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Narrow-band radiation from long-pulse free-electron lasers
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A perturbative theoretical analysis of the operation of a long-pulse free-electron laser (FEL) is

presented. This analysis was prompted by the remarkable property of the FEL at the University of
California at Santa Barbara of generating radiation with a very small fractional bandwidth of the
order of 10 . To third order in the radiation field, the transverse current driving the FEL contains

large crossed-saturation terms between resonator modes. Through the strong crossed saturation the
dominant mode depresses the effective gain of other modes to the point of extinction, resulting in

single-mode operation. These conclusions hold as long as the long-pulse FEL is operating in a low-

gain, homogeneously broadened regime, outside the deep saturation region. The perturbation expan-

sion, nonlinear single-mode, and two-mode problems are discussed in detail.

I. INTRODUCTION

The radiation generated in free-electron lasers (FEL's)
driven by short-electron-pulse accelerators shows fraction-
al bandwidths close to the maximum of (Aco/co) ~ I/tV, '

where N is the number of periods of the undulator. On
the other hand, FEL's using long electron pulses, such as
the one operating at the University of California at Santa
Barbara (UCSB), are capable of generating extremely-
narrow-band radiation. A theoretical understanding of
how this comes about is the main concern of the present
paper.

After presenting the basic field equations (undulator
and wave) in Sec. II, a Fourier decomposition for the
transverse current driving the FEL is outlined in Sec. III.
The current Fourier components can be expanded in a
perturbation series in powers of the radiation field. Such
a perturbation expansion is obtained in Sec. IV using the
evolution operator method familiar from quantum
mechanics. The well-known linear theory results obtained
from the first-order perturbation are given, for complete-
ness, in Sec. V.

We treat the nonlinear theory starting with Sec. VI,
where the self- and crossed-saturation terms arising from
third-order perturbation, are presented. To third order,
the single-mode problem discussed in Sec. VII leads to a
limiting intensity (or power density) I(oo). In Fig. 1, a
comparison is made, between the effective gain obtained
from the third-order theory, and the result from a com-
puter simulation. The agreement is very good except for
the deep saturation region (tail of the gain curve).

The equations describing the evolution of the ampli-
tudes in the two-mode problem are analyzed in Sec. VIII
using two different methods. Of crucial importance is the
parameter u equal to the ratio of crossed saturation to
self-saturation. A FEL with long electron pulses operat-
ing in the low-gain regime is a clear case of strong cou-
pling with crossed saturation being twice as large as self-
saturation (u =2). It is shown that for systems with
strong coupling, only single-mode states can be stable
solutions of the dynamical equations. As the dominant

mode approaches saturation, its power density depresses
the effective gain of other modes. When their effective
gain becomes negative, these other modes disappear.
Thus the theoretical conclusion corroborates the experi-
mental finding that a long-pulse low-gain FEL operates
within a very narrow frequency bandwidth.

II. WAVE EQUATION

The magnetic field of an undulator with constant
period ko ——2~/ko and uniform amplitude Bo can be de-
rived from the vector potential

A„=—
& nBoe /2ko+ c.c. ,

where n is the polarization vector (n=x for linear and
n=(x+i y) for circular polarization).

Our major goal in this analysis is to study the longitudi-
nal mode structure of a long-pulse FEL oscillator. How-
ever, conceptual simplicity is gained if the oscillator is
thought of as a series of amplifier stages, each stage corre-
sponding to a single pass. Moreover, for the purpose of
analyzing the basic features of mode interaction, it is suf-
ficient to consider a one-dimensional problem with the ra-
diation field written in terms of a discrete superposition of
vector potential plane-wave modes of the form

. nmc i [k z —co t +P (z)]A= —i a& ze ~ ' ~ +c.c. ,
28

where az(z) is the adimensional vector potential for mode

q and kq ——coq/c is its corresponding wave vector. In the
present work we assume that cuq

——qcof, where cuf is a fun-
damental angular frequency which in the case of an oscil-
lator corresponds to the spacing between longitudinal
modes c~/Lo.

In the present paper we will consider sufficiently low
electron densities so that space-charge effects could be
neglected. Using the slowly varying amplitude and phase
approximation, the wave equation acting on field (2) leads
to
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g toqe q q q [8 aq(z)+iaq(t) Pq+a/2L)]
q

+ (2 —p)(c.c. ) = —(@pe /mp)n*. J, (3)

where L is the length of the undulator, e is the mode loss
per pass, and p =

~

n
~

is 1 for linear and 2 for circular
polarization. J, the transverse electron current driving the
FEL, will be discussed in detail in Sec. III.

III. TRANSVERSE CURRENT

Tf ——2~/cof and the sum is over planes of particles with
injection times uniformly distributed over this period.

The electron that enters the undulator at time tJo will
reach the position z =L~ at the time

tj (r) = tj p+ (L r/Up ) —f& (r)L /c

in which vo is the initial electron velocity and the small
time shift g&(t), due to the bunching, is obtained from the
pendulum equation

d gj/dr=(L/c )d z/dt
From now on, for convenience, we will use the adimen-

sional coordinate ~=z /L. In keeping with our one-
dimensional treatment let us consider an electron beam
with an initial uniform density p=pLpT, i.e., pL planes
per unit length with pT electrons per unit area in each
plane. The transverse current density driving the FEL is

J(t,x)= —evT(r) g5 [x—xj(t)]
J

with

cog ——2y ckp/(1+@K'/2),

pq =L [kq +kp ) —cpq /Up ]

A =vrpKN/y

='A g(tPq/P3R)aqkjqe +c c
q

(10)

- —eprvr g 5[Lr zj(t)]—, (4)
J

where vT, the transverse velocity acquired by the elec-
trons in the undulator field (1), is given by

—ikpL r
vr in(cK——/2y)e +c.c., K =eBp/mckp .

The:- in Eq. (4) indicates the transition from the gen-
eral three-dimensional situation to the simplified one-
dimensional problem.

For K &&1 one can disregard harmonic radiation. In
such a case the current can also be decomposed in the
same way as the electric field (2), namely,

Jq = g Jq iJp(cps/tpqpt Lp) g Pjq(r)e
t J

e cppLpK
4m yCOR

(12)

Rjq
=pqr —cpq tj p+ Qq

Pjq =exp( —iLtpqgj/c) .

The parameter pq measures the detuning from the
resonant frequency coR.

Using Eqs. (9) and (11) we can write the current ampli-
tudes of Eq. (8) as

i(k L~—co t+Q )J= —n(m/eppL) g cpq Jqe ' ' ' +c.c. .
q

(6) where we have indicated an expansion in powers i of the
radiation field contained in the gj(r).

With this definition, Jq are the adimensional sources for
the amplitudes and phases as in

B~q+iaq(d+q —a/2) =Jq .

As Fourier coefficients in the expansion (6), the current
amplitudes Jq are obtained from Eq. (4) as

i [co t —(k +kp)L~ —P ]
Jq ———(ecPpL/2PmLptoq) f dt e q q q n* J

2 t [~ t.(v) —(k +kp)LT]=i (e ppcpTKL/4mytoqLp) pe
J

where the integration is over a fundamental period

IV. PERTURBATION

For the purpose of performing a perturbation expan-
sion, it is convenient to introduce new operators defined
by

Q,q(r) = Ujq(r, rp)gjq(rp),

id, U (r, rp)=H U (r, rp), H =(L/c)tp g', (13)

where g'=dg /dr. U and Hjq are related in the same
way as the evolution and Hamiltonian operators in the in-
teraction representation of quantum mechanics, the evolu-
tion variable being r. Thus, g&q(r)= U&q(r, 0) is given by
the familiar expansion

7 r 7

Pjq(r) = 1 i f dt, Hjq(r—, ) —f dr, f dr2H)q(r, )Hjq(r2)
7 Tl ~2

+t dr
& f dr2 f dr3Hjq(r~ )Hjq(r2)H/q(r3)+

With the use of Eq. (10) the H's can be written as

—iR ~(vl)Hjq(r)=(L/c)P3qg'j ————coqA g (co~/co~) dr~[ie ' ' Pjb(r&)ab+c. c.] .
C b

0

(14)

(15)

From Eqs. (14) and (15) it is straightforward to obtain expansions in powers of the radiation field. It is convenient to
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start with Iij:

T

pjq ——1+ g pjq', pzq' ——2i (LcoqA/c) g (cob/cpR) f d71 f dr&a6sinR/6(72),
i=1 b

0 0

(2) 2 2
T 2 3

Pzq 4(—L—cpqA/c) cpq g (cpscp, /cpII ) i (cp6/cpq) d71 drza6cosR&6(71) dry d74a, sinR&, (rq)
0 0 J p 0

b, c

T T] T2 3

0
d 7, d 72 d 73absinR&b (73) d 74Q, sinRJ., (7~)0 0 0

3

(16)

=8 L Acoq

~b~c~d . ~b~c 1

X p &
i

2 dr, d72a&cosR&&(72)
MR

T2 T3 T4 T5

X d73 d74Q cosRJ ( 47) d75 d76adsInRjd(76)
0 0

COc T T' f dr, f dr, f dr, a, si~„( 7)
Ct) q

T2 T4 T5

X d74Q~COSRi~(rg) dry dr 6adI SR' ( d7)60

Cub T T ]+ d~1 d~2 d~3abcosR, b 73
COq

T3 T4 2

X dr, f dr)aqslnRIq(7)) f d76adslnRJd(76)

T T ] T2 T]
+i f dr1 f drz f d73 f d74absinRI6(74)

T2 3

X dr~a, sinR&, (rq) d 76ad sinR/d (76)

where cpq qcrr/Lp, cpb bcr——r/Lp, etc.,——b, c, . . . are numbers of the same order as q. Using Eqs. (16)—(18) one can obtain
the different terms in the power expansion of Jq of Eq. (12). The first-order term will be treated in Sec. V while the
remainder of the paper will be devoted to the nonlinear effects.

Let us close this section with a computational detail. Keeping in mind that all frequencies are multiples of the funda-
mental cof ——c~/L 0, the sum over electrons can be performed in the continuum approximation using

cd r~ p~g, gj ~g(0), Rjq (7)~Rq(0, 7), g ~(pc Lp /rr) f dH (19)

The results reported below were obtained using this transformation.

V. LINEAR THEORY

The current to first order in the radiation field is obtained from Eqs. (12) and (16). It reads

(1) —iR (T) T

Jq ——(Jp/pLL p) g e " g (cp6/cpII ) dr, dr~ab(72)sinR)6(72) .
J

(20)

After the replacements of Eq. (19) are made and the 71, rq,
and 0 integrations are performed, the first-order current
amplitude is obtained. When this first order Jq is inserted
into Eq. (8), the real and imaginary parts yield the follow-

ing evolution equations for the amplitude and phase:

daq(7)/dr= 2 (I II —a)aq(7)

dP (7)/dr= —,
' I

where I = I R +E'I ~ and

(21)
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[sin(lLl r) p—r cos(pr)]R G 2,
I I 0 ~ [cos(lMr) —1+pq. sin(lLlr)],

Gp ——ne ppK L X/2epmc y (22)

sR(p, r) =a[ 3x +(1/8 —1.25x )sinx

+(1.5 —x /8)sin(2x)

—x (3.13+x /24)cosx —cos(2x)]/p

e

8eomc 2 d (p/2)
sin(p /2)

p/2

'2
ppkpK L

The integral of I R over the undulator length
1r= j drrR

(23)

Sl c——r[ —3 —0.75x +(1.5 —1.25x )cosx

—(3.88+x /24)x sinx +x sin(2x)

+(1.5 —x /8)cos(2x)]/p

e pKL
X =P7, 0=

EpmC QCOq
E

3

(26)

VI. NONLINEAR THEORY

We will comment on the second-order contribution aris-
ing from Eq. (17) after discussing the third-order terms
which are obtained after inserting Eq. (18) for 1(ljq in Eq.
(12). When the transformation (19) is performed, the fol-
lowing type of factor has to be calculated:

~[)
q

—I b —~c —l d] ~q —~b —~c —~d
aba, ade

— — —
e

b, c,d

&& '(dg/P~)e' q+'+ +".. . (24)
0

The nonvanishing terms can be classified into two types.
In the first type 1, at least one of the modes b, c, or d is
equal to q, while in the second type 2, the modes b, c, and
d are all different from q. Let us now proceed to a dis-
cussion of these two types.

(1) When one of the modes (b, c, or d) is equal to q, the
other two have to be equal to each other. Let us look at
the signs in the exponents of Eq. (24). One of the signs is
plus while the other two have to be minus, giving us three
sign possibilities. For each one of these possibilities, there
are still two cases: (a) One arrangement in which all
modes are equal and (b) two arrangements in which one of
the (two) modes with minus sign is equal to q while the
other two modes are different from q but equal to each
other. This two-to-one ratio in favor of (b) over (a), re-
sulting in a crossed saturation twice as large as self-
saturation, will prove to be very important for the opera-
tion of a long-pulse FEL.

According to the above discussion (or the more detailed
analysis in the Appendix), the cases (a) and (b) of 1, con-
tribute to the current amplitude Jq of Eq. (20) with the
third-order term

—2s(pq, ~)aq aq+2 g ab
b(~q)

(25)

where s =sR+isl, simply related to the saturation func-
tion S =SR +iSI to be introduced later, is given by

is simply related to the small signal gain per pass by

G, =expI —1, while I I yields the linear frequency
pulling.

g gq, q+laq+l «)
I

(27)

in the right-hand side of Eq. (7).
The general multimode problem is complicated by the

fact that, besides the saturation terms (24), we have to
deal with couplings like (27) which are responsible for
mode mixing. In the remainder of this paper we will re-
strict our treatment to one and two modes, in which case
that type of mixing does not occur. Such a simplification
is useful since the mechanism responsible for the narrow
frequency bandwidth can already be discovered in the
two-mode problem.

VII. NONLINEAR SINGLE-MODE PROBLEM

When only a single mode is present, the second term in-
side the large parentheses in Eq. (25) is, of course, absent.
Adding the remaining term to Eqs. (21), one ends up with
the single-mode evolution equations which, up to third or-
der in the radiation field, read

daq(r)/dr= [I R(pq, r) —a]aq(r) — sR(pq, r)aq

dPq(q. )/dr=
2 [I I(pq r) sl(pq r)aq]

(28)

Since in this section we are dealing with a single mode, we
will drop the subindex q. The intensity or power density
I is, of course, simply related to the amplitude by

I =Ca, C = —,
' ceo(mc/e) co (29)

Equation (18) is rather complicated and a large number of
integrations have to be performed in deriving Eqs. (25)
and (26). In order to simplify things, s in these equations
was obtained under the assumption that all p's are ap-
proximately equal. This assumption is consistent with
our purpose of analyzing, in this paper, the interaction
among near modes. Equation (25) represents a "true"
third-order interaction to be discussed later.

(2) Equation (18) also contributes to the current with
terms in which all three frequencies are different as in

g Cqlmaq+m q —m —I q+l
I m

Summed over the amplitudes aq +m aq m I p this part of
the current functions as an effective mixing between the
modes q and q+I. The second-order current also pro-
duces a two-mode mixing. When all such small interac-
tions are added, we end up with an effective coupling of
the form
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From the first of Eqs. (28) and (29) we see that the inten-
sity evolves during a pass in accordance with

dI(r)/dr=I(r)[1 g(r) —a —Sg(r)I(r)],
S =S~+SJ=(&a+sr)/C

(30)

with C as in Eq. (29), and sz and sz as in Eq. (26). The
solution of Eq. (30) relates I(g+1) at the end of pass
r)+ 1 with I (r) ) at the beginning by

I(r)+ 1)=I(g)e '/[1+I(Ti)S, ] .

In this equation I, is

I, = I a=Gpf—(p)lp —a, f(p) = 2(1 —cosp)

—P sIIlp

(31)

(32)

1 1

S, = d~S~ ~exp d~' I ~ ~' —e
2

2Gp eL A F(p)
me p6p

(33a)

F(p ) = 6.53+p /2 —( 5.50 —1.13p )cosp

—(5.38+p /24)p sinp

+(p /16 —1.03)cos(2p) —0.56sin(2p) . (33b)

The expression after = in Eq. (33a) is valid for small I, .
Up to now we have studied the evolution of the mode

amplitudes (or intensities) for an amplifier, or within a
single pass of an oscillator. It is a simple matter, howev-
er, to iterate Eq. (31) over passes and obtain for I at pass

g the expression

dI(r))/dTi=I(r))[1, S,I(r))] . — (35)

From the foregoing equations it is easy to see that the
third-order theory leads to the limiting intensity

I„=I(oo)=Gr /S, . {36)

For small I „this limiting intensity can be approximated
by

I,j
S,

3
me

2n
f(p) „4 r'
F(p) pKLN

2

(37)

The factor in large square brackets is 3.518' 10 W and
the function inside the large parentheses is 1.55 for
p =2.6, at the maximum of the small signal gain.

With the general definition of the gain per pass 6 as
the ratio of the intensity change to the initial intensity,
from Eqs. (31) and (37) one derives

I (71 ) =Ipe '/[1+ IpS, (e ' —1)/GL ],
r,Ip=I(r)=0), GL ——e ' —1 .

Gz is, of course, the small signal gain minus losses per
pass. For low-gain (expI, —1=I,), I as given by Eq.
(34) coincides with the solution of the differential equa-
tion

GL (1 i)—
i =I/I

1+GL)
(38)

valid up to I =I . The solid curve in Fig. 1 shows a
graphical representation of the normalized gain
G(i)/G(0) for I,=0.5, obtained from the third-order
Eq. (38), while the dashed curve is the result of a one-
dimensional computer simulation. The third-order theory
is seen to give a good account of the behavior of a low-
gain FEL except for the deep saturation region (the tail of
the dashed curve). The dotted curve in the figure will be
discussed in Sec. VIII.

VIII. TWO-MODE PROBLEM

In a FEL with short electron pulses, the spatial struc-
ture of the electron pulse couples (locks) a large number of
modes. For long pulses, on the other hand, this locking
does not exist and the only cold mode mixing comes from
small terms of the type of Eq. (27). Since the g in those
equations are small, the loaded resonator modes do not
depart much from the cold modes. Moreover, much
about the more general multimode situation can be
learned from the two-mode problem to which we now de-
vote our attent1on.

Let us consider a situation with two modes having al-
most equal detuning p and gain minus losses I z. Due to
the interaction of Eq. (24), the power densities I, =Cat
and I2 ——Ca 2, where C is given in Eq. (29), satisfy the sys-
tem of coupled equations

dI, /dr =I, [I —S (I, +uI )],
dI /dr=I [I —S„(I +uI, )] (u =2) .

{39)

In a FEL the above equations hold with u =2, but it is
worthwhile to continue the discussion with a generic u.

0.8"
X
cg 0.6-
Q
Ul
N 0 4".

o o
Z

0
O.OO) O.Ol O.I I

NORMALIZED INTENSITY

FIG. 1. Normalized gain as a function of normalized intensi-
ty. (a) Solid line: Gain for a single mode, or for the dominant
mode 1 in the two-mode problem, derived from third-order per-
turbation [Eq. (38)]. The abscissa is i =I&/I~„, where I& is the
intensity of the single or dominant mode and I]„ its third-order
limiting intensity. (b) Dashed line: One-dimensional computer
simulation for the normalized gain of a single mode. i =I/I&„,
with I&„ the same as in (a). (c) Dotted line: Gain for the weak-
er mode 2 in the two-mode problem as a function of i =I&/I&
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As it was already remarked, the fact that u & 1 (crossed
saturation larger than self-saturation) is extremely impor-
tant for the behavior of a long-pulse FEL. The saturation
function S~ in Eq. (39) is related, through the second of
Eq. (30), to s~ of Eq. (26) which was obtained with the
simplification of taking the same detuning for both
modes. This is a good approximation for nearby modes.

Since for a single mode the intrapass Eq. (30) leads to
the interpass Eq. (35), it is only natural to assume that
corresponding to Eqs. (39), the two-mode interpass evolu-
tion is described by

dIi/dri=Ii(i))[1, S,(I—i+uIi)],
dI2/dri=Iq(il)[I, S,(I2—+uIi )] .

(40)

Et is convenient now to transform to a polar system ac-
cording to

a i (i) }=r (q }cosB(q),

ai(i)) =r(ri)sinB(ri),

R=r

(41)

I;(ri)=Iol, e ' l[I', +I;oS,(e ' 1)]-
(u =0, i =1,2) . (43)

It is easy to see that in this case the system saturates with
equal amounts of I& and I2. As we saw from the polar
method this is true in general for u & 1.

Another case in which an exact analytic solution is
readily found is for u = 1. It reads

Ii(g) Iio
I2(g) I2o I,+(I,o+I2o)S, [exp(I, q) —1]

u =1 . (44}

With this, the system of Eqs. (39) turns into

dR/dil =R (il)(I, S,R (il) (
—1+—,(u —1)sin [26(il)] I ),

(42)
dB/dq= —( —, )(u —1)S,R (il)sin[46(ri)] .

At (or near) saturation the system is described by stable
solutions (with constant B) of the Eqs. (42). The boun-
dary between weak and strong coupling is u =1 for which
any e is possible. For other u the only equilibrium points
are 6=0, n/4, and .ir/2. For weak coupling (u &1),
e=0, vr/2 are unstable while 6=m/4 is the stable point
where the system saturates with equal amounts of the two
modes. On the other hand, for strong coupling (u &1,
case of the FEL with u =2), B=n/4 is unsta. ble while
6=0 (pure mode 1) and 6=sr/2 (pure mode 2) are the
only stable equilibrium points. Thus near saturation a
strongly interacting system like the I'EL operates at a sin-
gle mode which evolves according to Eq. (34). We will
refer to the analysis based on the transformation (41) as
the "polar" method.

It is instructive to corroborate the above results by a
different method. Since no analytical solution of Eqs. (40)
with u =2 is known, it is useful to analyze exactly soluble
cases with different values of u and try to extrapolate.
For u =0 (no coupling) each mode grows independently
of each other and the intensities behave as

r, qdI2 u I,I]oe
=I2 I,—S,

dil ' ' I,+IioS, (exPI, q —1)

(46)

Keeping in mind that the I s are positive definite, let us
introduce a new function F(il ) that satisfies

T

I,—uS, r, r»e 'r, ~

dF (r)) ldg=F (ri) I,+S,I,o(e ' —1)
(47)

with the initial condition F(0)=Iqo=I2(0). It is easy to
see that for positive I2 and F we have

(48)
[1+S~Iio(e 1)/I ]—I,(ri) &F(ri) =

Thus, in the FEL strong coupling ( u =2) situation I2 +0-
for gazoo. This can be understood by looking at the
second of Eqs. (40). For Ii larger than Iz, the effective
gain exponent for I2 is I,rr=(I, 2S,Ii) wh—ich turns
negative as Ii becomes sufficiently large. Thus, while
growing, the dominant mode suppresses the other
mode. ' It is also clear that for larger g the intensity I]
of the dominant mode behaves very much as in Eq. (45),
since in the first of Eq. (40), I2 becomes negligible. Then,
the gain for the dominant mode 1 is practically the same
as in the single-mode case. As discussed in Sec. VII, in
the third-order theory this gain is given by Eq. (38) with
i =I

& /I~, and represented by the solid curve in Fig. 1.
For a given I, & I2 we can solve the second of Eqs. (40)

and obtain the gain for the intensity I2 of the weaker
mode 2 as

I —2GLic L

Gq —— . —1 (i =Ii/Ii ) . (49)

This third-order weak-mode gain is represented, for
I",=0.5, by the dotted curve in Fig. 1. As can be seen, at
the point ~ =0.38 where the dominant-mode gain was de-
creased to half its maximum by the self-saturation, the
crossed saturation has already reduced to zero the gain of
the weak mode.

The third-order theory is expected to give a reasonable
account of the behavior of a low-gain long-pulse FEL
operating outside the deep saturation region (tail of the
dashed curve in Fig. 1). With sufficiently high losses the
FEL operation can be kept outside that deep saturation
region. Under those conditions the following picture
holds: The strong crossed saturation among modes (for
near modes it is twice the self-saturation) results in an in-
tense competition whereby the dominant mode is able to

In this case, at saturation Ii/I2 ——Iio/I2o, in agreement
with the polar method.

Let us for the moment assume that even in the strong
coupling (u &1) situation the dominant mode has, in
analogy with Eq. (43), an intensity given by

I~(i))=Iiol, e ' /[I, +I,oS, (e ' 1]—. (45)

Then, the intensity of the other mode is a solution of
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reduce the effective gain of other nearby modes to the
point of extinction. The outcome is operation at a single
mode.

For FEL's operating inside the deep saturation region,
terms of higher order (than the third) in the radiation
field have to be taken into account. These, as well as the
effects they produce (sideband instabilities, " for in-
stance), are outside the scope and intent of the present pa-
per.
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APPENDIX: EXPLICIT COUNT
OF THE RELEVANT MODE ARRANGEMENTS

IN THE THIRD-ORDER COUPLING

The mode behavior of a long-pulse FEL depends cru-
cially on the structure of Eq. (25). Thus, it might be
worthwhile to show explicitly which terms of Eq. (24) ac-
tually contribute. The 0 integral in Eq. (24) imposes, of
course, the equality q =+b+c+d. This yields the eight
cases

q=b —c+d,
q=b+c —d .

(A7)

(A8)

(A9)

A similar analysis holds for the other cases (A5) and
(A7) which yield the arrangements

b=p,
c=q,
C =p,

d =p
d=q, (A 10)

(A 1) cannot, of course, be satisfied, while case (A2) with
b =c =d =p=q/3 will be disregarded on grounds that
this gives a p too far away from q and outside the gain
bandwidth.

For the type 1(a) terms in which h =c =d =q, only
cases (A5), (A7), and (A8) are possible giving a factor of 3.

Let us now consider type (b) terms in which among
b, c,d there is at least one q and one p&q. Here again,
only cases (A5), (A7), and (A8) are possible. The common
feature of these cases is that one of the signs is minus and
the other two are plus. Let us consider one of these cases,
say (A8). If d =q~b =c =q, we are back in type (a).
For (b) then, d =p leading to q =b +c —p which is satis-
fied in the following two arrangements:

b=q, c=p
d =17 b=p, c=q .

q= —b —c —d,
q =b+c+d,
q = —b —c+d,
q = —b+c —d,
q = —b+c+d,
q=b —c —d,

(A 1)

(A2)

(A3)

(A4)

(A5)

(A6)

c =p,
b=q,
b=p,

d =p
(A 1 1)

The conclusion is that for type 1(b), three cases contribute
with two arrangements each for a total factor of 6 [as
compared to 3 for type 1(a)]. This is the origin of the 2 to
1 weights in the terms inside the large parentheses of Eq.
(25). The common factor (3) was absorbed in the function
s (p, r ) of that equation.
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