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Using computer algebraic symbolic manipulation techniques, we rearrange the ideal-gas-based
low-density expansions for the ground-state energy of a many-fermion and a many-boson system in-
teracting via arbitrary pair central forces, into a repulsive-core-fluid-based perturbation expansion.
Applications through second order are reported for liquid *“He and liquid *He.

I. INTRODUCTION

Few Monte Carlo computer simulations,! whether of
the Jastrow variational or the more fundamental Green-
function variety, have become available as yet for the cal-
culation of even such basic physical quantities as the
ground-state energy of the various quantum many-body
systems interacting under simple two-body central poten-
tial functions. The reason is twofold: (a) the simulations
are expensive in terms of required computer time and (b)
the Green-function Monte Carlo (GFMC) problem for
fermions is still beset with serious practical difficulties.

Simple, inexpensive, and reliable first-principles deter-
minations of the various properties of a strongly interact-
ing many-body system have been the goal of condensed-
matter theory for decades. Two approaches have been the
well-known perturbative and variational schemes based at
heart, respectively, on the pioneering work of Brueckner
and Bethe and of Jastrow. Another approach has been the
coupled-cluster (or exponential-S) method. All ap-
proaches are at bottom low-density theories in that they
eventually either break down or simply become unreliable
beyond some density. At vanishing density, they lead to
an infinite series for the ground-state energy, the leading
term of which is exact at very low densities. This leading
term is the ladder (or lowest-order Brueckner) energy in
the perturbative, or the two-body (or Jastrow) correlation
term in the variational, case. Higher-order terms are very
difficult to calculate exactly but have been estimated and
yield remarkably good agreement, at physical densities,
for the various systems studied when compared with ex-
periment or computer simulations. Our approach consists
of going back to the original low-density expansions that
quantum-field-theory methods applied to the many-body
ideal-gas-based-perturbation theory have generated over
the past decades for both many-boson’ and many-
fermion® ground-state energies. Here, three or four terms
are known exactly. These expansions are then rearranged
by considering the two-body interaction to be composed
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of repulsion plus attraction. The motivation for this pro-
cedure is based on the fact that, from both classical as
well as quantum computer simulations, the pair-
distribution function is qualitatively similar for say, a
Lennard-Jones fluid as it is for a fluid of purely repulsive
cores. The reexpansion leads to a double series: one in
“density”” and one in “attractive strength.” This new per-
turbation scheme now starts from a zero-order reference
system which is no longer the ideal gas of interactionless
particles but rather a fluid of purely repulsive particles.
This fluid state, nontrivial from the many-body stand-
point, is then ‘‘perturbed” in a systematic fashion by
“switching on” the attractions between the particles.
Modern series-analyses techniques, like the well-known
Padé approximants,* can be employed to extrapolate the
energy in both variables—density and attractive
coupling—towards physically relevant regions in a reli-
able, accurate manner. The power of such techniques in
constructing good descriptions® for various lattice models
of condensed matter in any dimension suggests their pos-
sible utility in analyzing now continuous many-body sys-
tems like those we are considering. Already, Padé analy-
ses® of classical virial expansions have yielded descriptions
of (i) the high-density fluid, (ii) the amorphous solid, as
well as indications of, (iii) the crystalline solid known to
occur, even in systems of rigid spheres, from classical
molecular dynamics and Monte Carlo computer simula-
tions.

One advantage of the approach being proposed for the
quantum continuous problem is that in principle it can in-
corporate twice as much, if not more, hard information
about the low-density, weakly interacting system. This is
because there are available in the literature®? this many
more exact low-density coefficients than would be repro-
duced correctly by either the Brueckner-Bethe— or
Jastrow—based schemes as extended and generalized to
date.

For fermions the expansion for the ground-state energy
per particle known so far is given by>
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Here m is the particle mass, %k is the Fermi momentum
of the ideal gas at a particle density n =N /V =vkj /67?,
where v is the number of different fermion species (i.e.,
the spin-, isospin-, etc., degeneracy). The symbols a, R,
and A,(0) stand for the well-known scattering parameters
of the effective-range theory’ of low-energy scattering.
These three quantities, known respectively as the S-wave
scattering length a, the S-wave effective range R, and
the P-wave scattering length (cubed) A4,(0), characterize
the potential assumed to act between pairs of particles in a
shape-independent way, since they are related within the
aforementioned theory to the scattering phase shift §;(k)
in the Ith partial wave through the low-energy results’
(1=0,1,2,...)

1
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For S waves, A4y(0)=a, defined before, while #ik is the
relative scattering linear momentum. On the other hand,
the S-wave quantity A4 (0) appearing for the first time in
Eq. (1) in the density-squared (i.e., kf) contribution to the
energy, is potential-shape-dependent and defined via the
various many-body selective infinite summations® through
the integral

A5 O=—% [T dr Vo, 3)

where V' (r) is the pair potential and u(r) the correspond-
ing S wave, zero-energy, radial Schrodinger scattering
wave function. The coefficients K; of Eq. (1) are pure
numbers and are listed in Ref. 8 for two- as well as four-
species fermion matter, and reflect several corrections on
the original coefficients as found in Ref. 3. A misprint
still remains in Ref. 8, namely, for v=4 (complete) K,
should be 0.556 610 instead of 0.566 610. For two-species
fermion matter (neutron, >He, etc.), K¢ =0 so that no log
term is present, while for four-species (nuclear matter)
K, Ky, and K, are still unknown, but K¢ is known and
is not equal to 0. Thus, in either case one is dealing with
a four-term expansion with coefficients known exactly.
The analogous expression for bosons is structurally
somewhat simpler, and in fact is given® by
2
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where n is the particle density of the many-boson system,
the S-wave scattering length is as before, and K; and K,

are pure numbers. The constant (in density) K3, however,
corresponds to genuine three-body cluster diagrams and is
thus potential-shape dependent. It will hence very prob-
ably depend at least on A (0) as defined in Eq. (3). Both
K, and K, have been evaluated by field theory in the bo-
son case. The coefficient K| is in perfect agreement with
other techniques.’ Finally, K3 is not known so that for
bosons one really possesses only a three-term series with
exactly known coefficients.

Both expansions, Egs. (1) and (4), are low-density series
but are clearly not power series in the density such as the
classical virial expansion for an imperfect gas,

P/nkgT~1+B5(T)n +By(Mn’+ -+,

where P is the pressure, kg Boltzmann’s constant, T the
absolute temperature, and the virial coefficients B;(T) cer-
tain multiple integrals over exponentials of the pair poten-
tial. By contrast, in Egs. (1) and (4) log terms in the parti-
cle density n appear, not to speak of fractional powers in
n. Because of the latter, consequently, the physically pre-
vailing case for naturally occurring interparticle potentials
of negative a immediately leads, by inspection of Eq. (4),
to imaginary contributions in the ground-state energy.
This situation is difficult to interpret. A simple way out
of the predicament is to consider the two-body potential
V(r) as made up of repulsion plus attraction (the latter
times some real perturbation parameter A, where
0<A<1). In other words, one splits off the intermolecu-
lar potential function

V(P =Veore(F)+AV (1), (5)

in some convenient way. This procedure is reminiscent of
well-known classical perturbation treatments'® which have
climaxed in what is presumably the most successful
theory of classical liquids.!! Simultaneously, consider ex-
panding the dynamical parameters a, Ry, A4;(0), and
A (0) in powers of A so that!?

a= f0°°drrv(r)uo(r):ao<1+alx+azxz+--->, (62)
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In these equations v(r)=mV (r)/#* and u,(r) is the zero-
energy Schrodinger radial wave function satisfying
ul'(r)—[v(r)—1(I +1)/r*lu,(r)=0, with u(0)=0. For
large ¥, on the other hand, ug(r)—r —a,
u(r)=>r?/3—A,(0)/r, etc. For simple-enough potentials
(5), the different coefficients in (6) can be deduced analyti-
cally, as in Ref. 8 for the hard-core—square-well (HCSW)
potential, or numerically, as in Ref. 13 for the Lennard-
Jones and other intermolecular potentials. Substitution of
Egs. (6) into Egs. (1) and (4) then ultimately leads [e.g.,
via algebraic manipulation computer schemes like
REDUCE or MACSYMA (Ref. 14)] to expansions of the form

E & ; \

~ ~A ma(z)x igoe,(x)ix , (7)

where each e;(x) is a low-density series known to as many
terms as are known in the original series, (1) or (4). In (7),
x is a dimensionless density variable, defined as (naj)'”?
for bosons and krag for fermions, while the constant 4 is
just 27 for the former and - for the latter. Equation (7)
plainly corresponds to the above-mentioned perturbation
scheme about the fluid of repulsive particles instead of
about the ideal gas. We call this scheme the van der
Waals perturbation theory as it was suggested, though
never formulated in detail, by him more than a hundred
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FIG. 1. Schematic attractive coupling A vs particle density n
plane for a typical quantum substance at zero absolute tempera-
ture such as *He or nuclear matter. Three phases, ‘“‘gas,”
“liquid,” and ‘‘crystal” are shown. Thus, a critical attractive
two-body coupling strength A, is required before any liquid
phase can be formed out of the gaseous phase. A maximum
value A, exists above which gas and liquid cannot coexist in
equilibrium, e.g., only liquid can survive. If the density is suffi-
ciently large crystalline order will appear, assuming the repul-
sive interparticle cores are sufficiently ‘“‘hard,” and for any at-
traction, no matter how weak. A typical ‘“‘physical attractive
strength” for *He or *He, for example, or nuclear matter is la-
beled A,. The zero-pressure equilibrium (or saturation) density
state is marked by S. The path marked by arrows corresponds
to the procedure of the present paper. Note that no phase
boundaries are crossed to reach the ground-state saturation
minimum point S.
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years ago. In contrast to the classical fluids van der
Waals perturbation scheme alluded to above,'®!! the
quantum problem [Eq. (7)] permits relatively simple
evaluation not only of first- but also of higher-order
corrections. Now, whereas Eq. (4) could become complex
if A in Eq. (5) were sufficiently large so as to make a nega-
tive, the rearrangement [Eq. (7)] is clearly real for all real
A so that the original predicament of complex energies for
a negative has been entirely circumvented.

A second difficulty associated with expansions such as
(1) and (4), even if rearranged in the form (7), is, of course,
their restriction to low densities, i.e., densities well below
those of physically condensed systems such as nuclear
matter, the liquid heliums, etc. It is here that extrapola-
tion schemes may play a very useful role, particularly if
they can somehow allow us to avoid crossing phase
boundaries (especially gas-to-liquid ones) and thus obtain-
ing invalid results.

This program is accomplished in the proposed method
of attack since it essentially consists of two steps: (i) ex-
trapolation from n =0 to finite (physical) n for the ith-
order energies e;(n) in Eq. (7), for 1 =0,1,2,...; and (i)
extrapolation at physical n, from A=0 to finite (physical)
attractive coupling A,. These two procedures are best il-
lustrated in Fig. 1 for the attractive coupling versus densi-
ty plane® of a simple quantum substance. The three com-
mon phases (gas, liquid, and crystal), as well as a gas-
liquid coexistence region, are displayed. Here A, is the
minimum attractive strength required to form a liquid
(i.e., an N-body self-bound state) at all. On the other
hand, A, is the minimum value required for the disappear-
ance of a gas-liquid coexistence region and finally A, is
the physical coupling in a typical quantum liquid (say,
SHe or *He). Consequently, the point S is a typical equi-
librium, or saturation (zero pressure), state for the quan-
tum liquid. The two-step series analysis of Eq. (7)
sketched above corresponds to (i) the horizontal arrow-
head trajectory in Fig. 1 from O to the value ng, along the
n axis and then (i1) the path vertically up from the point
Ha (A=0) to the desired state point S at A,. Note that
no phase boundaries have been crossed, contrary to what
might very easily occur in an ideal-gas-based perturbation
scheme.

The first step is then to derive explicitly the ey(x),
ei(x),..., of Eq. (7), and this is carried out in Sec. II for
any central, two-particle potential interaction.

II. van der WAALS PERTURBATION SERIES

We discuss first the many-boson system, given that its
low-density expansion (4) is of simpler structure than the
corresponding one for fermions (1). Since the coefficient
K5 is not known [though it could conceivably turn out to
be similar in structure to the kj coefficient of (1)] we
shall simply put

Ki=qo(l4q A+g, A%+ -+ ). (8)

From (5), A=0 corresponds to the fluid of purely repul-
sive cores. For infinitely hard cores the coefficient g, has
been evaluated'® by global fit to GFMC data for boson
hard spheres. If attractions are then added the coeffi-



3904 V. C. AGUILERA-NAVARRO et al. 35

cients ¢,,4,, etc., could in principle be extracted from the
physical constraints €,(xg)=const, €;(xp)=0,
i=2,3,..., etc., respectively, as motivated by Ref. 16.
In the two papers quoted under this reference, it is proved
that, at least for classical many-particle systems in one
and two dimensions, so-called thermodynamic (or van der
Waals) first-order perturbation theory is exact in the limit
of close packing. Hence the constraints just stated. In
our case, xg=(ngc>)!”?, where ¢ =a, is the hard-sphere
diameter and np is the Bernal density, or density of ran-
dom close packing, as determined, for example, from Ref.
15. Henceforth, the €;(x) (i =0,1,2,3,...) stand for the
extrapolants to nonzero x =(nc>)!”? for the low-density
forms e;(x) that resulted from the rearrangement (7).

Inserting (8) and (6a) into (4) the form (7) ensues, with
the e;(x) given by

eo(x)=1+Kx +K,x’Inx?4+gox?+ -+, 9
ej(x)zaj[1+(f2j/aj)x+(f3j/aj)x21nx2

+(gj/ajx*+ - 1. (10)

The coefficients fj; (i =2,3; j =1,2,3,...) will clearly de-

pend explicitly on the constants K; and K, as well as on
the expansion coefficients a; of the S-wave scattering
length as defined in Eq. (6a). Appendix A lists in
MACSYMA format f,; and f3; for j=1,2,...,6. (Note
that K; appears as k;.) The coefficients g; are linear in
the g; of (8); as neither g; nor g; are known, we leave both
unspecified. All this will enable one to then carry out van
der Waals perturbation theory up to sixth order. As men-
tioned in the Introduction, carrying this out is seen to be
not only feasible but relatively simple, in marked contrast
with the classical van der Waals perturbation scheme!® !
where even second order has, unfortunately, required es-
timations. On the other hand, the success of the quantum
van der Waals scheme to any order will crucially hinge on
whether one can construct reliable extrapolants €;(x) to
the low-density forms (10). A general method for imple-
menting this will be presented and illustrated in Sec. III.
But before that, let us consider the many-fermion prob-
lem. We refer to Eq. (1), and substitute the A expansions
of Egs. (6), which leads to the rearrangement (7). Re-
calling that x =kra,, the sum in Eq. (7) will become

5 0 L
eox)+ > 3 fix'V, fi;=Kia;, (11
i=1j=1
where
2 1 7o ty 3
eo(X)~14+Kx +Kx°+ |7K3— +K,—5 +K5 |x
ao ap
’
+Kex*lnx + [%K7—°+K8£93—+K9 x4,
ao ap
(12)

and where the coefficients f;; (i =2,3,...,5) in (11) are
listed in Appendix B for j =1,2, .. .,6, i.e., again through
sixth order. In Eq. (11) the x* and x° terms should be in-
terpreted, respectively, as x*Inx and x* Note, too, that

for two-species fermions there is no x*Inx term,® or that
f4j=0. In the four-species case the fs; are listed for com-
pleteness in Appendix B but are in terms of the constants
K, Kg, and K4 which are unknown? at present.

III. APPLICATIONS

As illustrations of the van der Waals quantum-
perturbation scheme, we report the calculation of the
ground-state energy through second order for two distinct
physical systems. These are (i) liquid *He under a hard-
core-square-well (HCSW) potential parametrized by
Burkhardt!” so as to be phase-shift equivalent (for low-
energy and low-partial waves) to the Lennard-Jones pair
potential,!® and (ii) liquid *He interacting via this latter
(soft-cored) pair potential itself.

To extrapolate the low-density series e;(x) in Eq. (7) we
employ a general extrapolation method essentially in-
spired by, but somewhat more general than, Padé approxi-
mation,* both standard and generalized, the latter refer-
ring to nonpower series. This method is motivated by the
very common situation in a physical series (regular,
power, or otherwise, with, e.g., log terms) that the earlier
terms of the series are numerically known to higher accu-
racy than the later terms in the “tail” of the expansion.

For the many-boson and many-fermion cases to be
dealt with here, the e;(x) in Eq. (7) have the forms

e;(x)/a;=14+b\x +b,x*Inx*+byx*+ --- (bosons) ,

(13)
ei(x)/A;ix =14+ f1x +fox*+ fix 3+ faxt4 - - (14)
(v=2 fermions) ,

with f4 and b3 as yet unknown, and A; being negative
constants. Our method begins by expressing the least
number of terms in the tails of either (13) or (14) that will
allow expression as a ratio of functions, N (x) and D (x),
for example, such that expansion about x =0 of
N (x)/D(x) reproduces the initial tail expression. The
next step starts with a tail expression having one more
term, etc., until the whole expression—(13) or (14)—has
been represented as ratios of such functions. In general
then, the series (13) or (14) will be represented by

N(x)
D (x)
where P(x) is always polynomial (or zero or unity) and

the single log term in the raw series (13) occurs either in
N (x) or in D (x).

P(x)+ elx), (15)

Il

A. Liquid ‘He

The Burkhardt’” HCSW potential has a hard-sphere di-
ameter ¢ =1.685 A, attractive square well depth
vo=1.8999865 K and range R =5.5 A so that one can
define the dimensionless parameters

A=mvg(R —c)?/#*=2.2814165 ,
(16)

a=(R —c)/c=2.264095 .
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The S-wave scattering length for this potential is then
a=c[l4+all—tanVA/VA)]=—36.2938 A. (17

The A-power series (6a) is analytical, with

128
1+ —"=x+8
+ 15\/7'7%L

E 2mH ,
N 2 *

4 _ 3
3

mc
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1 2
ap=c, a;=—35a, Ah=—50a, ... . (18)

Equation (7) then becomes, using Appendix A and Egs.
(9) and (10),

lenx2+qox2+ s

—0.754698 3(1412.036 105x +78.61568x%Inx*+Q x%+ - - - JA

—0.3018793(1—4.955702x —143.876 08x 2 Inx 2+ Q,x 24 + - - A2+ -+ |, (19)

with go, Q;, and Q, unknown. A global fit!’ to the bo-
son hard-sphere GFMC results!® yields the extrapolant to
the first square-bracket series of (19) given by

-2

2.407 209x
— 1= 20
€)= 1= g T64.607x (Inx +0.223) 20
This form possesses a second-order, uncertainty-

principle?® pole at x =xz =0.7082, which is identified as
the Bernal (or random close packing) density for a boson
hard-sphere system. This is ng=0.3547n,, where ng is
V2/¢* or the density of primitive hexagonal packing.
The classical empirical?! value of nyg is 0.86n,. A smaller
value is to be expected in the quantum case. Equation
(20) gives go=26.2.

The second and third square-bracket expressions of
(19), corresponding to second- and third-order perturba-
tion corrections to the hard-sphere fluid due to the pair
attractions, were analyzed in the form Eq. (15) with the
results summarized in Table I. For each form, Q, and

Q, were determined from the constraints mentioned be-
fore, namely,

€;(xg)=¢€;(xp)/a;=const, €(xp)=0. 21

The constant is 2.95542 for the potential being used, and
is obtained by demanding, in accordance with Ref. 16,
that the first-order contribution to the energy per particle
at close packing be given by the number of sphere centers
within the attractive potential range R of a given sphere,
namely, (47/3)R>ng, minus one sphere, times the attrac-
tive well depth —v, (and with the customary factor of
+). Forms for €,(x)/a,, and €,(x)/a, listed in Table I
are rejected if they possess a pole (marked with a “p”) in
the physical interval O < x <xp. In first order, moreover,
we expect an acceptable extrapolant to be monotonic in-
creasing; those forms violating this condition are marked
“vmi”. Furthermore, both first- and second-order correc-
tions must be nonpositive for all densities so that because
of the two overall negative factors in (19), an acceptable

TABLE 1. Possible approximants, with general structure given by Eq. (15), to the second and third

parentheses low-density series in Eq. (19).

For example, form III to Eq. (13) is explicitly

14 byx/(1—byxInx?/b, —bsx /b;). The unknown b; coefficients, called Q, and Q, in Eq. (19), are
determined as explained in the text and are, respectively, —0.651 64 (form II) and —81.3798 (form III).
Note that forms I and V are identical; all others are distinct from each other. The acronyms are as fol-
lows: p means pole; vp, violates positivity; ns, no solution; nmi, nonmonotonic increasing; and vma

violates monotonicity in order.

No. of terms Terms Terms Order

Form in P(x) in N(x) in D(x) 1 2
I 1 x,x?%Inx? 1,x p p
1I 1 x,x? 1,x Inx? vp
111 1 x 1, x Inx?,x

v 0 1,x 1, x,x?Inx? p p
v 0 1,%x,x2Inx? 1,x p p
VI 0 1 1,x,x%Inx?,x? nmi ns
VII 0 1, x,x2Inx? 1,x2 p ns
VIII 0 1, x%Inx?,x2 1, x p vmo
IX 0 1,x,x2 1, x%Inx2 nmi p
X 0 1,x 1, x2Inx? x2 vp ns
X1 0 1, x2Inx? 1, x,x2 p ns
XII 0 1,x? 1,x,x2Inx? nmi p
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FIG. 2. Density dependence of first- and second-order energy
corrections to the hard-sphere Bose fluid described by Eq. (20).
The numerals II and III refer to the specific forms in Table I
which successfully extrapolate, respectively, the truncated log-
bearing series in the second and third parentheses of Eq. (19).
The open circle on the x =(nc?)!/? axis marks the Bernal value
xp=0.7082 where Eq. (20) has a second-order pole. The first
order €;(x) rises smoothly and attains the value of 2.95542 at xp
as discussed in the text.

form for either €,(x)/a,, or €;(x)/a, must be positive for
all x; “vp” in Table I designates violation of positivity.
One further restriction imposed on second order is that
€(x)/a, <€(x)/a,, for all x, a property that is observed
in exact studies? through fourth order for fermions in-
teracting with a finite attractive square well pair potential.
A single form (VIII) marked “vmo” (violates monotonici-
ty in order) was found to violate this. Finally, entries
marked “ns” allow no solution for the constant Q, with
the equation €,(xz)=0 since Q, appears in the denomina-
tor. In conclusion, only one form (III) survives the
analysis in second order, and rwo forms (I and III) in first
order. These latter two forms, however, are very similar
for all 0<x <xp; in fact, their difference is at most
0.25% at the maximum value of €,(x)/a;, which is
€i(xg)/a,, which is equal to 2.95542. For definiteness,
we reject III and keep II. Figure 2 shows a plot of form
II for first order and form III for second order. The open
circle marks the value of xp quoted before.

Using these forms as well as Eq. (20) to represent and
replace the corresponding square-bracketed series in Eq.
(19) we proceed to analyze the resulting power series in A
through second order by constructing standard Padé ap-
proximants [L/M](A), with O<L +M <2 and LM
non-negative integers. The resulting ground-state energy
versus x =(nc>)!/? appears in Fig. 3, where [0/0] refers to

FIG. 3. Zero-order, [0/0], first-order, [1/0], and second-
order, [2/0] and [1/1], total ground-state energy of *He in the
van der Waals perturbation scheme with the HCSW model pair
potential. The curve marked EXPT refers to the experimental
results.

second-order total energies are labeled [1/0] and [2/0],
respectively. Preliminary higher-order results are found
to converge rapidly and lie above the [1/1](A) Padé result,
but are not reported here. The dashed portions of the
curves correspond to metastable and unstable branches,
which are eliminated by the appropriate® convex-hull
construction analogous to the familiar Maxwell equal-area
rule. For reference, we give the experimental curve®* (la-
beled EXPT) for “He. We remark that the discrepancy
between predicted and empirical results are not necessarily
significant at this point since not only have many-body
forces been neglected but also a rough schematic model
potential is employed. In fact, we found that this
discrepancy can be virtually removed by varying the
values ¢, R, and vy of the HCSW potential'® such that the
empirical bound?® on the S-wave scattering length

la|>20A, (22)

for the *He-*He system is preserved.

B. Liquid *He

For the Lennard-Jones'® (LJ) interaction the expansions
(6) must be done numerically, and are published else-
where!?® for the case in which the splitting implied in Eq.
(5) between V., .(r) and V,,(r) is accomplished at the
zero of the LJ potential, and A=1. Equation (1) and Ap-
pendix B together then yield

the hard-sphere fluid equation of state. First- and
|
E 3 #x? 2 3 4
=== 5 [(140.353678x 4-0.185537x°+40.384 632x°—0.0252039x*+ - - - )
N 10 maj

—0.372459x A(1+1.049 186x +6.280439x2—2.045335x >+ fyx*+ -+ )

—0.244966 9xAX(1+0.209218x +0.650 121x2+1.29048x 3+ fox*+ - -+ )— -+ - ], (23)
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FIG. 4. Density dependence of all two-point, fourth-order
Padé approximants to the first-order energy-correction series
given by the second parentheses of Eq. (23). The bold curve
designates the only acceptable extrapolant, as discussed in text.
Open circle marks the corresponding Bernal value xpz=1.939
appropriate for two-species fermions.

where f4; and f,, are to be determined, and where
ay=2.0624378 A is the S-wave scattering length of the
purely repulsive part V. .(r) of the LJ potential. This
latter value is understandably somewhat smaller than the
value 2.556 A where the potential changes sign, because of
the softness of the LJ repulsive core.

To describe the fluid of repulsive particles, for which
we expect energy increasing in density, all Padé approxi-
mants in x were constructed to the fourth-order polyno-
mial in the first parentheses of Eq. (23). These are
[4/0](x), (the original series), [3/1](x), [2/2](x),
[1/3])(x) and [0/4](x). The extrapolants [2/2] and [1/3]
are immediately discarded since the former has a pole at
x =1.12 and the latter at x =1.43. The form [0/4] rises
with x, reaches a maximum at around x~1.1 and then
decreases to zero as 1/x* as x increases. The two remain-
ing forms [4/0] and [3/1] are very similar in value for
0 < x <2; while [3/1] continues to rise in x, however, the
[4/0] form falls and develops a zero at around x =20.
We thus retain only the [3/1] form to represent zero or-
der.

€,(x)

H

L - — i
0.4 //o.s 12
-1
FIG. 5. Same as Fig. 4 but for second-order perturbation en-
ergy, referring to the third set of parentheses in Eq. (23).
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[o/0] (A)

n E/N(K)

o

FIG. 6. Same as Fig. 3, but for liquid *He interacting via the
Lennard-Jones pair potential.

All  fourth-order Padé approximants [L/M](x),
L +M =4, were constructed for the second and third
parentheses of Eq. (23), fourth-order polynomials corre-
sponding to the first- and second-order perturbation
corrections to the soft-sphere fluid energy. To determine
the unknown constants f4, and f4, of Eq. (23) we again
impose the conditions (21), where x3=1.939 and
[L//M](xg)=4.517. The latter value is the one ap-
propriate for the Burkhardt *He->He HCSW, while the
former value was the one found® for the two-species fer-
mion hard-sphere system. The double slash in the Padé
symbol [ L //M](x) refers to the fact that it is a tfwo-point
approximant, about the points x =0 and x =xp. Figures
4 and 5 display the resulting approximants for the density
dependence in first and second order. Open circles mark
the value of xp just quoted. Note that in first order only
one approximant, the [2//2](x), satisfies the conditions
of being monotonic increasing in x. In second order only
one approximant, the [4//0](x), is free of poles. (The
[0//4] form is not considered since it has no solution for
the constant f,,.)

Finally, Fig. 6 shows the Padé approximants through
second order for the ground-state energy of the system.
For reference, the experimental value of —2.47 K and
n =0.0165 A ™" for the zero pressure, equilibrium (satura-
tion) binding energy is marked by a dot. Again, the
[1/1](A) approximant is below the [2/0](A) curve, as
well as below preliminary higher-order results to be re-
ported later in greater detail.

IV. CONCLUSIONS

We start from the well-known low-density kra
[(na®)!”?] expansion for the ground-state energy of a
many-fermion (many-boson) system interacting via arbi-
trary pairwise central interactions. Both expansions are
non-power series, and have been obtained over the past
fifty years from quantum-field-theoretic techniques ap-
plied to a perturbation scheme about the corresponding
ideal Fermi or Bose gases. In them, at least twice as many
coefficients are presently known as can be reproduced, in
the low-density limit, by either the Brueckner-based
ladder?® or Jastrow-based variational theories’’” of these
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many-particle ground states, although the latter enjoys the
advantage of always dealing with explicit (“trial”’) wave
functions. Information originating in the basic, central
pair interactions appears in the energy expansions via ef-
fective range-theory parameters, except for one potential-
shape-dependent S-wave quantity, 44 (0). Expansion of
these dynamical parameters in powers of the two-body at-
traction coupling constant then leads to a ground-state en-
ergy which can be viewed as a perturbation scheme about,
not the ideal gas, but rather the nontrivial fluid of repul-
sive cores.

This rearrangement has been carried out through sixth
order utilizing the computer algebraic scheme known as
MACSYMA. Extrapolation to nonzero, physical densities
of the resulting perturbation energies can now be carried
out in principle for any central pairwise interaction.

Finally, the results are applied through second order to
“He and ’He and both calculations already suggest that
the perturbation scheme is rapidly convergent.
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APPENDIX A: BOSON EXPANSION COEFFICIENTS

(40a;+60a,a, +5a3 )k,
237 16 ’

(320a, +480a a3 +240a3 +120a3a, —5a )k,

247 128

f2,5=[640as+960a a4+ (960a,+240a?)a,
+240a,a% —40a3a,+3ailk,/256 ,

f2.6=[2560a¢+3840a a5+ (3840a, +960a?)a,
+1920a3 +(1920a,a, — 160a3)a; +320a3
—240a3%a3+60ata, —5a81k, /1024 ,

Sf31=4ak,,

fi2=(4a,+6a})k, ,
f33=(4a;+12a,a,+4a})k, ,
fia=(d4as+12a,a5+6a3+12a%a,+ah)k, ,

fis=[4as+12a,a,+(12a,+12a%)a;
+12a,a3 +4a3a,}k, ,

fie=[4a¢+12a1as+(12a, + 12af)a4+6a§
+(24a,a,+4a})a; +4a3+6alallk, .

APPENDIX B: FERMION EXPANSION COEFFICIENTS

5(11k1
2,1 — ) )
(20a, + 15a2)k,
fZ'Z:——._—S___—— »
fa1=2a,k;,

f2,2=(2a2-+—a%)k2 ,
[23=(2a3+2a,ay)k, ,
fra=Qa4+2a,a3+adk, ,
f25=Qas+2a1a4+2aza3)k; ,
fr6=(2a¢+2a,a;s +2a,a,+a3k; ,
2k4t0t1+a3k3r0(r1+2a1)+6a(3}alk5
3,1 3
2(10

2

_ 2k4t0t2 +a(2,k3ro(r2 +2a1r1 +202 +a%)+a8(6az+6af)k5

3,2=
20(3,

’

f3,3: {2k4t0t3 +a(2)k3ro[r3 +Zalr2+(202+a%)r1+2a3+201a2]+a(3)(6¢13+1201a2+20?)k5}/(208) y

f3y4={2k4tot4+a%k3r0[r4+2a1r3 +(2a2+a%)r2+(2a3 +201a2)r1+2a4+2a1a3 +a%]

+a}(6a,+12a,a3+6a3+6alay)ks) /(2a3) ,
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[3,5=1{2k,tots +adksrolrs+2a,rs+(2a, +al)ry+(2a3+2a,a,)r, +(2a4+2a,a;3 +ad)r,+2as+2a,a,+2a5a;]

+ald[6as+12a,a4+(12a,+6a3)as+6a,a3lks} /(2a3) ,

f3y6={2k4t0t6+a(2)k3r0[r6+2a1r5—+—(2a2+a%)r4+(2a3+2ala2)r3 +(2a4+2a1a3+a%)r2

+(2as5+2aa4+2a,a3)r +2a¢+2a,1as+2a,a, +ai]

+al[6ag+12a,as5+(12a,+6a2)as +6a3+12a,a,a5+2a3 ks} /(2a3) ,

fa=4a,ks ,

fa2=(4a,+6a})kg ,
f4’3=(4a3+12alaz+40?)k6 )
foa=(4a,+12a,a3+6a3 +12a%a, +at)ke ,

fas=[4as+12a,a,+(12a,+12a?)a; +12a,a3 +4aja, Jke ,
fae=[4a¢+12a,a5+(12a,+12a%)a, +6a} +(24a,a, +4a3)a; +4a3 +6alaslke ,

agkqro(ry+3a;)+kspo(2p) +2a,)+8aga ko
51~ 3
200

I

f5,2=[a(2)k7r0(r2+3alr1 +3az+3a%)+k8PO(ZP2 +2alpl +202)+a(3)(8a2+ 120%)1(9]/(20(3)) 5

fsa= [a3k7r0[r3+3a,r2+(3a2+30%)r1 +3a;+6a,a, +a?]
+ kgpo(2p3+2a,py+2a,p, +2a3)+ad(8as+24a,a,+8a} )kq} /(2a3) ,

f5,4={aék7ro[r4 +301r3+(3az+3a%)r2+(3a3 +6alaz+a?)r1 +3a4+6ala3+3a§+3a%a2]

+ kgpo(2ps—+2a,ps+2a,p3 +2a3p, +2a4) +aj(8as+24a a3+ 12a3 +24ala, +2a ke ) /(2a3) ,

fss={adkqrolrs+3a,rs+(3ay+3at)rs+(3as +6a,a,+ai)r, +(3as+6a,a3+3a3 +3alay)r, +3as

+6a,a,+(6a,+3a7)as+3a,a5]1+kspo(2ps+2a1ps+2asp3 +2a3ps +2a4p +2as)
+ad[8as+24a,a,+(24a, +24a%)ay +24a,a% +8ala, ko) /(2a3) ,
f5,6=(a(2)k7r0{r6+3a,r5+(3az+3a%)r4+(3a3 +6a,a,+ai)ry+(3a,+6a,a; +3ai+3alayr,

+[3a5 +6a1a4+(6a2+30%)a3+3a,a§]r1 +306+6a,a5+(6a2+3a%)a4+30§+6a1a2a3 —i—a%]

+ kgpo(2pe+2a1ps+2a,p4+2a3p3+2a4py +2asp) +2ae)
+aj[8ag+24a,as+(24a,+24a%)as +12a3 +(48a,a, +8a3)asy +8a3 +12a%alky) /(2a}) .
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