

1+2a,B + 8 2a&8 + 8 (2C+ 1)
4 2

A]

4(8 +C)

g(E G ) 4E+2BG 28E
2G(C+1) 1+ BG

p

OO

(3.5)

(3.6)

TABLE I. Sixteen solutions of Eq. (3.2) when P'=P, i.e., 3& ——A&, B'=B, C'=C, We have set the scales in X, Y, U, and V
(i.e., D, A &, F, and A2) being 1. Note that the solutions 1,2,3 (denoted by E,L, U map) are the fixed maps for the pitchfork period-
doubling bifurcation without degeneracy.

1 E map
2 L map

—0.9282 —0.1959 —4.0280 16.5338 8.9474 —4.0443

CX1

+2.9116
13'

2(x 2

—4.4510 1.8762
1

3 U map
4

—0 5 0 +3.8104 —a2 —2 1

1/(2 C ) 13.4565 Imaginary Imaginary 32.3107 2.0263

1.2192 2.1689 9.9476 5.3612 7.1150 14.8328

CX1

+5.0256

—0.5 0 +3.2148
1/(2C ) 4.1814 2.3655

Di
2(x 2

—CX2

24.6005

—4.2333

—2
10.5915

1.9246
1

1

2.0547

9
10

0.3179 —0.7782 0.9265 —0.2640 2.8233 —1.7032

C
1

al
+ 1.2605

Pi
2Q)

2.2569 —1.7529
4 1

11
12

—0.5 0 0.4463
1/(2 C ) 0.8815 0.9994

—CX2

2.2100
—2
3.9565

1

1.5108

13

14 —0.5 +V 1P

15
0.5 0.5 0.5

—0.5

Imaginary Imaginary

1+
2
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The two eigenvalues of M; (i =1,2) are called 6; and 6,',
and listed also in Table I ~

IV. THREE FIXED MAPS
OF PITCHFORK PERIOD-DOUBLING

RENORMALIZATION OPERATOR

Among the 16 fixed maps listed io Table I, the first
three recover the numerical results of period doubling
(following so-called E, L, and U bifurcation "path") in
the symmetric 4D volume-preserving maps.

The map (2.12) [or its equivalent maps (2. 1) and (2.9)]
under scale changes in Y, V, U and under a translation
X~X+X* (X* independent of X, Y, U, V) is still a fixed
map of the renormalization operator R with the rescaling
operator B replaced by B*(X)=[a,(X —X*)]. In order
to obtain a compact form of the fixed map, we thus set
A&

——A2 D=F =——1 (i.e., make scale changes Y~ Y/A, ,
V~ V/A2, X~X/v D, U~UI&F ), and let the con-
stant term in F(X, U) be zero (i.e., translate X by
X"= —, [ ( 1 —C) —[(1 —C) 4B] ' ~—

I . The fixed map (2.9)
becomes

X'= —Y+2(CiX+X + U ), C, =1—(1—C 4B)'i2, —
Y'=X,

(4. 1)U'= —V+2(C2 U+ GXU), C, =E + 1/2G (C) —C),
V'=U .

Note this compact form has only three parameters (C~,
C2, and G). Also note that the rescaling B* and trunca-
tion do not commute, and that if the order is reversed the
renormalization form" of Helleman is recovered.

For the solution 1 in Table I, C
~

——Cq
= —1.2678, . . . , G =2, and therefore the map (4. 1) can
be transformed into

Thus we call this fixed map L map. Similar discussions
can be made for the third solution (called U map) in Table
I. The L and U map contain the 2D (nonlinear) area-
preserving fixed map coupled with the linear 2D map
with the linear coefficient 2C2 ——2 and —1, respectively.

The solutions 4, 9—12, 15, and 16 have at least one of
the orbital scaling factors (a, , a2, p~, p~) either imaginary
or less than one. They are thus not fixed maps for the
pitchfork period-doubling bifurcation.

The solutions 5—7 have C& ——C2 ———1.2727. . . , and
G =-2,0,0, respectively. They are same (in error of 1% or
so) as the solution 1—3. We therefore consider them as
degeneracies of the E, L, and U map. The solution 8 cor-
responds to the map (4. 1) with C, = —1.2727. . . ,
C2 ——-1.9800. . . and G =4. 1814. Suggesting these values
of parameters (C, , C2, and G) being the accumulation
values of parameters in the period doubling, we numeri-
cally searched the period-doubling sequences and found
6~ ——8.721, 62 ——4, which means the solution 8 also corre-
sponds to L route.

The solutions 13 and 14 correspond to the tangent bi-
furcation because two of eigenvalues of their Jacobian ma-
trix at their fixed point (Xo ——Y'o ——Uo ——Vo ——0 when
B =0) are 1.

Note that for the linear 2D map, eigenvalues of its
Jacobian matrix are e —', where cost9= C2. Thus
C2 —1, ——, correspond to 0=0,2~/3, for which the
eigenvalues e —" interchange when the period doubles.

In sum, among the 16 solutions in Table I, the first

x'= —y+2(C, x+x ),

u'= —V+2(C)u+u ),
(4.2)

by x=X+U, y= Y+V, u =L —U, u= Y —V. Obvi-
ously, this map consists of two uncoupled 2D area-
preserving maps in the normal form. This map is
equivalent to the map (2. 1) with e =f =g =0 (i.e., no
coupling term). Hence, this fixed map corresponds to the
E route in Ref. 3, and so is called E map. Around this E
map the R has relevant eigenvalues 6] ——8,9. . . and
62 ———4.45. . . , which are quite close to the numerical re-
sults of the Feigenbaum constant 6] ——8.721. . . and
62 ———4.404. . . for the E route. The eigenvalue 6& is the
eigenvalue a& associated with a shift of the X coordinate,
but it is not clear whether 62 is a further relevant eigen-
value.

For the solution 2 in Table I, the map (4. 1) has parame-
ters C& ———1.2678. . . , C2 -—- 1, and 6 =0, which means
the 2D UV map is linear. The relevant eigenvalues
6~ ——8.9. . . and 62 ——4 are very close to the numerical
values (5, =8.721. . . , 52=4) for the L route (see Ref. 3).

2 15 10
L ~

6 C 11

u i3A'
7

9.e
r ~ 12

.. '16

8
.y13
I

I

I

I

l

I

I

2l
I

I

I

&14
I

I

FIG. 1. The 16 fixed maps in Table I. They are marked by
the heavy dots, and denumbered by the bold Arabic numbers.
TrJl and Tr J2 are traces of the two matrices Jl and J& into
which the Jacobian matrix decomposes, see Eq. (4.3). The
square is stable region. The solid, dashed, and dotted lines
denote respectively the pitchfork period-doubling bifurcation
line, the tangent bifurcation line, and the complex bifurcation
line.
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J) 0
J 0 J (4.3)

Traces of J& and J2 for the 16 fixed maps are calculated
and plotted in Fig. 1. The square in the figure is stable re-
gion. The left side of the pitchfork bifurcation line AC is
the region for pitchfork bifurcation, and thus the E, L,
and U maps are located there.

three are the fixed map of the pitchfork period-doubling
renormalization operator without degeneracy. They re-
cover the numerical results in error of 1 /~ or so.

If the map (2.12) [or its equivalent maps (2.1), (2.9)] is
symplectic (i.e., 2A2F =A1G, see Sec. II), then F = 1,0,0,
respectively for the E, I., and U map. Thus all three
fixed maps (not only E map) consist of two uncoupled 2D
maps. This is the only difference between the fixed maps
for the class of symmetric volume prese-rving maps and
those for its subclass, the symmetric symplectIc maps.

To end this section, we plot all 16 fixed maps in Fig. 1.
The Jacobian matrix J of the map (4.1) at Xo = Yo
= Uo = Vo =0 decomposes into two 2 X 2 matrices J& and
J2,

F(X,U) =B1+C,X+D,X +E1U+F1U1+G1XU,
(5.3)

E]+2B2Fi +B]G] ——0 . (5.4)

Similarly, the coefficient of Y in U" expression should
also be zero, i.e.,

C2+2B )D2+B2G2 ——0 . (5.5)

The other coefficients in X" and U" expressions give re-
cursion relation for the parameters:

G(X, U)=B2+C2X+D2X +E2U+F2U +G2XU .

If EI ——G& ——B2 ——C2 ——D2 ——F2 ——0 we come back to the
symmetric case, see Eq. (2.10).

We perform the same renormalization, as we did for the
symmetric map in Secs. II—IV, now for the nonsym-
metric map (5.2). We iterate this inap twice, truncate at
quadratic terms, and rescale X, Y, U, V by the orbital scal-
ing factors ai, p„az, pz, respectively. Then we have ex-
pressions for X" and U", which are similar to Eq. (3.1).
The coefficient of V in the X" expression should be zero
because V does not appear in X' expression of the original
map (5.2). Hence we have

V. RENORMALIZATION
IN NONSYMMETRIC VOLUME-PRESERVINCJ

FOUR-DIMENSIONAL MAPS

CX)
A '1 ——2 A, Q1, Q, =—Ci +2B1D1+B2G1,

Pi
(5.6a)

B1 ——2a, [B,(1 D, +Q, )+Bz(—E, +BzF, )], (5.6b)

In Secs. II—IV, we dealt with the symmetric volume-
preserving 4D maps. They could be either Henon-like,
such as the map (2.1), or DeVogelaere-like, such as the
map (2.12). Henon-like maps can be transformed into De-
Vogelaere maps by the DeVogelaere transformation (2.11).
In this section, we give a renormalization scheme for non-
symmetric volume-preserving 4D maps, either Henon-like
or DeVogelaere-like.

A nonsymmetric Henon-like 4D map is

x'= —a iy +2F(x,u),

C'1 ———1+2Q 1,
D'1 —— [D1(C1+Q 1 ) +C2F1 +C1Cz G, ],

o.
&

CX)

El =2 E1Q1,
CXp

CX) 2 2F'1 ——2
2 [F1(E2+Qi)+E1D1+E1E2GI] i

CX2

2
G 1

—— [G 1 (C1E2+C2E1+Ql )
CX2

+2( C,E,D1+C2E2F1 )],

(5.6c)

(5.6d)

(5.6e)

(5.6f)

(5.6g)
a&

u'= —azv +2G (x,u),
(5.1) A2

Az ——2 Azgz, Qz= Ez+2B2F2+B162, —
Pz

(5.611)

Bz ——2az[B2 ( 1 Fz + Qz ) +B—1 ( Cz +B1Dz ) ] (5.6i)

where the nonlinear function G (x,u)&F(u, x), so the map
is called nonsymmetric [compare with the symmetric map
(2.1)]. This map can be put in DeVogelaere form,

X'=A
1 Y+F(X,U),

20,'2
Cz = Czgz

2(x p 2 2Dz =
2 [Dz(C1+Qz)+ C2F2+ C1C2G2],

CX]

(5.6j)

(5.6k)

Y'= [X—F(X', U')],
1

U'= —A, V+6(X, U),

V' = [ U —G (X', U') ],
A2

where

(5.2)

Ez ———1+2Ezgz,
2

[F2(E2 +Q2 ) +E1D2+ E1E2G2]
2 2

CX2

2
Gz —— [Gz(C1Ez+CzE, +Qz)

cz]

+2(C1E1Dz+C2E2F2)] .

(5.61)

(5.6m)

(5.6n)
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In order to determine the accumulation values of the pa-
rameters P=(A~, B, , . . . , G~, Az, Bz, . . . , Gz), we set
P'=P, i.e., 2'& ——3&, B& ——B&, . . . , the same as we did in
Secs. II—IV. Among the 14 parameters, four of them
give scales in X, Y, U, V coordinates. They are, say,
D&, A &,F&,A2. The remaining ten parameters, together
with the four scaling factors cz&, P&,az, Pz, can be deter-
mined from the 14 equations. Instead of solving these 14
equations directly, we use a simple way to find the fixed
maps. The way is based on the two constraints Eqs. (5.4)
and (5.5), and on the fact that a fixed map after transla-
tions in X and U directions is still a fixed map. We first
make an X- and an U-coordinate change to have

E) ——0, B2 ——0.
The two constraints, Eqs. (5.4) and (5.5), now are

BiGi ——0,
C2+2B)D2 ——0 .

(5.7)

(5.8)

4, 5.9j

The Eq. (5.8) has two solutions: B~&0 (G, =0) and
B

&

——0. We will discuss these two cases in the following.
When B,&0, G~ ——0, the Eq. (5.6i), using Eq. (5.9),

gives Cz ——0. Then Eq. (5.9) requires Dz ——0. Now Eqs.
(5.6a)—(5.6d), (5.6f), (5.6h), (5.61), (5.6n) are just the same
as the Eq. (3.2) of the symmetric case. Of course, we get
the same fixed maps as listed in Table I, with B, =B,
C~ ——C, Fz F., Gz ————G. The only remaining Eq. (5.6m)
becomes

Fz — Fz(Ez+gz) .=2 2

CXp

(5.10)

When C& ——E2, F2 can be any value because
az ——2(Ez + Qz ). But Fz must be zero when C, &Ez. In
sum, the B,&0 case has fixed maps (5.2) with

F(x,u)=B+CX+X'+ U

G (x, u) =F.U+Fz U'-+ GXU,
(5. 1 1)

where the values of B,C,E,G are listed in Table I; F2 ——0
for solutions 1,5,9, F2 is arbitrary otherwise. The corre-
sponding a ~, P ~, az, Pz values found from- Eqs.
(5.6a)—(5.6n) are the same ones as listed in Table I.

The second case due to Eq. (5.8) is B
~
=0. In this case,

using Eqs. (5.7)—(5.9), we have B, =Bz E, = Cz ——0. ——
Hence the solutions of Eqs. (5.6a)—(5.6n) are the solutions
13—16 listed in Table I.

Linearization around fixed maps yields larger matrices,
and therefore more eigenvalues, when there are more pa-
rameters in the representation of the map. Thus, while
considering an enlarged space of nonsymmetric maps does
not yield any more fixed maps of the Feigenbaum opera-
tor, it does provide more eigenvalues for the ones obtained
in Secs. II—IV.

In the present case, the new eigenvalues that have eigen-
maps that break the symmetry are degenerate with the
eigenvalues whose eigenmaps do not break the symmetry.
Of course they must be counted as additional eigenvalues,
because their eigenmaps are different.

The additional eigenvalues lead to new insights into the
nature of the fixed maps. Consider first the E map. This

map is composed of two area-preserving fixed maps, one
in the (x,y) sector and one in the (u, u) sector. Thus there
are two relevant eigenvalues that are equal to the well-
known relevant eigenvalue of the area-preserving maps,
approximated here as 8.974. In symmetry coordinates,
one eigenmap perturbs the two uncoupled maps together,
preserving symmetry. The other eigenmap perturbs the
two uncoupled maps oppositely, breaking symmetry.
Similarly, the two degenerate 6z eigenvalues, approximate-
ly —4.4510, have eigenmaps that couple the two halves of
the E map. Again, the coupling can be symmetric or an-
tisymmetric.

We understand the remaining ten eigenvalues we have
found for this map as follows. Eight are associated with
coordinate transformations. Four of the eigenvalues of
unity are related to independent scaling of the four coor-
dinates of the map. Two more arise because the renor-
malization is identical, given by a& ——az, in the x and u

coordinates. Thus linear transformations between x and
u are indifferent and there are two additional eigenvalues
of unity. The last pair of coordinate generated eigen-
values arise from displacements of the origin of the x and
u coordinates. The associated eigenvalues are o.

&
and o.2,

which we identify with 6'~ and its symmetry breaking
counterpart.

The remaining two eigenvalues 6z and its unsymmetric
partner, cannot be identified with anything seen in numer-
ical work. We believe that they are artifacts of the trun-
cation.

Our conclusion is that the E map has four relevant
eigenvalues, plus the usual group of coordinate-change
generated eigenvalues.

VI. CONCLUSIONS

In this work we have considered period doubling in
four-dimensional volume-preserving maps. Period dou-
bling in these maps is controlled by the maps that are
fixed under the obvious generalization of' the Feigenbaum
renormalization operator. In contrast to previous work
that has identified the fixed maps numerically, here we
have searched for them algebraically.

We have found algebraic approximations to the three
fixed maps that have been identified previously. No fur-
ther fixed maps have been identified.
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APPENDIX

In this appendix we outline the way to find the 16 solu-
tions of Eq. (3.2); The eight equations are for eight un-
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4C +10C +4C +5C + 6C+1=0, (A 1)

which has three real solutions ( —0.1959. . . ,—2. 1689. . . , —0.7782. . . ). If 8 =0, we find C= 1,——,, from the third equation. All these five C values are
listed in the fourth column of Table I. They are the same
as 2D area-preserving fixed maps. It is straightforward
to determine B,a~, P&, in terms of C, from the first four
equations.

knowns 8, C, E, G, at, Pt, az, and i33z. Note that 3 ~, Az,
D F are scales in Y, V, L, and U coordinates, and that we
can set A

&

——A2 ——D =F= 1.
We first observe that the second, third, and fourth

equations are for unknowns B,C, a& only. We thus find
an equation for C from these three equations, for B&0,

The fourth and eighth equations give, when G~O,

(C E—)(2C E —1)=0 .

1 1 1—+ —E if E=
B 2 2E

1

2C

The az, fjz can be found from the fifth and seventh equa-
tions.

Hence E equals either C or 1/(2C ). If G =0, then
E =1 or ——,

' from the seventh equation. That is, for
every C (and B,a~, P&) the parameter E has four possible
values (two possible values if 8 =0), see Table I. The
nonzero values of G are then determined by, for 8~0,

2 if E=C
(A3)
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