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A simple theory of the splitting of an atomic beam by monochromatic light is presented. It is ar-

gued that the components of an atomic beam split by the optical Stern-Gerlach effect do not corre-

spond to the dressed states of the atom-field system.

I. INTRODUCTION

Although the splitting of an atomic beam by resonant
light, the so-called optical Stern-Gerlach effect, has been
of theoretical and experimental interest for over a de-
cade, ' no simple theory for arbitrary detuning has
emerged and some questions of interpretation remain
unanswered. The questions of interpretation derive from
our experience with the splitting of atomic beams by static
electric and magnetic fields. In these cases, the atomic en-

ergy levels invariably shift by different amounts when the
field changes. When the change in the field- results from a
change in the position of the atom in an inhomogeneous
field, the principle of virtual work tells us that the atom
experiences different forces in the different states. In oth-
er words, the atom can exist in any of a number of eigen-
states

~

i ) of the operator representing the atom's internal
energy, and the position-dependent eigenvalue E;(r) be-

longing to a particular state acts as a potential energy for
the translational motion of the atom in that state. The
beam splitting occurs when the forces F; = —VE; are dif-
ferent for different states.

The above picture of beam splitting is so familiar from
experience with the Stern-Gerlach effect and Stark beam
splitting in an inhomogeneous electric field that it has
often been surmised that the optical Stern-Gerlach effect
must be exactly analogous, i.e., that there must exist
"dressed states" of the atom-field system with energies
c;(r), and that the beam splitting is due to the different
forces F; = —Vc.; acting on atoms in the different dressed
states. It is the purpose of this paper to present a simple
semiclassical theory of the optical Stern-Gerlach effect,
which is valid for arbitrary detuning, and to show, by use
of this theory, that the dressed-state interpretation is not
always appropriate. With few exceptions, the force acting
on an atom in a near-resonant electromagnetic wave is not
derivable from a potential and therefore cannot be the
gradient of any position-dependent energy (one exception
to this rule is the exactly resonant standing wave, for
which potential energies exist ). It should be emphasized
that the results obtained here in no way decrease the utili-
ty of dressed states for the study of atomic motion in
resonant radiation. It simply means that the dressed
states do not, in general, correspond to the split com-
ponents of the atomic beam.

In the following section we present our theory of the
optical Stern-Gerlach effect, which is restricted to the
case where the atomic wave packet is small compared to
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the optical wavelength and spontaneous emission is negli-
gible. In Sec. III some examples are given to illustrate the
theory, and in Sec. IV the question of interpretation and
the role of dressed states is discussed.

II. THEORY

Consider a two-level atom with position R, momentum

P, internal energy Ho, electric dipole moment p, , and
mass M. In the electric dipole approximation, the Hamil-
tonian describing the internal and translational motions of
the atoms is

R=(i') '[R,H]=P!M, (2a)

P=(i') '[P,H]=pVE(R, t) . (2b)

We are interested in the case where the atomic wave pack-
et is small compared to the wavelength of the applied
field. This being the case, the field gradient VE is essen-
tially constant across the wave packet, and can be evaluat-

ed at the centroid r of the packet (r=(R)). Thus (2b)
becomes

P=P VE(t),
where VE(t)=VE(r(t), t). The integral of this equation
from 0 to t,

hP= f dt'p(t')VE(t'), , (4)

is the operator representing the change of atomic momen-
tum in this time interval. Note that the dipole moment
operator p depends only on the internal degrees of free-
dom of the atom, and, for a two-level atom, may be
represented by a 2&&2 matrix. The integral in (4) is then
also a 2 & 2 matrix. Hence there are two eigenvalues
AH'+ for each component AP ' of AP. These are the al-
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PH = +Ho —P E(R,t),
2M

where E(x, t) is the applied electric field. For simplicity,
let the prescribed electric field be polarized in the fixed
direction e at each point of space. Then E(x, t) =eE (x, t),
and the interaction term in (l) bec moesP E(R, t), where p,

is the component of p in the direction of the electric field.
From the Hamiltonian (l) there follow the Heisenberg

equations of motion for R and P,
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lowed values of this component of momentum transfer in
the time interval [O, t]. Associated with the eigenvalues
b, H'+ are the eigenstates

l

+)' of bP'. If we suppose that
the atom starts out in its ground state

l
1) at time 0, and

this is the initial time of the Heisenberg picture, then the
probability P'+ ( P' ) for momentum transfer AH'+
(b.H' ) is l(1 l+)'l (l(1

l

—)'l ). In this way Eq.
(4) determines the deflections b, H'+ of a narrow atomic
beam and the probabilities P'+ of these deflections. That
is, (4) provides a complete description of the optical
Stern-Gerlach effect.

In order to apply Eq. (4), we need the trajectory r(t) of
the centroid of the atomic wave packet [since
VE(t)=VE(r(t), t)] and the atomic dipole moment p(t).
The first of these is obtained from the expectation values
of Eqs. (2) with VE(R, t) replaced by VE(r(t), t). After
eliminating ( P ) between these equations, we have

S= —i coos i—p,E ( t)cr3/fi, (1 la)

cr3 ——2ipE(t)(S —S)/A' . (1 lb)

1

hei�(B+cot)+C

(12)

with arbitrary amplitude 8'(x) and phase 0(x). Because
of the first term on the right-hand side in (1 la), the opera-
tors S and S are rapidly oscillating functions of time.
For a monochromatic field whose frequency is near the
atomic transition frequency (co =coo), it is more con-
venient to work with the slowly changing variables 0. and
0. defined as

The equation for S is the Hermitian conjugate of (1 la).
We now specialize to the case of a monochromatic field

E ( x, t) = 8'(x)cos[0(x)+rot]

Mi= (p)VE(r, t), . (5)
—i (0+cot)S=0.e

(13)

H'=Hp pE(t), —. (6)

where E(t) =E(r(t), t), i.e., the internal motion is driven
by the electric field at the position r(t) of the moving
atom. Let

l
1 ) and

l
2) be the eigenstates of the unper-

1 1turbed Hamiltonian Hp and E( ————,Atop and E2 ———,A~p
the unperturbed energy eigenvalues, where cop is the Bohr
transition frequency. Then, with operators S, S, and o3
defined as

s=
l »&21,

s'= l2&&1 l,

which may be solved for r(t) once (P(t)) and the initial
conditions r(0) and r(0) are known.

To obtain the dipole momentum p(t) and its expecta-
tion value, we return to Eq. (1) and note that the part of
the Hamiltonian describing the internal motion of the
atom is

i (B+cotj

b P= —,p f [V8'(o+cr )+i@'VO(o cr +)]dt' .— (14)

Next we substitute (12) and (13) into Eqs. (11), and
again find slowly varying and rapidly oscillating terms.
The rapidly oscillating terms are ineffective because they
average to zero over a short period of time. In the
rotating-wave approximation these terms are discarded
and Eqs. (11)become

o =i(b.+0)cr —,
' iQo3—, (15a)

Upon substituting (8) and the gradient of (12) into (4) and
using (13), we find that the integrand in (4) contains some
slowly varying terms and terms that oscillate at approxi-
mately twice the optical frequency. The latter are negligi-
ble because they integrate to zero over the very short time
interval ~/co. Keeping only the slowly varying terms, we
have

o3 i Q(c.r ——t o), — (15b)

the unperturbed Hamiltonian takes the form Hp
&

i6ct)po'3 and the dipole moment operator reads

p=p(s+s ), (8)

where p = (1
l p, l

2) is the dipole transition moment, here
assumed to be real. Consequently, the Hamiltonian for
the internal motion (6) becomes

where A=co —cop is the detuning between the field fre-
quency co and the atomic frequency cup, A=p8'/A is the
on-resonance Rabi frequency of the two-level atom, and
O=d0(r(t))/dt =VO r.

As a final step in the derivation of our working equa-
tions, we reexpress Eqs. (14) and (15) in terms of the Her-
mitian operators

H'= ', ficooo3 p—E(t)(S+S ) . —

From their definitions (7) the operators S, S, and o'3 are
found to have commutators

0 )=0+0
o2 i(o cr ), —— —

which, together with 0.3, obey the Pauli algebra

(16)

[S,cr3] =2S,

[S,S ]= cr3, —

[ 3S ]=2S
(10)

j HK =5jK+I &jKL&L

The result is the set of operator equations

b, P= ,'fi f (VIIcr, +QVOcr2)d—t', (18)

and these, together with the Hamiltonian (9), lead to the
Heisenberg equations of motion for S and 0.3.

cri ——(6+0)cri,

crp ———(b, + 0)cri+ Qo ),
(19a)

(19b)
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&3= —Bop (19c)

upon which all subsequent results are based.
Equations (18) and (19) are solved as follows. Given

the centroid motion r(t), the coefficients in (19),
II =@8'(r)/fi and 0= VO(r). r, are known functions of
time. Thus these equations can be solved for o1(t), cr2(t),
and cr3(t) in terms of the initial values of these operators,

and Eq.(18) becomes simply

AP= —,'tier, (0) f VQ(t')dt'.
0

(27)

I

+
&
=

2
(

I
»+

I
»»v'2 (28)

The eigenstates of this operator [the eigenstates of cr1(0)]
are

cr, (0)= 1)(2
~
+

~

2)(1
& 2( 0) =i (

~

1)(2
~

—
~

2) (1 ), (20)

and the eigenvalues

b, H, =+ —,'A' f VQ(t')dt'. (29)

The solution proceeds exactly as if the o. s were c num-
bers because Eqs. (19) are linear. Each of the operators
o;(t) is a linear combination of the initial operators (20).
It follows that the integral in (18) is also a linear combina-
tion of o;(0). Thus each component of (18) has the form

Here an atom initially in the ground state has probabilities
P+ ——P = —,

' of being in one or the other of the states

~

+ ). Accordingly, an atomic beam is split into two
equally populated components.

B. Resonant plane running wave

b P =ctcr1(0) +Pa 2(0) +yo1(0),

with eigenvalues

(21) For this case the wave amplitude has the form

E(x, t) = 8'cos(K.x —cot), (30)

+(ct2 +p2+y2)1 /2 (22)

and eigenvectors

~
+ ) =cos ~ e '"/'

~

1)+sin ~ e'"/'
~

2),
2 2

(23)

~

—) = —sin ~ e '"/'
~

1)+cos ~ e'"/'
~
2),

2 2

where tang=(a +P )'/ /y (0&/ &ir) and tani/=Pla.
If the atom is in its ground state

~

1), the probabilities to
be in states

~
+ ) and

~

—) are

o.
) ——0,

02= 00 3 (31)

o.
3 ———Ao.

2 .

with S constant and phase 0= —K.x. consequently, The
Rabi frequency A=p8'/A is constant in space and time,
and the phase derivative, 0= —K.r, is the Doppler shift
of the wave frequency due to motion of the atom. By a
resonant running wave we mean a wave whose Doppler-
shifted frequency is exactly resonant with the atomic tran-
sition (~—K r=coo or b, =K.r). This being the case,
Eqs. (19) become

P =sin —= —1—1

2 2 ( 2+p2+ 2)1/2

respectively.

P+ ——cos —= —1+
( 2+p2+ 2)1/2

(24)

These equations are identical to Eqs. (26) for a resonant
standing wave, but now the momentum transfer operator,
Eq. (18), depends on o2 instead of cr1,

AP= ——,AKA o.
p

t' dt' . (32)

The solution of Eqs. (31) is

III. EXAMPLES

A. Resonant standing wave

E(x, t) =8'(x)cos(cot) (25)

Consider first the well-understood case of a general
standing wave,

cr, (t) =cr1(0),

o2(t) =cos(At)o2(0)+sin(At)o'3(0),

(T3( t ) = —sin( Dt )o 2(0 ) +cos( Qt )cr3(0 )

(33a)

(33b)

(33c)

Use of (33b) in (32) yields the momentum-transfer opera-
tor

(not necessarily a plane standing wave), whose frequency
is exactly resonant with the atomic transition (b, =0). For
a standing wave, the phase 0(x), as defined by (12), is zero
and Eqs. (19) reduce to

b, P = ——,
' A'K [sin(Qt)cr2(0)+ [1—cos(Slt))o q(0) I,

whose eigenvalues are

b, H+ ——+AKsi (Atn/2) .

(34)

(35)
g) ——0,
0 ) =003, (26)

For an atom initially in its ground state, the probabilities
of these momentum transfers are

o.
3
———Acr2 .

Observe that o.
, is constant in this case [cr1(t)=o.1(0)],

1 . Q, tP+(t) = —1+sin
2 2

(36)
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which are time dependent. This means that the eigen-
states of momentum transfer are not stationary states,
there are transitions between them. The expectation value
of momentum transfer,

0 )=atop,

o.
2
———60.) +Qo.3,

&~P)=~a P +~@

=iiiKsin (At/2), (37)

o.
3
———Ao.2 .

oscillates between 0 and A'K at the Rabi frequency as the
atom absorbs from and emits into the applied field.

C. Standing wave off resonance

The field in this case is that of Eq. (25). The phase is
still zero, but the detuning is not, and Eqs. (19) read

To keep things simple, we assume that the centroid r(t)
moves perpendicular to the field gradient VS', so that the
Rabi frequency A remains constant in time at the moving
atom. This is the case, for example, when an atomic
beam propagates parallel to the planes of maximum inten-
sity in a plane standing wave. For 6 and Q constant, the
solution of Eqs. (38) is as follows:

a 1(t)
1a 2(t)

R
o3(t)

0 0
0 R 0

—0 0

cos(Rt) sin(Rt) 0 b, 0 —A
—sin(Rt) cos(Rt) 0 0 R 0 o 2(0)

0 0 1 A 0 6 ~(0)
(39)

and, in particular,

A +6 cos(Rt)
(0)

b, .
( ) ( )

b,A[1—cos(Rt)]
3 (40)

where R =(A +5 )'/ . The momentum transfer in time t is

b, P= , fiVA f oi(t—')dt'=. AVO

2R
A t+ cri(0)+b, [1—cos(Rt)]cr2(0)+AA t — '

o3(0)2 b, sin(Rt) sin(Rt),
R R

(41)

From the general formulas (22) and (24), we find that
the allowed values of moinentum transfer [the eigenvalues
of (41)] are

bH~ ——+ [A R t +46 sin (Rt/2)]'AVA

2R
and the probabilities of these values are

1 b.A[Rt —sin(Rt)]
R (A2R 2t2+42I12sjn2(Rt/2) )1/2

(42)

Here the beam splitting begins as if the detuning were
zero. For Rt && 1, the momentum transfers and probabili-
ties are b, &1——+ ,

' AVAt and P+ ———,', re—spectively. These
are the same as those obtained in the on-resonance case.
But for longer times (Rt»1), the eigenvalues (42) be-
come

and the probabilities (43)

1
P+ ———1+

(A2+ g2)1/2 (45)

Note that, for A~ oo, P+ ~1 and P ~0; and, for
A~ —oo, P+~0 and P ~1. In other words, for large
detuning (

~

b,
~

&&A) the atomic beam does not split at
all, but rather is deflected with a single momentum
transfer (b, H+ for b,~ ao or b, H for b, ~—0o ).

~4)=f ~F)+a ~/I) (47)

for all time (here, f is the amplitude for all of the energy

IV. DISCUSSION

A question of importance for the interpretation of the
optical Stern-Gerlach effect is whether the forces acting
on the beam components are derivable from potentials
equal to dressed-state energies. To answer this question
we start with the Hamiltonian describing the interaction
of a two-level atom with a single quantized field mode in
the rotating-wave approximation,

H = , ficooo 3+ficta—a+ —,
'

ih'A i(a o —cr a ), (46)

where a and a are the photon creation and annihilation
operators for the mode. In (46) we have taken the one-
photon Rabi frequency 0,

&
to be real. This is equivalent

to assuming that the phase of the field is zero, i.e., the
mode under consideration is a standing wave. This spe-
cial case is sufficient for the purpose at hand.

Suppose the atom is initially in its ground state
~
1)z

and the field contains exactly n photons, i.e., the field
state is

~

n )F. Then the initial atom-field state is the
direct product

~

F ) =
~

1 )~ ~

n )F. Because of the
rotating-wave approximation, the Hamiltonian (46) causes
transitions from this state to only one other state, namely
the state

~

A ) =
~

2)„~n —1)F with the atom excited and
n —1 photons in the field. Thus the system state vector
remains of the form
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to be in the field and a the amplitude for the atom to be
excited). Using the Hamiltonian (46), we obtain the fol-
lowing Schrodinger equation for amplitudes f and a:

iaaf =H» f +HUa,
ifgg =Hi)f+Hei g,

where the 2 & 2 Hamiltonian matrix is

H,) ——

Icon + , fih —,ik—vn 0,
,
' i kv'—n 0, ficon —,' Rb. — (49)

The dressed states are the eigenstates of this Hamiltonian,

i

—
& =cos +

~

F&+sin
2 2

(50)

~
+ ) = —sin —

~

F)+cos +
~

A ),
2 2

where tang= —0/b, , and the dressed-state energies are
the eigenvalues

e+ ficon+ —,'A'(0——+b, )'/ (51)

in which 0=v'n Q& is the n-photon Rabi frequency and
A=co —coo the detuning. With the Rabi frequency posi-
tion dependent, the negative gradients of the dressed-state
energies are

AVO
F+———Vc+ ——+

4( ~2+ g2) 1/2

Because there are no transitions between dressed states, an
atom in one of these states remains in that state indefi-
nitely, and, if the force were given by (52), the momentum
transfer in time t, for 0, and VQ constant, would be

RVO t
+ 4(~2+ g2)1/2

(53)

and the probabilities for these transfers would be found
from Eqs. (50) to be

1p =—$+
( ~2+ g2 )

1/2
(54)

We are now in a position to compare the actual deflec-
tions derived above with those derived from the dressed-
state hypothesis. First, it is clear from (52) and (53) that,
for exact resonance (b, =0), both approaches yield the
same deflections, b, H+ ——+ —,

' A'VOt, and the same proba-

bilities P+ ———, . But when the detuning is nonzero, the re-

sults are different. Only in the 1imit of long interaction
time (Rt ))1) do the correct results, (42) and (43), agree
with the predictions of the dressed-state formalism. We
conclude that the forces acting on the split components of
an atomic beam in the optical Stern-Gerlach effect are
not, in general, gradients of dressed-state energies. More-
over, since the probabilities for the eigenstates of momen-
tum transfer (43) are time dependent, these eigenstates are
not stationary, and therefore cannot be the dressed states.
This conclusion also follows from Eq. (18), which is the
integral of the equation of motion

F=P = —,i)'i[VQo )+flV&op] . (55)

When both terms in the force are nonzero, the force is not
derivable from a potential. Hence the force acting on the
atom cannot be the gradient of a dressed-state energy. In
short, the picture of the optical Stern-Gerlach effect as a
splitting of dressed states is inappropriate.

Although some off-resonance beam-definition experi-
ments have been performed, such as the standing-wave ex-
periment of Gould, Ruff, and Pritchard, we know of no

experiment which tests the regime Rt((1, where the
dressed-atom theory is predicted to fail.
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