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Using computer algebraic symbolic manipulation techniques, we rearrange the ideal-gas-based
low-density expansions for the ground-state energy of a many-fermion and a many-boson system in-

teracting via arbitrary pair central forces, into a repulsive-core-fluid-based perturbation expansion.
Applications through second order are reported for liquid He and liquid 'He.

I. INTRODUCTION

Few Monte Carlo computer simulations, ' whether of
the Jastrow variational or the more fundamental Green-
function variety, have become available as yet for the cal-
culation of even such basic physical quantities as the
ground-state energy of the various quantum many-body
systems interacting under simple two-body central poten-
tial functions. The reason is twofold: (a) the simulations
are expensive in terms of required computer time and (b)
the Green-function Monte Carlo (GFMC) problem for
fermions is still beset with serious practical difficulties.

Simple, inexpensive, and reliable first-principles deter-
minations of the various properties of a strongly interact-
ing many-body system have been the goal of condensed-
matter theory for decades. Two approaches have been the
well-known perturbative and Uariationa1 schemes based at
heart, respectively, on the pioneering work of Brueckner
and Bethe and of Jastrow. Another approach has been the
coupled-cluster (or exponential-S) method. All ap-
proaches are at bottom low-density theories in that they
eventually either break down or simply become unreliable
beyond some density. At vanishing density, they lead to
an infinite series for the ground-state energy, the leading
term of which is exact at very low densities. This leading
term is the ladder (or lowest-order Brueckner) energy in
the perturbative, or the two-body (or Jastrow) correlation
term in the variational, case. Higher-order terms are very
difficult to calculate exactly but have been estimated and
yield remarkably good agreement, at physical densities,
for the various systems studied when compared with ex-
periment or computer simulations. Our approach consists
of going back to the original low-density expansions that
quantum-field-theory methods applied to the many-body
ideal-gas-based-perturbation theory have generated over
the past decades for both many-boson and many-
fermion ground-state energies. Here, three or four terms
are known exactly. These expansions are then rearranged
by considering the two-body interaction to be composed

of repulsion plus attraction. The motivation for this pro-
cedure is based on the fact that, from both classical as
well as quantum computer simulations, the pair-
distribution function is qualitatively similar for say, a
Lennard-Jones fluid as it is for a fluid of purely repulsive
cores. The reexpansion leads to a double series: one in
"density" and one in "attractive strength. " This new per-
turbation scheme now starts from a zero-order reference
system which is no longer the ideal gas of interactionless
particles but rather a fluid of purely repulsive particles.
This fluid state, nontrivial from the many-body stand-
point, is then "perturbed" in a systematic fashion by
"switching on" the attractions between the particles.
Modern series-analyses techniques, like the well-known
Pade approximants, can be employed to extrapolate the
energy in both variables —density and attractive
coupling —towards physically relevant regions in a reli-
able, accurate manner. The power of such techniques in
constructing good descriptions for various lattice models
of condensed matter in any dimension suggests their pos-
sible utility in analyzing now continuous many-body sys-
tems like those we are considering. Already, Pade analy-
ses of classical virial expansions have yielded descriptions
of (i) the high-density fluid, (ii) the amorphous solid, as
well as indications of, (iii) the crystalline solid known to
occur, even in systems of rigid spheres, from classical
molecular dynamics and Monte Carlo computer simula-
tions.

One advantage of the approach being proposed for the
quantum continuous problem is that in principle it can in-
corporate twice as much, if not more, hard information
about the low-density, weakly interacting system. This is
because there are available in the literature ' this many
more exact low-density coefficients than would be repro-
duced correctly by either the 8rueckner-Bethe — or
Jastrow —based schemes as extended and generalized to
date.

For fermions the expansion for the ground-state energy
per particle known so far is given by
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Here m is the particle mass, Ak~ is the Fermi momentum
of the ideal gas at a particle density n =—N/V=vkF/6w,
where v is the number of different fermion species (i.e.,
the spin-, isospin-, etc. , degeneracy). The symbols a, RQ,
and A, (0) stand for the well-known scattering parameters
of the effective-range theory of low-energy scattering.
These three quantities, known respectively as the S-wave
scattering length a, the S-wave effective range Ro, and
the P wave -scattering length (cubed) A~(0), characterize
the potential assumed to act between pairs of particles in a
shape-independent way, since they are related within the
aforementioned theory to the scattering phase shift 5~(k)
in the 1th partial wave through the low-energy results
(1 =0, 1,2, . . . )

k '+'cot5t(k)= — + —,Rtk'+O(k ) as k~0.
At(0)

For S waves, Ap(0)=a, defined before, while haik is the
relative scattering linear momentum. On the other hand,
the S-wave quantity Ap'(0) appearing for the first time in

Eq. (1) in the density-squared (i.e. , kF) contribution to the
energy, is potential-shape-dependent and defined via the
various many-body selective infinite summations through
the integral

Ap'(0) —= — f dr r'V(r)up(r),
3A

where V(r) is the pair potential and up(r) the correspond-
ing S wave, zero-energy, radial Schrodinger scattering
wave function. The coefficients K; of Eq. (1) are pure
numbers and are listed in Ref. 8 for two- as well as four-
species fermion matter, and reflect several corrections on
the original coefficients as found in Ref. 3. A misprint
still remains in Ref. 8, namely, for v=4 (complete) K2
should be 0.556610 instead of 0.566610. For two-species
fermion matter (neutron, He, etc. ), K6=—0 so that no log
term is present, while for four-species (nuclear matter)
K7 E8 and K9 are still unknown, but K6 is known and
is not equal to 0. Thus, in either case one is dealing with
a four-term expansion with coefficients known exactly.

The analogous expression for bosons is structurally
somewhat simpler, and in fact is given by

a—:f dr rv (r)up(r) =ap(1+a ~A+a2X + . . ),
Rp = dr [(r —a) up(r)]

OO
2 2

g2 (j

(6a)

= rp(1+r, k, +rgb+. . ), ,

are pure numbers. The constant (in density) K3, however,
corresponds to genuine three-body cluster diagrams and is
thus potential-shape dependent. It will hence very prob-
ably depend at least on Ap'(0) as defined in Eq. (3). Both
E& and E2 have been evaluated by field theory in the bo-
son case. The coefficient E] is in perfect agreement with
other techniques. Finally, E3 is not known so that for
bosons one really possesses only a three-term series with
exactly known coefficients.

Both expansions, Eqs. (1) and (4), are low-density series
but are clearly not power series in the density such as the
classical virial expansion for an imperfect gas,

Plnke T=1 +82(T)n +83(T)n +
where P is the pressure, kz Boltzmann's constant, T the
absolute temperature, and the virial coefficients 8;(T) cer-
tain multiple integrals over exponentials of the pair poten-
tial. By contrast, in Eqs. (1) and (4) log terms in the parti-
cle density n appear, not to speak of fractional powers in
n. Because of the latter, consequently, the physically pre-
vailing case for naturally occurring interparticle potentials
of negative a immediately leads, by inspection of Eq. (4),
to imaginary contributions in the ground-state energy.
This situation is difficult to interpret. A simple way out
of the predicament is to consider the two-body potential
V(r) as made up of repulsion plus attraction (the latter
times some real perturbation parameter A, , where
0 & A. ( 1). In other words, one splits off the intermolecu-
lar potential function

V(r) = V„„(r)+A,V„,(r),
in some convenient way. This procedure is reminiscent of
well-known classical perturbation treatments' which have
climaxed in what is presumably the most successful
theory of classical liquids. " Simultaneously, consider ex-
panding the dynamical parameters a, Rp, A

~ (0), and
A p (0) in powers of A, so that'

E 2~62

na [1+K~(na )
~ +K2na ln(na )

3 1/2 3 3

N m

+Kana +O((na )
~ ln(na ))], (4)

where n is the particle density of the many-boson system,
the S-wave scattering length is as before, and K& and E2

A, (0)—:—,
' f dr r v(r)u((r)

0

= t, (1+t,A+t, k'+ ), ,

I
A p'(0) =———, dr r v (r)up(r)

=pp(1+p)A, +P2A. + ' ' '
)

(6c)



van der WAALS PERTURBATION THEORY FOR FERMION. . . 3903

In these equations U(r)—:m V(r ) le' and ul(r) is the zero-
energy Schrodinger radial wave function satisfying
u/'(r) —[u (r) —l (1+1)Ir ]u~(r) =0, with u (0)=0. For
large r, on the other hand, u o(r) ~r——a,
u ~(r)~r l3 —2 ~(0)/r, etc. For simple-enough potentials
(5), the different coefficients in (6) can be deduced analyti-
cally, as in Ref. 8 for the hard-core —square-well (HCSW)
potential, or numerically, as in Ref. 13 for the Lennard-
Jones and other intermolecular potentials. Substitution of
Eqs. (6) into Eqs. (1) and (4) then ultimately leads [e.g. ,
via algebraic manipulation computer schemes like
REDUCE or MACSYMA (Ref. 14)] to expansions of the form

E—=A z x g e;(x)k',
mao i =o

(7)

Liquid

-~ Gas+Liq2

Gas

0

FIG. 1. Schematic attractive coupling k vs particle density n

plane for a typical quantum substance at zero absolute tempera-
ture such as He or nuclear matter. Three phases, "gas,"
"liquid, " and "crystal" are shown. Thus, a critical attractive
two-body coupling strength k, is required before any liquid
phase can be formed out of the gaseous phase. A maximum
value k2 exists above which gas and liquid cannot coexist in
equilibrium, e.g. , only liquid can survive. If the density is suffi-
ciently large crystalline order will appear, assuming the repul-
sive interparticle cores are sufficiently "hard, " and for any at-
traction, no matter how weak. A typical "physical attractive
strength" for He or He, for example, or nuclear matter is la-
beled X~. The zero-pressure equilibrium (or saturation) density
state is marked by S. The path marked by arrows corresponds
to the procedure of the present paper. Note that no phase
boundaries are crossed to reach the ground-state saturation
minimum point S.

where each e;(x) is a low-density series known to as many
terms as are known in the original series, (1) or (4). In (7),
x is a dimensionless density variable, defined as ( na„')'
for bosons and kF ao for fermions, while the constant A is
just 2vr for the former and —,„ for the latter. Equation (7)
plainly corresponds to the above-mentioned perturbation
scheme about the fluid of repulsive particles instead of
about the ideal gas. We call this scheme the van der
Waals perturbation theory as it was suggested, though
never formulated in detail, by him more than a hundred

years ago. In contrast to the classical fluids van der
Waals perturbation scheme alluded to above, ' " the
quantum problem [Eq. (7)] permits relatively simple
evaluation not only of first- but also of higher-order
corrections. Now, whereas Eq. (4) could become complex
if A, in Eq. (5) were sufficiently large so as to make a nega-
tive, the rearrangement [Eq. (7)] is clearly real for all real
k so that the original predicament of complex energies for
a negative has been entirely circumvented.

A second difficulty associated with expansions such as
(1) and (4), even if rearranged in the form (7), is, of course,
their restriction to low densities, i.e., densities well below
those of physically condensed systems such as nuclear
matter, the liquid heliums, etc. It is here that extrapola-
tion schemes may play a very useful role, particularly if
they can somehow allow us to avoid crossing phase
boundaries (especially gas-to-liquid ones) and thus obtain-
ing invalid results.

This program is accomplished in the proposed method
of attack since it essentially consists of two steps: (i) ex-
trapolation from n =0 to finite (physical) n for the ith
order energies e;(n) in Eq. (7), for i =0, 1,2, . . . ; and (ii)
extrapolation at physical n, from A, =O to finite (physical)
attractive coupling k&. These two procedures are best il-
lustrated in Fig. 1 for the attractive coupling versus densi-
ty plane of a simple quantum substance. The three com-
mon phases (gas, liquid, and crystal), as well as a gas-
liquid coexistence region, are displayed. Here k, is the
minimum attractive strength required to form a liquid
(i.e., an N-body self-bound state) at all. On the other
hand, k2 is the minimum value required for the disappear-
ance of a gas-liquid coexistence region and finally Az is
the physical coupling in a typical quantum liquid (say,
3He or ~He). Consequently, the point S is a typical equi-
librium, or saturation (zero pressure), state for the quan-
tum liquid. The two-step series analysis of Eq. (7)
sketched above corresponds to (i) the horizontal arrow-
head trajectory in Fig. 1 from 0 to the value n,,„along the
n axis and then (ii) the path vertically up from the point
n„, (X=O) t, o the desired state point S at k~. Note that
no phase boundaries have been crossed, contrary to what
might very easily occur in an ideal-gas-based perturbation
scheme.

The first step is then to derive explicitly the eo(x),
e ~(x), . . . , of Eq. (7), and this is carried out in Sec. II for
any central, two-particle potential interaction.

II. van der WAALS PERTURBATION SERIES

We discuss first the many-boson system, given that its
low-density expansion (4) is of simpler structure than the
corresponding one for fermions (1). Since the coefficient
K3 is not known [though it could conceivably turn out to
be similar in structure to the kF coefficient of (1)] we
shall simply put

K3—:qo(1+q, k+q2X + .
) .

From (5), A. =O corresponds to the fluid of purely repul-
sive cores. For infinitely hard cores the coefficient qo has
been evaluated' by global fit to GFMC data for boson
hard spheres. If attractions are then added the coeffi-
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e~(x) =a&[1+(f2//a~ )x+(f31/aj )x lnx

+ (qi /ai )x + . ) . (10)

The coefficients fJ (i =2, 3; j= 1,2, 3, . . . ) will clearly de-
pend explicitly on the constants K1 and K2 as well as on
the expansion coefficients aj of the S-wave scattering
length as defined in Eq. (6a). Appendix A lists in
MACSYMA format fz~ and f» for j = 1,2, .. . . , 6. (Note
that K; appears as k;. ) The coefficients q~. are linear in
the q~ of (8); as neither qi nor q~ are known, we leave both
unspecified. All this will enable one to then carry out van
der Waals perturbation theory up to sixth order. As men-
tioned in the Introduction, carrying this out is seen to be
not only feasible but relatively simple, in marked contrast
with the classical van der Waals perturbation scheme' '"
where even second order has, unfortunately, required es-
timations. On the other hand, the success of the quantum
van der Waals scheme to any order will crucially hinge on
whether one can construct reliable extrapolants e~(x) to
the low-density forms (10). A general method for imple-
menting this will be presented and illustrated in Sec. III.

But before that, let us consider the many-fermion prob-
lem. We refer to Eq. (1), and substitute the A, expansions
of Eqs. (6), which leads to the rearrangement (7). Re-
calling that x =—kFao, the sum in Eq. (7) will become

cients q1,q2, etc. , could in principle be extracted from the
physical constraints e ~(x~ ) =const, e; (x~ ) =0,
i =2, 3, . . . , etc. , respectively, as motivated by Ref. 16.
In the two papers quoted under this reference, it is proved
that, at least for classical many-particle systems in one
and two dimensions, so-called thermodynamic (or van der
Waals) first-order perturbation theory is exact in the limit
of close packing. Hence the constraints just stated. In
our case, x~ ——(n~c )', where c =ao is the hard-sphere
diameter and nz is the Bernal density, or density of ran-
dom close packing, as determined, for example, from Ref.
15. Henceforth, the e;(x) (i =0, 1,2, 3, . . . ) stand for the
extrapolants to nonzero x =—(nc )'~ for the low-density
forms e;(x) that resulted from the rearrangement (7).

Inserting (8) and (6a) into (4) the form (7) ensues, with
the e;(x) given by

eo(x)=1+K,x+K~x lnx +qox +

for two-species fermions there is no x lnx term, or that
f4~ =0.. In the four-species case the f51 are listed for com-
pleteness in Appendix B but are in terms of the constants
K7 K8 and E9 which are unknown at present.

III. APPLICATIONS

As illustrations of the van der Waals quantum-
perturbation scheme, we report the calculation of the
ground-state energy through second order for two distinct
physical systems. These are (i) liquid He under a hard-
core-square-well (HCSW) potential parametrized by
Burkhardt' so as to be phase-shift equivalent (for low-
energy and low-partial waves) to the Lennard-Jones pair
potential, ' and (ii) liquid He interacting via this latter
(soft-cored) pair potential itself.

To extrapolate the low-density series e;(x) in Eq. (7) we
employ a general extrapolation method essentially in-
spired by, but somewhat more general than, Fade approxi-
mation, both standard and generalized, the latter refer-
ring to nonpower series. This method is motivated by the
very common situation in a physical series (regular,
power, or otherwise, with, e.g. , log terms) that the earlier
terms of the series are numerically known to higher accu-
racy than the later terms in the "tail" of the expansion.

For the many-boson and many-fermion cases to be
dealt with here, the e;(x) in Eq. (7) have the forms

e;(x)/3;x =1+f,x+f2x +f3x'+f4x + (14)

(v=2 fermions),

with f4 and b3 as yet unknown, and 3; being negative
constants. Our method begins by expressing the least
number of terms in the tails of either (13) or (14) that will
allow expression as a ratio of functions, N (x) and D (x),
for example, such that expansion about x =0 of
X(x)/D(x) reproduces the initial tail expression. The
next step starts with a tail expression having one more
term, etc. , until the whole expression —(13) or (14)—has
been represented as ratios of such functions. In general
then, the series (13) or (14) will be represented by

e;(x)/a;=1+b~x +box lnx +b3x + . (bosons),

(13)

eo(x)+ g g f~x'iV, f~/ K~aj, —
i=1 j=1

P(x)+ =—e(x),X(x)
D(x)

(15)

where

ro tp 3eo(x)=1+K,x +.K2x +- —,K3 +K4 3 +K5 x
ap ao

+ E6x lnx + 2 E7 +Kg 3 +E9 x4. ro po 4

ao ao

(12)

where P(x) is always polynomial (or zero or unity) and
the single log term in the raw series (13) occurs either in
X(x) or in D(x).

A. Liquid He

The Burkhardt HCSW potential has a hard-sphere di-
ameter c = l.685 A, attractive square well depth
Up ——1.899 986 5 K and range R =5.5 A so that one can
define the dimensionless parameters

and where the coefficients f~j (i =2, 3, . . . , 5) in (11) are
listed in Appendix 8 for j = 1,2, . . . , 6, i.e., again through
sixth order. In Eq. (11) the x and x terms should be in-
terpreted, respectively, as x lnx and x . Note, too, that

A, —:mvo(R —c) /A' =2.2814165,

ct:—(R —c)/c =2.264095 .

(16)
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The S-wave scattering length for this potential is then

a =c [I+a(1—tanv'X/v A, )]=—36.2938 A . (17)

The A.-power series (6a} is analytical, with

1 2
ao ——c, a& ————,a, (18)

Equation (7} then becomes, using Appendix A and Eqs.
(9) and (10),

2M', 1281+ x+8 —~3 x lnx +qox + .4~
mc ~ 15&ir 3

—0.7546983(1+12.036 105x +78.615 68x lnx +Qix + . . )k

—0.3018793(1—4.955 702x —143.87608x lnx +Q2x + . )A. + (19)

with qo, Qi, and Q2 unknown. A global fit' to the bo-
son hard-sphere GFMC results' yields the extrapolant to
the first square-bracket series of (19) given by

' —2
2.407 209x

1 —8. 164607x (lnx +0.223)
(20)

This form possesses a second-order, uncertainty-
principle pole at x =x~ ——0.7082, which is identified as
the Bernal (or random close packing) density for a boson
hard-sphere system. This is nz ——0.3547no, where no is
i/2/c or the density of primitive hexagonal packing.
The classical empirical ' value of nz is 0.86no. A smaller
value is to be expected in the quantum case. Equation
(20) gives qo

——26.2.
The second and third square-bracket expressions of

(19), corresponding to second- and third-order perturba-
tion corrections to the hard-sphere fluid due to the pair
attractions, were analyzed in the form Eq. (15) with the
results summarized in Table I. For each form, Qi and

Qz were determined from the constraints mentioned be-
fore, namely,

E;(xii ) ='E;(xs)/a; =const, ez(xz) =0 . (21)

The constant is 2.95542 for the potential being used, and
is obtained by demanding, in accordance with Ref. 16,
that the first-order contribution to the energy per particle
at close packing be given by the number of sphere centers
within the attractive potential range 8 of a given sphere,
namely, (4'/3)R'nii, minus one sphere, times the attrac-
tive well depth —vo (and with the customary factor of
—, ). Forms for e&(x)/at, and e2(x)/a2 listed in Table I
are rejected if they possess a pole (marked with a "p") in
the physical interval 0& x &xz. In first order, moreover,
we expect an acceptable extrapolant to be monotonic in-
creasing; those forms violating this condition are marked
"vmi". Furthermore, both first- and second-order correc-
tions must be nonpositive for all densities so that because
of the two overall negative factors in (19), an acceptable

TABLE I. Possible approximants, with general structure given by Eq. (15), to the second and third
parentheses low-density series in Eq. (19). For example, form III to Eq. (13) is explicitly
1+ ~bx/(1 —bzx lnx lb, —b3x/bi). The unknown b3 coefficients, called Qi and Qq in Eq. (19), are
determined as explained in the text and are, respectively, —0.651 64 (form II) and —81.3798 (form III).
Note that forms I and V are identical; all others are distinct from each other. The acronyms are as fol-
lows: p means pole; vp, violates positivity; ns, no solution; nmi, nonmonotonic increasing; and vma
violates monotonicity in order.

Form

I
II
III
IV
V
VI
VII
VIII
IX
X
XI
XII

No. of terms
in P(x)

1

1

1

0
0
0
0

0
0
0
0

Terms
in X(x)

x,x lnx
X,X
x
1,x
1,x,x lnx
1

1, x,x lnx
1,x' lnx', x
1,x,x
1,x
1,x lnx
1,x

Terms
in D(x)

1,x
1,x lnx'
1,x lnx, x

1,x
1,x,x lnx, x
1,
1,x
1,x lnx

1, x,x
1,x,x lnx

P
P
nmi

P
P
nmi
vp

P
nmi

Order

P
vp

p
P
ns

vmo

P
ns
ns

P
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many-particle ground states, although the latter enjoys the
advantage of always dealing with explicit ("trial" ) wave
functions. Information originating in the basic, central
pair interactions appears in the energy expansions via ef-
fective range-theory parameters, except for one potential-
shape-dependent 5-wave quantity, A o (0). Expansion of
these dynamical parameters in powers of the two-body at-
traction coupling constant then leads to a ground-state en-

ergy which can be viewed as a perturbation scheme about,
not the ideal gas, but rather the nontrivial fluid of repul-
sive cores.

This rearrangement has been carried out through sixth
order utilizing the computer algebraic scheme known as
MACSYMA. Extrapolation to nonzero, physical densities
of the resulting perturbation energies can now be carried
out in principle for any central pairwise interaction.

Finally, the results are applied through second order to
He and He and both calculations already suggest that

the perturbation scheme is rapidly convergent.

ACKNOWLEDGMENTS

(40a 3+60a1az+ 5a 1 )k,
fz, 3=

16

(320a4+480a, a3+240az+120a 1az —5a1)k1
fz, 4=

128

fz 5
——[640a5+960a, a4+(960az+240a1)a3

+240a1az —40a 1az+3a, ]k, /256,

fz 6
——[2560a6+3840a1a 5+ (3840a z+ 960a 1)a4

+ 1920a 3 + (1920a1az —160a1 )a 3+320a 2

—240a 1a 2+ 60a1a 2
—5a 1]k1/1024,

f3, —-4a1kz,

The authors thank Dr. George A. Baker, Jr., for a criti. -
cal reading of the original manuscript and for extensive
suggestions. The work of V.C.A.-N. was supported in
part by Fundaqao de Atnparo a Pesquisa do Estado de
Sao Paulo (FAPESP), Brazil. One of us (R.G.) was sup-
ported by La Comision Asesora de Investigacion
Cientifica y Tecnica (CAICyT), Spain.

f3 2 ——(4az+6a1)kz,

f3 3 =(4a3+ 12a1az+4a1)kz

f3 4 —(4a4+ 12a1a 3+6a z+ 12a 1a2+a 1)kz,

APPENDIX A: BOSON EXPANSION COEFFICIENTS

5a]k1
21 7

(20az+ 15a1)k1
8

f3 5 —[4a5 + 12a 1a4+ ( 12az + 12a
1 )a 3

+ 12a1az+4a1azlkz,

f3 6 ——[4a6+ 12a1a5+ (12az+ 12a1)a4+6a 3

+(24a, az+4a1)a3+4az+6a1az]kz .

APPENDIX B: FERMION EXPANSION COEFFICIENTS

fz, =2a1kz,

f2, 2 (2a2 +a 1 )k2
2

f2, 3 (2a3+2a1az)kz

fz 4
——(2a4+2a, a3+az)kz,

fz 5
——(2a5+2a1a4+2aza3)kz

fz 6 ——(2a6+2a1a5+2aza4+a 3)kz,2

2k4tot, +aok3rp(r, +2a1)+6apa1k52 3

3, 1 3
2Qp

2k4totz+a ok3ro(rz+2a1r1+2az+a1)+ ao(6az+6a1)k52 2 3 2

3,2= 32ap

f3 3 —I2k4tpt3+apk3rp[r3+2a1l2+(2az+a 1 )r1 +2a3+2a1az]+ap(6a3+ 12a1az+2a 1 )k5 I/(2ap)

f3 4 ——I2k4tpt4+aok3ro[r4+2a1r3+(2az+a1)rz+(2a3+2a1az)r1+2a4+2a1a3+a2]2 2 2

+ ap(6a4+ 12a1a3+6az+6a1az)k5 }/(2ao),



35 van der WAALS PERTURBATION THEORY FOR FERMION. . . 3909

f3 5= I2k4tpts+aqkqro[rs+2a, r4+(2az+a, )r&+(2aq+2a&az)rz+(2a&+2a&a&+az)r+2as+2a &a4+2aza, ]2 2 2

+ac[6as+ 12a ]a4+ (12az+6a ] )as +6a]a z]ks I /(2ao ),
f3 6 ——

I 2k&tot&+a ok3ro[r&+2a ~ rs+ (2az+a, )r4+ (2 a 3+2 a~az )r&+ (2a4+ 2a ta q+ a z )rz2 2 2

+(2as+2a ~a4+2azas)r &+2a6+2a ~as+2aza4+a3]2

+ao[6as+12atas+(12az+6a ~ )a4+6as+12a~azas+2az]ksI/(2ao),

f4, i =4aiks *

f4 z ——(4a z+ 6a ) )k6,

f4 s
——(4as+ 12a )az+4a ( )k6,

f4 4
——(4aq+ 12a &a3+6a z+ 12a diaz+a ~ )kq,

f4 s
——[4as+. 12ata4+(12az+. 12a ( )as+ 12aiaz+ 4a iazlk6,

f4 q ——[4aq+12a~as+(12az+12a ~ )a4+6aq+(24a&az+4a ~ )a3+4az+6a &az]k6,

aok7ro(r ~
+3a

& )+kspo(2p~ +2a
& )+Sa ca ~k9

5, 1 3 s

2Qp

fs,z=

fs, s=

fs,4=

fs,s=

fs,6=

[aQk7ro(rz+ 3a, r, +3az+3a, )+kspo(2pz+2a, p, +2az)+ac(Saz + 12a, )k9]/(2ao)

I aqk7ro[r&+3a &rz+(3az+3a & )r&+3a&+6a diaz+a ~]
2 2 3

+ kspo(2pq+2a ~pz+2azp ~ +2a3 )+ao(Sa 3+24a &az+ Sa
&

)k9 j /(2ao ),
I a ok7ro[r4+ 3a ] rs + (3az +3a ~ )rz + (3a3 +6a

~ az +a ] )r ~ +3a4+ 6a
~
a 3+3a z +3a ~az ]2 2 3 2 2

+ kspo(2pq+2a &pq+2azpz+2a3p& +2a4)+ac(8a4+24a &a 3+ 12a z+24a &az+2a & )k9 I /(2ao),

I ack7ro[rs+ 3a, r4+ (3az+3a, )rs+(3a&+6a &az+a, )rz+ (3az+6a &aq+3a z+3a &az)r, +3as2 2 3 2 2

+6a ta4+ (6az+ 3a
& )as+ 3a ~a z]+kspo(2ps+ 2a,p4+2azp3+2a3pz+2a4p, +2as )

+ ac[8as+24a &a4+(24az+24a & )aq+24a &az+ Sa &az]k9 I /(2ao),

(aok7ro{r&+3a &rs+(3az+3a, )r4+(3a&+6a ~az+a & )r3+(3a4+6a &a3+3az+3a, az)rz2 2 3 2 2

+[3as+6a&a4+(6az+3a & )as+3a& a]zr~ +3a6+6a&as+(6az+3a & )az+3a3+ 6aaza3+az)2 2 2 2 3

+ kspo(2p6+2a ~ps+2azp4+2a3p3+2a4pz+2asp~ +2a6)

+aq[Sa6+24a ~as+(24az+24a ~ )aq+ 12a 3+(48a ~az+8a ~ )a3+ Sa z+ 12a &a z]k9)/(2aq) .

'On leave from the Instituto de Fisica Teorica, 01405 Sao Paulo,
Brazil.

On leave from Departamento de Fisica Nuclear, Universidad
de Granada, E-18071 Granada, Spain.

~On leave from Boris Kidric Institute, YU-11001 Belgrade, Ser-
bia, Yugoslavia.

'D. M. Ceperley and M. H. Kalos, in Monte Carlo Methods in
Statistical Physics, edited by K. Binder (Springer, Berlin,
1979).

2H. M. Hugenholtz and D. Pines, Phys. Rev. 116, 489 (1959).
G. A. Baker, Jr., Rev. Mod. Phys. 43, 479 (1971).

~Cr. A. Baker, Jr. and P. Csraves-Morris, in Encyclopedia of
Mathematics and Its Applications, edited by G.-C. Rota
(Addison-Wesley, Reading, Mass. , 1981),Vols. 13 and 14.

5D. S. Gaunt and A. J. Guttmann, in Phase Transitions and
Critical Phenomena, edited by C. Domb and M. S. Green
{Academic, New York, 1974), Vol. 3.

6V. C. Aguilera-Navarro, M. Fortes, M. de Llano, and A. Plas-
tino, J. Chem. Phys. 76, 749 (1982); V. C. Aguilera-Navarro,
M. Fortes, M. de Llano, J. del Rio, A. Plastino, and O. Rojo,
J. Stat. Phys. 32, 95 (1983); V. C. Aguilera-Navarro, M. de
Llano, R. F. T. Souza, and S. Mini, Physica 128B, 190 (1985).

7P. Roman, Advanced Quantum Theory (Addison-Wesley, Read-
ing, Mass. , 1965).

~G. A. Baker, Jr., L. P. Benofy, M. Fortes, M. de Llano, S. Pel-
tier, and A. Plastino, Phys. Rev. A 26, 3575 (1982).

9E. H. Lich, Phys. Rev. 130, 2518 (1963).
' D. Chandler, J. D. Weeks, and H. C. Anderson, Science 220,

787 (1983).
J. A. Barker and D. Henderson, Rev. Mod. Phys. 48, 587
(1976)~

' G. Gutierrez, M. de Llano, and W. C. Stwalley, Phys. Rev. B
29, 5211 (1984).
E. Buendia, R. Guardiola, and M. de Llano, Phys. Rev. A 30,



3910 V. C. AGUILERA-NAVARRO et aL 35

941 (1984); L. P. Benofy, E. Buendia, R. Guardiola, and M.
de Llano, Phys. Rev. A 33, 3749 (1986).
A. Hem, computer code REDUcE (Rand Corporation, P.O.
Box 2138, Santa Monica, CA 90406-9972; R. H. Rand, Com-
puter Algebra in Applied Mathematics: An Introduction to
MACSYMA (Pitman, London, 1984).

'~G. A. Baker, Jr. , M. de Llano, and J. Pineda, Phys. Rev. B 24,
6304 (1981).

' G. Stell and O. Penrose, Phys. Rev. Lett. 51, 1397 (1983); J.
M. Kincaid, G. Stell, and C. K. Hall, J. Chem. Phys. 65, 2161
(1976).
T. W. Burkhardt, Ann. Phys. (N.Y.) 47, 516 (1968).
J. de Boer and A. Michels, Physica 5, 945 (1938).

' M. H. Kalos, D. Levesque, and L. Verlet, Phys. Rev. A 9,
2178 (1974).
G. A. Baker, Jr. , G. Gutierrez, and M. de Llano, Ann. Phys.

(N.Y.) 153, 283 (1984)~

G. D. Scott and D. M. Kilgour, J. Phys. D 2, 863 (1969);J. L.
Finney, Proc. R. Soc. London, Ser. A 319, 479 (1970).
G. A. Baker, Jr. , J. L. Gammel, and B.J. Hill, Phys. Rev. 132,
1373 (1963); Ref. 8.

M. de Llano and S. Ramirez, Nucl. Phys. A193, 81 (1972).
~4P. R. Roach, J. B. Ketterson, and C.-W. Woo, Phys. Rev. A 2,

543 (1970).
J. P. Toennies and K. Winckelmann, J. Chem. Phys. 66, 3965
(1977)~

J. C. Owen, in Recent Progress in Many-Body Theories, Vol.
142 of Lecture Notes in Physics (Springer, Berlin, 1982); L. W.
Bruch, in Recent Progress in Many-Body Theories, Vol. 198 of
Lecture Notes in Physics (Springer, Berlin, 1984).

2 K. Hiroike, Prog. Theor. Phys. 27, 342 (1962).


