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Hyperfine contribution to spin-exchange frequency shifts in the hydrogen maser
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We have rigorously included hyperfine interactions during electron-spin-exchange collisions be-
tween ground-state hydrogen atoms and find additional frequency shifts which are significant for
low-temperature atomic hydrogen maser oscillators.

I. INTRODUCTION

Electron-spin-exchange collisions between ground-state
paramagnetic atoms are usually treated in a degenerate-
internal-states approximation, which ignores hyperfine in-
teractions relative to electron-exchange interactions dur-
ing collisions. ' Such calculations predict small shifts of
the AmF ——0 hyperfine transition frequency in ground-
state atomic hydrogen proportional to the rate of col-
lisions with other hydrogen atoms and to the difference
between the two hmF =0 level populations. ' Because of
the proportionality to the level population difference, such
shifts can be eliminated from the frequency of an atomic
hydrogen maser oscillating in weak magnetic field on the
km~ ——0 transition by tuning the maser microwave cavity
so that there is no change of oscillation frequency with
collision rate. A semiclassical treatment by one of us of
hyperfine effects during collisions to first order revealed a
small additional shift of the b.mF ——0 hydrogen maser os-
cillation frequency not compensated for by cavity mistun-
ing. Both the degenerate-internal-states shift and the ad-
ditional hyperfine-induced shift have been confirmed near
room temperature, ' and the degenerate-internal-states
shift down to liquid-nitrogen temperatures.

Recently, hydrogen maser oscillation has been achieved
at 9 to 10.5 K using solid-neon storage surfaces, ' "and
at 0.3 to 0.6 K using superfluid-helium storage sur-
faces. ' ' For cryogenic masers operating with reduced

I

thermal noise and potentially greater radiated power, the
instability due to thermal noise may be' ' as low as two
parts in 10' . The actual instability minimum will be
determined by mechanisms which couple the maser fre-
quency to instabilities of other maser parameters. Under-
standing the magnitudes and level population dependences
of any uncompensated hyperfine-induced spin-exchange-
collision frequency shifts is therefore potentially impor-
tant to using cryogenic hydrogen masers as frequency
standards and spectroscopic tools. At cryogenic ternpera-
tures the effects of atom identity and quantization of col-
lision angular mornenta are significant, so that it is essen-
tial that calculations be fully quantum mechanical. Ber-
linsky and Shizgal have extended the quantum-
mechanical degenerate-internal-states calculations to 10 K
and below. ' We report here a quantum-mechanical treat-
ment of frequency shifts and broadening due to H-H
spin-exchange collisions at low temperatures, including
hyperfine-induced effects. We find effects which are large
compared to the potential thermal instabilities of cryogen-
ic hydrogen masers, but may also provide a sensitive
probe of nonadiabatic contributions in hydrogen-hydrogen
atom-atom interactions at low collision energies.

II. METHOD

Our starting point is the evolution equation for the spin
density matrix,

(E„E„)p„,———[H)(t—),p], ~

dt

+nH y y pt, t, p [(I+& g)(1+& g)(1+&p„)(1+5/„)]'~'
k,p, v, p, ', v' l, m, l', m'

7Th ~P]ca'
(akj lrn, jpvj!'m' jz'A jim, jp'v'jt'm' '5(axj, (pzj~jQ gj jp + j~tt ~~gyp ) +

mHk dt

the quantum-mechanical Boltzmann equation for a homo-
geneous system, which we have derived from the
fundamental Bogoliubov-Born-G reen-Kirkwood- Yvon
(BBCxKY) hierarchy for the distribution matrices. In this
equation Greek subscripts take values a, b, c,d, the 1s hy-

perfine states in order of increasing energy E (Fig. 1).
The operator H, (t) represents any (time-dependent but
position-independent) magnetic field operating on the
atoms. The last term represents all relaxation terms ex-
cept for the relaxation due to the two-body collisions tak-
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FIG. 1. Atomic hydrogen ground-state energy levels vs ap-
plied magnetic field strength in units (Acuo}/(p, —p~} (=0.102
T}.

en into account in the previous term. The hydrogen den-
sity is denoted by nH, the atomic mass by mH, and the
wave number in the entrance channels of the S-matrix ele-
ments by k. The notation IaP] implies normalized sym-
metrization (antisymmetrization) of two-body spin states
for relative orbital angular momentum I even (odd) having
z component m. The brackets ( ) denote thermal averag-
ing with the same velocity distribution for each of the
spin states, assuming dominance of thermalizing elastic
collisions with the walls or between atoms relative to in-
elastic collisions between atoms.

Considering situations with coherence only between the
a and e levels, we have a 4&4 spin density matrix with
only one pair of nonvanishing off-diagonal elements

p~=p„. The collision terms in Eq. (1) contributing to
the time development of p„have the form

lations, their effects are negligible compared to the ex-
change and intraatomic hyperfine interactions. We leave
them out both in the discussion of symmetries and in the
later first-order treatment so as to keep the physics as
transparent as possible.

Each of the coefficients G„ then contains a sum of
products S(«) i (,„)tS (,~) t („)i, independent of m. It
turns out that only elastic S-matrix elements contribute.
For odd I this follows from the selection rule b.mF 0, ——
taking into account that antisymmetric spin states Iav)
and [cvI can be formed simultaneously only for v=b or
d. For even I it is due to assuming zero magnetic field:
All five symmetric spin states consisting of two different
hyperfine states, at least one of which is a or c, have un-
mixed S= 1, so that no coupling by V' (or V" ) occurs
within this set or to aa and cc. The five S =1 spin states
having elastic S-matrix elements exp(2i5iT)w, ith 5ir the
triplet phase shift, the S-matrix products within G„are
cancelled by the corresponding products of Kronecker
deltas for v=b or d. Therefore, in Eq. (2) the v=b and d
terms have contributions from odd I only, the v=a and c
terms from even I only.

The coHision problem shows symmetry under a 180'
combined rotation of the two electron spins and two pro-
ton spins about an axis perpendicular to the weak magnet-
ic field. This rotation exchanges b and d while leaving a
and c alone. We conclude that the S-matrix elements for
the ab and ad spin states are equal, as are those for the
spin states cb and cd. The result is finally that G
= ( vA, „)= ( v ) A. with ( v ) the thermal average collision
speed and I,„the thermal average of the A, "cross section"
defined in simplified notation as

g (21 + I)[S~(S I„))
' —1],

k I even

g (21 +1)[S(„)(S,', )' —1],
I even

~brac

dt co
=nHpac g Gvp~ A.b=k,g= g (21+1)[S(,„)(S(,„))' —1],

I odd

with rate-constant-like' coefficients G„.
Let us now look more closely at the nature of these

coefficients on the basis of some symmetry considerations.
The S-matrix elements follow from the Schrodinger equa-
tion for two-body scattering. This contains a central in-

teraction V' consisting of singlet and triplet potentials,

V'=Pz Vs(r)+PT VT(r),

Ps (Pr) standing for a projection on singlet (triplet) sub-
spaces. In addition, it contains the intraatomic hyperfine
interactions,

V" =iruuo(Si. Ii+Sp.I2)

in which coo is the hyperfine frequency, while S~ 2 and Ii 2

are the electron and proton spins of the two colliding
atoms. We consider only the case of very weak external
magnetic fields and so leave out Zeeman terms in calcu-
lating the S-matrix elements. Although these terms, the
interatomic hyperfine interactions, and the spin dipolar
interactions can be included in our coupled-channel calcu-

v=b ord.
We stress that all of the S-matrix elements in Eq. (5) are
to be calculated for a common value of kinetic energy in
the particular elastic channel.

Substituting

p„(t)=p„(0)exp[i(coo+5co+ir, ')t]

and using g ~ = 1, we find for the frequency shift

5' =n H ( v )[(p„—p„)Q+(p„+p„)A i+ Aq]

in which

A,o——Im[(A, , —A,, )/2],
A, , = Im[(A, , +k, )/2 —Ab],

A,2=1m(Ab) .

At this point it is interesting to indicate how these re-
sults reduce to those of Balling et al. when the hyperfine
splitting is turned off. The channels can then be decou-
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pled by transforming to the triplet and singlet channels,
leading to the expressions

S(' ~)
= & [aPI I

e
' ' Ps+e "~T

I [a&I &

for the S-matrix elements in the degenerate-internal-states
approximation as expectation values in (anti)symmetric
spin states depending on l. Alternatively, we may note
that without V" the Hamiltonian for the two-body prob-
lem no longer depends on the proton- spin degrees of free-
dom. A combined rotation of proton spins by 180' about
the magnetic field direction as an additional symmetry
operation now exchanges a and c while leaving b and d
alone. We then find

z g (21+1)sin[2(5iT 5is)—1 i
2k

(9)

The frequency shift 6e thus reduces to the well-known ex-
pression for the case of vanishing hyperfine splitting
(Ao

' ————,A,
+ of Ref. 18).

To determine the various A, quantities without neglect-
ing hyperfine splitting, we have to calculate the elastic S-
matrix elements in Eq. (5). This can be done by integrat-
ing the coupled radial equations describing the H-H
scattering wave functions in the various channels: the so-
called coupled-channels (CC) approach, ' which in prin-

ciple yields exact results. This is one of the methods we
have used.

Calculating the frequency shift by the CC approach
over the wide temperature interval needed for thermal
averaging would be rather time consuming. Instead, it is
attractive to use an approach which exploits the weakness
of the hyperfine interaction (irido-0. 068 K) in the forin
of a calculation that takes into account the hyperfine in-
teraction as a first-order correction to the degenerate-
internal-states approximation. However, a simple Born-
type approach for the hyperfine interaction yields volume
integrals which do not converge. This difficulty stems
from the fact that the hyperfine interaction does not fall
off at large distances. Yet as pointed out in Ref. 22, a
first-order treatment is possible and leads to a Born-type
integral restricted to a finite volume beyond which the
singlet and triplet potentials are negligible, accompanied
by a Wronskian surface term which in a way accounts for
the nonvanishing hyperfine interaction in the outer
volume. We use this method to calculate the various elas-
tic S-matrix elements including the finite energy separa-
tion of other hyperfine energy levels from the hyperfine
energy level associated with the particular elastic channel
under consideration. The first-order corrections then arise
from back and forth transitions to other hyperfine levels
during a collision, as in the semiclassical treatment. We
find that the corrections to the degenerate-internal-states
S-matrix elements are given by

~S(.p) =&[aP[ I(~T Ps)(I' + +p)(+T 1's)
I [aP] &~

i.e., a simple spin matrix element times a quantity b, given by

(10)™
&

' [ui'o)(P r) ui'o'(g—r)] dr+ —'(Si' ' oiS' o)2 Wg (gr) O (gr)
4 X'k' S T 'ak

with the Wronskian W defined as W [f,g]=f ag year af ger g T—he radial w. ave functions u " ' are
normalized so as to have asymptotic behavior

—i (kr —lm/2) Sl(0) I (kr —lm'l2)

A,0——A,0
' ——,hA. +,

X) ——Ak+ —b X (12)

with the corrections to the degenerate-internal-states X,' '

values of Eq. (9) given by

hA, + —— g (21+1)Im(2b, *ST' '),
2k l eUpyg

b,g = g (21+1)1m[a,"(ST' '+Ss' ')] .
2k

(13)

and 0 (kr) is a Hankel-like free outgoing wave with
asymptotic behavior e' " ' ~ '. Expression (11) is in-
dependent of r0 under the condition that the triplet and
singlet potentials are zero for r ~ ro.

Substituting the S-matrix elements including the first-
order corrections into (5), we find for the right-hand side
of (7):

Equations (6), (7), and (5) represent our final formulation
of the spin-exchange frequency shift including the hyper-
fine contributions. In Sec. III these equations form the
basis of a coupled-channel calculation. Likewise, Eqs.
(12), (13), and (11) are used for a first-order calculation.

III. RESULTS

Both in the CC calculation and in the first-order ap-
proximation we have used "state-of-the-art" singlet and
triplet potentials. ' Details of the CC calculation are
given in Refs. 20 and 21. With respect to nonadiabatic ef-
fects, two types of calculations have been carried out. The
first incorporates the departure from the Born-
Oppenheimer approximation together with relativistic and
radiative effects only as first-order corrections to the sing-
let and triplet potentials, as in Ref. 24, Sec. III. This ap-
proach is commonly called the "adiabatic'* approxirna-
tion. Wolniewicz (Ref. 24, Sec. IV) has devised a method
for including the departure from Born-Oppenheimer in
the bound-state energies to second order (usually referred
to as "nonadiabatic" corrections), but this method does
not apply to the continuum. Our own calculations and
those of Ref. 25 indicate that the second-order corrections
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to the bound-state energies nearest the continuum can be
reproduced by simply replacing the reduced proton mass
mz/2 by the reduced atomic mass mH/2 in the first-
order calculation. In the second type of calculation we in-
corporate nonadiabatic effects into the continuum calcula-
tion by replacing the reduced mass p =mz /2 by
p=mH/2 in the radial Schrodinger equation. Results
show a remarkable sensitivity to this introduction of
nonadiabaticity, far greater than would be expected from
the relative change of the reduced-mass parameter p from
mz/2 to mH/2. In view of the large collection of results
involved, we restrict the following figures to results calcu-
lated using p=mH/2. In discussing these figures, the
most important differences with the adiabatic results will
be indicated.

In Fig. 2 we give the contributions of the partial waves
l =0, 1,2, 3 to A, &, and of the partial waves I = 1,3 to A, z, as
functions of energy. The hyperfine-induced correction to
Xo is small and does not seem to be significant. Note that
the low-energy behavior in Fig. 2 is proportional to
E ', in accordance with expectations. This figure
makes clear that the first-order treatment is indeed of
considerable help in covering the large energy range and
the large number of partial waves needed to calculate
Boltzmann-averaged values over the temperature range of
interest: Comparing the CC results with the first-order
results, the first-order calculation gives very accurate re-
sults except at 1ow energies in the I =0 partial wave. The
deviation takes the form of a prominent cusp in the CC

curve due to the threshold of the cc channel felt in the aa
channel at E=2Acoo. This threshold behavior is easily un-
derstood by noting that each of the S-matrix elements in-
volved is a regular analytic function of the channel
opening up at the threshold. Purely imaginary values for
this wave number below threshold, changing into real
values above, explain the calculated result that the path
which is followed by S,',= in the complex plane shows a
90 kink. The latter gives rise to the cusp behavior in Fig.
2. It is understandable that it cannot be reproduced by a
first-order treatment based on the idea that the hyperfine
interaction has a small effect. However, it is clear that
the hyperfine separation of the aa and cc thresholds is of
primary importance at low energies. In a classical picture
the hyperfine precession angle of spins during a collision
is no longer small for collisions with a longer duration at
threshold.

From the same argument one might expect similarly
large differences of CC and first-order results close to res-
onances, and that turns out to be the case. Calculations
using reduced mass p=mz/2 show a pronounced reso-
nance behavior of the A, quantities in the I =4 partial
wave due to the 14,4 vibration-rotation state in the contin-
uum at 1.3 K. Close to resonance, the first-order
treatment greatly overestimates the A, quantities, and
Boltzmann averaging then leads to appreciable contribu-
tions by the resonance. The CC calculation shows two
much-weaker resonances with a 2ficoo hyperfine separa-
tion, corresponding to the energies at which the aa and cc
channels are resonant. Boltzmann averaging these leads
to a much smaller contribution by the resonance. Using
p =mH/2, the U =14,j =4 resonance shifts to lower ener-
gies in the continuum or even below the aa threshold,
depending on the radial extent of the 0.2-cm ' "noncon-
vergence" correction of Ref. 24. In both cases the influ-
ence of the resonance is negligible.

Our earlier discussion of the I =0 partial wave dealt
only with the difference between the CC and first-order
results. The l =0 curve shows a remarkable sensitivity to
p. Replacing p=mH/2 by the very nearly equal value
mp/2 leads to changes of up to 50% in Fig. 2. Even after
Boltzmann averaging this difference is expected to be ob-
servable.

Figure 3 shows the temperature dependence of the
thermally averaged quantities k& and Xz. For complete-
ness we have also added A o, cr, = (o + —a ) /2, and
o q

——c7 /2, with o + (o ) the thermal average spin-
exchange broadening cross section' ' for even (odd) l.
Our values for cr„o.2, and A,o differ significantly from
those of Refs. 18 and 28. This is not due to hyperfine-
induced contributions, which are negligible, but to differ-
ences in the potentials used to calculate them. Note that
the high CC values of X& below the cusp result in signifi-
cant deviations of the first-order values close to the im-
portant temperature 0.5 K.

FICr. 2. Partial contributions of the first four partial waves to
the hyperfine-induced frequency shift cross sections as functions
of energy: —k& for even I and A,

&
———k2 for odd l. Solid lines,

CC calculation; dotted line, first-order calculation where it
differs significantly from the CC calculation.

IV. SIGNIFICANCE FOR HYDROGEN MASERS

Although A,
&

and A, 2 are several orders of magnitude less
than ko at the temperatures of interest to cryogenic hydro-
gen masers, they are significant because of the different
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fiV, (1+6, )
Pcc Paa

p Op g 'g Q Vb n Hrp
(14)

with b, =Q(co, /co —co/ro, ) twice the ratio of cavity mis-
tuning to cavity resonance width, pz the Bohr magneton,
rIVb/V, a filling factor relating the rf energy density to
the amplitude of rf field driving the AmF ——0 transition,
and 1/m rz the full frequency width (in Hz) of the
b,mF ——0 transition. Substituting (14) into (6) and includ-
ing the direct frequency pulling due to cavity mistuning,

5ro=[b, +ako(1+6 )]/rp

+n H '( v ~ [~1 (pcc +pa a ) +~z] ~ (15)

with a=((v)/po)(A'/p~)( V, /rQIVb). The largest poten-

10— 1018

combinations of level populations p that accompany
their contributions to b,mF ——0 transition frequency shifts.
Under conditions of self-excited maser oscillation,
p„—p„ is fixed by the requirement that the power radiat-
ed by the atoms be equal to that dissipated in the mi-
crowave cavity and other electronics. Assuming a single
Lorentzian microwave cavity mode and using the methods
of Ref. 6 we find

tial instability is due to cavity mistuning. Assuming
linewidth 1/mr& of order 1 Hz, cavity instabilities of parts
in 10 of the cavity width would produce frequency insta-
bilities of the order of parts in 10' of the oscillation fre-
quency, large compared to the 10 ' instabilities of
room-temperature hydrogen maser standards' and very
large compared to the potential thermal instabilities of
cryogenic masers. In practice the cavity tuning must be
reset by monitoring it either electronically, using external
sources and detectors, or using variations of the oscilla-
tion frequency itself as some maser parameters are varied.
Assuming linear dependence of the oscillation frequency
on 1/r2, values of oscillation frequency measured for dif-
ferent values of 1/w2 and different values of 5 for 6 «1
can be used to correct the oscillation frequency to its
"tuned" value: the value it would have if the cavity were
tuned to produce no variation of oscillation frequency
with 1/~2. Such methods of setting the maser cavity are
relatively insensitive to instabilities of coupling to external
microwave sources and detectors. Moreover, in the ab-
sence of the frequency shifts proportional to A.

&
and k2,

the tuned oscillation frequency would be unshifted by ei-
ther cavity mistuning or collision effects. Because of the
hyperfine-induced collision effects, such tuning methods
may leave significant frequency offsets which can convert
linewidth instabilities to instabilities of the tuned maser
oscillation frequency.

To illustrate these effects we make use of

X0

1020

10
22

,O-2Z—

1/7 2 = 1/7 o+ n H ( v ) [cr ~ (p„+p„)+o'2], (16)

the second term of which is obtained by a derivation
similar to that of (6), but ignoring hyperfine-induced ef-
fects which are negligible. Here 1/~o includes all contri-
butions to the linewidth not due to gas-phase spin-
exchange collisions. Surface spin-exchange and recom-
bination effects are small because the surface gas density
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Vl
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FIG. 3. Thermally averaged values of the various frequency
shift and broadening cross sections as functions of temperature.
To combine the advantages of a logarithmic plot for larger
values of the cross sections and a linear plot for small values,
the vertical scale is taken to be linear in x =arcsinh(o;/10
m ) and x =arcsinh(X, ;/10 m ), respectively. The horizontal
scale is logarithmic. Solid lines, CC calculation; dotted line,
first-order calculation where it differs significantly from the CC
calculation.

0.001
0.05 0.5 5.0 50

FIG. 4. The dimensionless frequency offset parameters aX,O

and 0 as functions of temperature. 0 is given for p„+p„(to-
tal fraction of atoms in a or c states) equal to 0.5 and 1.0, and
aXo is given for qQVb/V, = 1000.
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is very low under cryogenic maser operating conditions, so
that 1/~0 is dominated by the rate at which atoms Aow in
and out of the maser storage volUme, plus any relaxation
by motion through magnetic field gradients. Using (16) to
eliminate nH(U) from (15), we find

5co = [b, +cryo( 1+b, ) —0]/rz+ fl /ro

with

(17)

vari(p„+

p. .)+ trz

0 generally depends on I/&2 in a complicated way via a
1/v. z dependence of p„+p„. However, there are several
important cases when the 1/~2 dependence of 0 can be
neglected. At very low temperatures A, 2 (~A.

&
and

oz ((o &, yielding 0= —1
&
/cr

&
independent of p«+ p«.

If any single relaxation rate greatly exceeds all others,
p„+p„and A are approximately constant as relaxation
processes vary. To get an impression of the likely insta-
bilities of maser oscillation frequency due to hyperfine-
induced collision effects, we therefore neglect the I/~2
dependence of A. In this approximation 5co varies linear-
ly with 1/~2 as the density is varied. Correcting the oscil-
lation frequency to the value it would have with the cavity
tuned for no variation of oscillation frequency as the den-
sity is varied then leaves the tuned oscillation frequency
offset by the last term in (17). Figure 4 gives fl as a func-

tion of temperature for the choices p„+p„=0.5 and 1.0.
%'e include values of uk, o calculated assuming
(rlQVb/V, )=1000, a value intermediate between its value
in the first cryogenic masers' ' and its likely value in
actual cryogenic maser standards. The very large increase
of Q relative to ak, o as the temperature is lowered illus-
trates the much greater importance of hyperfine-induced
frequency shifts at cryogenic temperatures —for example,
at 0.5 K and p„+p, ,=0.5, 0=0.07. Even this small
value puts severe limits on maser parameter stabilities re-
quired to achieve maser frequency instability as low as 2
parts in 10' . For 0=0.07 the maximum allowed insta-
bility of ~o

' would be 3)&10 s
Note that measurements of changes of residual offset

frequency with changes of ro
' could be used both to

reduce the hyperfine-induced frequency offsets and to
measure X& 2, as in the high-temperature investigations of
hyperfjne-induced spin-exchange frequency shifts. Con-
sidering the sensitivity of the low-temperature spin-
exchange cross sections 0 i z and Xo i 2 to details of the H-
H interaction, in particular to nonadiabatic effects, such
experiments may yield interesting results.
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