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A neural network which is capable of recalling without errors any set of linearly independent pat-
terns is studied. The network is based on a Hamiltonian version of the model of Personnaz et al.
The energy of a state of N (+1}neurons is the square of the Euclidean distance —in phase space—
between the state and the linear subspace spanned by the patterns. This energy corresponds to non-

local updatings of the synapses in the learning mode. Results of the mean-field theory (MFT) of the
system as well as computer simulations are presented. The stable and metastable states of the net-
work are studied as a function of "temperature" T and a=p/X, where p is the number of ernbed-

ded patterns. The maximum capacity of the network is a=1. For all a (0&a&1}the embedded
patterns are not only locally stable but are global minima of the energy. The patterns appear, as
metastable states, below a temperature T =T~(a). The temperature T~(a) decreases to zero as
a~1. The spurious states of the network are studied in detail in the case of random uncorrelated
patterns. At finite p, they are identical to the mixture states of Hopfield s model. At finite a, a
spin-glass phase exists as a metastable state. According to the replica symmetric MFT the spin-

glass state becomes degenerate with the patterns at a=ag:1 2/~ and disappears above it. Possi-
ble interpretations of this unusual result are discussed. The average radius of attraction R of the
patterns has been determined by computer simulations, for sizes up to N =400. The value of R for
0&a & 1 depends on the details of the dynamics. Results for both parallel and serial dynamics are
presented. In both cases R is unity (the largest distance in phase space by. definition} at a~0 and
decreases monotonically to zero as a~1. -Contrary to the MFT, simulations have not revealed, so
far, any singularity in the properties of the spurious states at an intermediate value of a.

I. INTRODUCTION

A. Neural networks with local learning rules

Recently there has been an upsurge of interest in
models of neural networks which exhibit associative
memory. ' In many of the models, the network consists
of a highly connected system of spins (neurons) whose
internal connections (synapses) are updated to facilitate
the storage and the retrieval of information. Usually the
synapses are designed so that a given set of states of the
system become fixed attractors of its dynamic evolution.
These states are the patterns which are memorized by the
network. This memory is associative: starting from an
initial state which partially resembles one of the patterns
the system evolves fast into that pattern. We will assume
for specifity that the neurons are two-state elements
S=+l. A network of N neurons has 2 possible states.
Out of these, a set of p states tPI (i =1,2, . . . , N;
p = 1,2, . . . ,p ) constitutes the patterns or memories.
Note that each g"; is either + 1 or —1. It represents the
value of S; in the pth pattern. The synapse between S;
and SJ. is denoted by J,z.

Most studies of neural networks focused on local learn-
ing rules: Each JJ depends only on the values of P and
gj". Loca1ity of the learning rules is a reasonable condition
for biological networks. There, the synapses are modified
presumably by the past activities of the neurons they con-
nect. These past activities are represented by the
"quenched" values g'~ and gj". In building artificial de-

vices the restriction of locality can be lifted. Further-
more, it is not unreasonable that even in biological sys-
tems, some long-term synaptic modifications which de-
pend on the history of activity of a large group of neurons
might occur, in addition to the main local modifications.
It is thus interesting to study the potential of networks
with nonlocal learning rules.

Local learning rules have the common limitation that
correlated patterns are difficult to learn. The overlaps be-
tween the patterns are characterized by the matrix,

N

C„,=N ' g g";g,", p, v=1,2, . . . ,p . (1.1)

They act as an internal static noise which tends to
misalign spins relative to the original patterns. When the
patterns are uncorrelated random variables the combined
overlap of a pattern with all the other patterns is of
O(v'p/N ). Hence, when p is finite the patterns are effec-
tively orthogonal. If, on the other hand, a—=p/N is finite,
the stable states of the system contain a finite fraction of
errors, which increases with u. When a reaches a critical
value o.„there is a dramatic increase in the level of errors
and the system ceases to provide associative memory. The
value of a, depends on the details of the model but it is
always less than 0.14. '

B. Nonlocal xnodel of Personnaz et al. (Ref. 5)

One potential advantage of nonlocal learning rules is
that they can suppress the adverse effects of the overlaps
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among the patterns. In fact, Personnaz et al. have con-
structed a nonlocal model in which any set of patterns,
correlated- or not, can be memorized without errors as
long as they are linearly independent. Their model con-
sists of a set of synapses

(1.2)

where C ' is the inverse of the overlap matrix C, defined
in Eq. (1.1). The dynamics of the system is such that a
configuration is stable if all spins in it are parallel to their
local fields,

which implies that the average of J;; is

(1.9)

and the fluctuations of J;; around this value are small
[O(N ' )] as X—+co. It is thus clear from Eq. (1.7)
that if a) —,', each of the two configurations S, =/~i and
Si ———gi is stable. This means that above a= —,

' if one
starts from a configuration which differs from a memory
by only one spin one does not flow to the full memory.
Thus, although the memories are stable up to a=1 the
maximum capacity of the system for providing associatiue
memory is

S; =sgnh;,

h; —g J~JSJ .
j=l

It is straightforward to see that

g J„gP. gP

(1.3)

(1.4)

(1.5)

(1.10)

Similar considerations show that the presence of self-
coupling terms reduces significantly the basin of attrac-
tion below a= —,. This is confirmed by numerical simula-
tions which will be discussed in Sec. VI.

D. Outline of the paper

whereas vectors I/i I which are orthogonal to all the pat-
terns are eigenvectors of J with zero eigenvalue. Equation
(1.5) implies that

N

sgn g J; g". (1.6)

C. Effect of self-coupling

The dynamics of the network of Personnaz et a/. is
not governed by the energy function ——,

' g,.h;S;. This is
due to the presence of the self-coupling term J;;S; in Eq.
(1.4). This term is needed for the validity of the eigen-
value equation, (1.5). The self-coupling restricts severely
the size of the basins of attraction of the patterns especial-
ly for large a. To see this consider a case where all spins
except, say, Si, are parallel to a pattern I@I. Then Eq.
(1.3) for Si reduces to

Si ——sgn g J,jg~~+J~&Si
j (&1)

hence all embedded patterns. are stable states. This con-
struction holds for any set of patterns, provided that they
are linearly independent. Thus the patterns remain stable
for all a(1.

Several important questions regarding this model arise.
Are the stored patterns stable also to simultaneous flips of
many spins? What is the effect of fast stochastic noise
(e.g., thermal fluctuations) on the stability of the patterns'?
What are the sizes of the basins of attraction of the pat-
terns? What is the nature of the other, "spurious" states
of the network?

II. A NONLOCAL MODEL
WITH AN ENERGY FUNCTION

A. The model

In this paper we study a slightly modified version of the
model of Personnaz et a/. We consider a network which
is governed by an energy function,

H= ——,g JiiS;SJ, (2.1)

where Jz are defined by Eq. (1.2). Both the zero- and
finite-temperature properties are considered. The attrac-
tors of the network are the local minima of H. They are
configurations which satisfy

S;=sgnh;, (2.2)

(2.3)

In the following section we introduce a modification of
the model of Personnaz et al. by eliminating the self-
coupling terms from the dynamics. This leads to a simple
description of the network by an extensive energy func-
tion. A qualitative discussion of the model follows. In
Sec. III we present the mean-field solution of the model at
finite and zero temperature. The details of the mean-field
theory which is based on the replica method are delegated
to Appendixes 8 and C. Section IV is devoted to a discus-
sion and presentation of simulation results regarding the
basins of attraction of the memories. The role of different
dynamic scenarios are also elaborated. Section V presents
a summary of the main results.

=sgn[(1 —a)P+aS, ] .

We have used here the fact that

At finite T, the long-time behavior of the system is deter-
' mined by the Boltzmann distribution of states which gives
rise to a free energy,

gJ;;=g (C ')„„gg;"g,
" =%a, (1.8)

F= —P 'ln Tr(s) exp( PH), P=1/T . — (2 4)

p, v Note that the diagonal terms J~; in Eq. (2.1) contribute
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P
S;= g a„g";+5S;, (2.5)

only a constant term, ——,Q,.J;;=—, N—a, to H and do
not affect the thermal or dynamic properties of the sys-
tem. Thus, the relevant synaptic matrix, in the present
model, is JJ(1—5,J). In the thermodynamic limit, the
matrix can be replaced by JJ

—a5,J. In this limit the em-
bedded patterns are eigenvectors of the synaptic matrix
with an eigenvalue 1 —a and configurations which are
orthogonal to them, are eigenvectors with an eigenvalue
—CX

In the investigation of the model (2.1) it is useful to de-
fine the following decomposition:

as is proved in Appendix A. In fact, the patterns are not
only stable to single spin flips but are global minima of B.
Their energy per spin, H/N, is

(2.14)

which is the lowest value of E. In addition, all spin con-
figurations which are linear combinations of the patterns
are also global minima of H, degenerate with the original
memories.

The above properties become apparent in the following
geometric formulation of H. Let us denote by b„

' 1/2
~= g(5S, )' (2.15)

a„=g (C ')„~ (2.7)

where C is the overlap matrix (1.1). The role of the order
parameters az is manifest through the local fields (2.3)
which can be written as

h, =g g&a„J,,S,=g —g", a„aS, —
p

=(1—a) g g";aq —a 5S; .
P

The Hamiltonian (2.1) can be written as

NH = — Q Q~mpP P

(2.8)

(2.9)

These equations should be compared with the correspond-
ing equations of Hopfield's model'

h;=Q /~md —as;, H= ——g(mp)2 p

(2.10)

The advantage of Eqs. (2.8) and (2.9) in suppressing the
effect of overlaps can be seen by considering the configu-
ration S;=g,'. Here m„—5» ——(C ')» which is nonzero
[of O(1/~X )] euen if the patterns are random, whereas

ap ——5)p

regardless of the correlations of the patterns.

(2.11)

B. Global minima of M and the theory of random spaces

where {5S;I is orthogonal to all the patterns, i.e.,
+,.5S;g"=0. In general, the coefficients a& are different
from the more conventional order parameters, i.e., the
overlaps m&,

mp N'Q——S;g"; . (2.6)
2

They are related by

the Euclidean distance between the (N-dimensional) vec-
tor {S;I and the p-dimensional subspace spanned by the
patterns. Squaring Eq. (2.5) and summing over i one ob-
tains

b, /N = 1 —g a~mp . (2.16)

In other words, b, /N is the Hamming distance between a
spin configuration and its projection on the space spanned
by the patterns. Now Eq. (2.9) can be written as

H= ——+—6
2 2 (2.17)

(2.18)

Thus H represents a global cost function which is the Eu-
clidean distance (squared) of a corner of the unit N
dimensional hypercube from the subspace spanned by p
randomly chosen corners. The dynamics of the system
consists of hopping from a given corner to its neighboring
ones along paths which reduce A. A corner is a local
minimum of H if it is closer to the subspace than all its
neighboring corners. It is now trivial that the set of glo-
bal minima of H consists of the patterns, their inversions,
and all other spin configurations which lie in the linear
space spanned by the patterns.

From the point of view of memory the linear combina-
tions of the embedded patterns are spurious states. At
first sight, the fact that these linear combinations are
stable and degenerate with the memories might seem to be
a serious weakness of the model. This however, is not the
case, because the occurrence of states {S;=+ 1 I,':~ which
are linear combinations of the memories is very rare in
large N. In fact, given p, N-dimensional (+1) vectors
{g";I chosen at random, the probability P that the linear
subspace spanned by them contains a (+1) vector, dif-
ferent from the + {PI,vanishes as'

3I' -4 —,X~ oo3 4

The local fields of the configuration S;=P are

h( ——g";(I—Jg) —P(1—a) . (2.12)

0&J;; &1, i =1,2.. . . . , N (2.13)

Despite the factor 1 —J;; all the patterns are stable, for all

p & X. This is because

for all p/n & 1 —71n2/lnN. The origin of the result (2.18)
is the fact that the dominant contribution to I' comes
from the probability of linear combinations of three of the
patterns. In order that {g" f, g; I, {g; I span another (+ 1)
vector the N triplets (g,',g;,g;) must contain only six out
of the eight different triplets, yielding the result (2.18).

Indeed, none of the many spurious states that have been
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found in the simulations of the model (with N & 100) was
a linear combination of the memories. This will be dis-
cussed in Sec. IV.

III. MEAN-FIELD THEORY (MFT)

A. Finite-p limit

The behavior of the network in the limit of finite num-
ber of patterns and N~co is relatively simple. In this
case the interactions JJ are of order 1/'N, and therefore
the local magnetizations (S;) [( ) denotes thermal aver-
age] obey the simple mean-field equations

lated patterns. The derivation of the MFT is presented in
Appendixes 8 and C. It is based on the replica method
and replica symmetry is assumed. A general solution of
the MFT may have s macroscopic nonzero linear coeffi-
cients I(a, ) I where for specifity v is assumed to run
from 1 to s. In the case of random patterns these (a, )
are identical to the macroscopic overlaps (m ) with the
corresponding patterns. The rest I (a& ) I with p )s are of
O(N '~

) and oscillate in sign. This leads to the addi-
tional order parameter

(3.4)

( S; ) =tanh(p(h; ) ) =tanh p g g";(a„) (3.1) see Appendix C. Finally, the Edwards-Anderson order
parameter is defined as usual by

See Eq. (2.8). The order parameters (a„) are given by the
self-consistent equations

&.„&=g(C-'),.&,& =g(C-')„.—g g&S, & . (3.2)
V V

It is also useful to define the local susceptibility

C=P(1—q) .

(3.5)

(3.6)

The free energy per, spin is

f= —,
' g (a„}(m„}—}} '((}n2 cosh Pgt", (a„}

where (( )) denotes average over g";.
The ground state of the free energy is always given by

the Mattis states, which are of the type

(S; ) =g;m, (a&) =m5&i, m =tanh(pm), (3.3)

regardless of the correlations among the patterns. The na-
ture of other solutions depends on the overlap matrix C.
In the specific case of random uncorrelated patterns,
(C ')z —5& —0(Ã ' ), which can be neglected if p is
finite In this ca. se, mz ——a& and the present model and
Hopfield's' model are identical. As p increases, the total
contribution of the off-diagonal elements of C ' to Eqs.
(3.2) increase and this leads to different behavior of the
two models in the limit of large p. This limit is studied in
the following.

In the MFT, the local magnetizations have the follow-
ing form:

S

(S;)=tanh pJ V raz;+ g (a )g,".

v=1
(3.7)

J= I 1+C—[(1—C) +4aC]'
2C

(3.8)

where C is defined in Eq. (3.7). Note that J is always
smaller than 1, and equals 1 at a=0.

The random uncondensed coefficients Ia„l generate a
random Gaussian local field Jv raz; where ((z; )) =1 and
r is determined by

The macroscopic overlaps generate local fields which are
similar to the finite-p case. The coefficients (a„) are
determined self-consistently by Eq. (3.2), which in the
case of random patterns is just (a ) =N 'g, g;(S;).
The prefactor J equals

B. MFT in the finite a=p /X limit

In this paragraph we present the general features of the
MFT of the model (2.1) in the limit where a remains fi-
nite. We concentrate here on the case of random uncorre-

S

q —g (I )(a„)
v=1

l+ C—2CJ.

The free energy per spin is

(3.9)

pf = ——,(1—a)ln(1 ——a) +—(1—J)+ —,lnJ+ —ln( J —1)—1 p } a i J rapC
2 ' 2 2

J S

g (a„)&m, &+ ln2cosh pJ v raz+g&a &p
v=1 V

(3.10)

The symbol (( )) refers here to the average over the
discrete distribution of P as well. as a Gaussian integral
over z. In the following paragraphs the various solutions
to the MF equations are studied.

C. Retrieval states

The preceding equations have a solution in which only
one (a„) is nonzero. This solution is the most relevant
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m = ((g;S; )) =tanh(PJm ), (3.12)

where J is given by Eq. (3.8) and C=P(1—m ). This
state is very similar to the finite-p Mattis state, Eq. (3.3).

. In both cases, at T=0, S;=g,' implying a perfect retrieval
of memory without errors for all a & 1. The zero T limit
of f, Eq. (3.9), in the retrieval state, is ——,

' as expected,
see Eq. (2.14).

The main difference between the finite-p and finite-a
cases is the temperature dependence. The phase transi-
tion, in the finite-a case is of first order. The temperature
TM(a) at which a solution of Eqs. (3.12) and (3.8) with
nonzero m first appears is plotted in Fig. l. At this tem-
perature the retrieval state is only metastable. It becomes
a global minimum of the free energy at a lower tempera-
ture, T,(a), see Fig. 1. Note that the two temperatures in
the figure are divided by the factor 1 —a. This is carried
out because all the local fields in this state are reduced by
a factor of 1 —a, see Eq. (2.12). The discontinuity in m at
Tst is shown in Fig. 2 as a function of a. It is evident
that the transition is a strong first-order transition already
at a-0.1.

The general MF equations have been derived for ran-
dom, uncorrelated patterns, but the results for the retrieual
states are quite general and hold euen if the patterns are
correlated. Although an analysis of stability to replica
symmetry breaking (RSB) has not yet been calculated, it is

I I I I I I I

T/(1-a)

0.5

one for retrieval of memory and is termed a retrieval
state. Assuming (a ) =m5„i we observe that r =0 is a
consistent solution. Substituting r =0 in Eq. (3.7) yields
(S; ) =g,'m, hence

(3.11)

which guarantees by Eq. (3.9) that indeed r=0. In fact,
another solution which has one nonzero overlap and r&0,
exists but is unstable to variation of m. The macroscopic
overlap m of the state with the pattern tg,'I is, by Eq.
(3.7),

1.0

0.8

0.6
0,

FIG. 2. Calculated value of the overlap m at T~ as a func-
tion of a. As a~O it approaches zero, indicating that the tran-
sition becomes of second order as in the finite-p case.

most likely that the solution for the retrieval states is
stable to RSB, since they are states in which the local
fields are uniform (relative to g'; ). Also, the zero T limit
of the results is evidently exact as was discussed in Sec. II.

It should be noted that Ttanh (S;) is Jmg whereas
the exchange field (h;) for this state is (1—a)mg, see
Eq. (2.8). Note that J is always less than 1 —a. The
physical origin for this difference is that (S; ) is induced
by the part of h; which does not include the contribution
of S; itself. In the finite-a case, this "reaction" term is
exactly (1—a —J)mg, ', yielding

(S; ) =tanhIP[(h; ) —(1 a J)m—g; ]—I =g,'tanh(PJm ) .

This can be shown explicitly" using an approach similar
to that of Thouless, Anderson, and Palmer' for the SK
(Ref. 13) model. As T~O, C~O and J~l —a as ex-
pected.

The principal conclusion from the existence of a phase
transition, at a finite T, to a retrieval state is that the em-
bedded patterns are not only stable to single-spin flips but
are stable to simultaneous flips of a large number (infinite
in the X~ao limit) of spins. It implies that for any
a&1, the patterns are surrounded by "infinite" energy
barriers and have substantial basins of attraction. There-
fore the predicted capacity of the present network is

(3.13)

D. Noisy mixture states

I I I I I I I I ~J
0.5 1

FIG. 1. Mean-field results for the critical temperatures of the
retrieval states divided by 1 —a: T~ is the temperature where
the states appear, as free energy metastable states; T, is the tem-
perature where they become global minima.

At sufficiently low values of a, locally stable MF solu-
tions exist which have macroscopic overlaps (a ) with
several patterns. Since even at T=O, g', a„m & 1 and
equals 1 only for s = 1, it is implied by Eq. (3.9) that mix-
ture states are noisy: their local fields include also a ran-
dom Gaussian part. The, origin of this can be observed by
noting that
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S S

sgn g a„g," = g a,g;+ g a„P+5S;,
0.5

v=1 v=1 p ()s)

where a„=O(X '~ ) and 5S; is orthogonal to all the pat-
terns. Therefore

h; —(1—a)pa„g; =(1—a) g a&P; —a5S;&0 .
v p()s}

This noise vanishes as u —+O.
The mixtures states disappear rather quickly when a in-

creases. For instance, at T=O, the mixture state with
a, =a& ——a3=a disappears at a3-0. 1. The value of a at
n3 is 0.497 compared with a=0.5 at +=0.. Likewise, a
solution with a1 ——a2 ——.. .——a 5

——a exists only below
a5—0.05. The value of a at a~ is 0.374, compared with
0.375 at +=0.

0.4

03.0 0.1 0.2
Q

FIG. 4. Zero-temperature energy of the SG state as a func-
tion of a, according to the MFT.

ag ——1 —2/m -0.363 . (3.14)

As o.' —+ng the SG energy becomes degenerate with the
ground-state energy,

E. Spin-glass (SCs) state

The SG solution is characterized by not having any
macroscopic overlaps. Equations (3.5)—(3.9) have a solu-
tion with (a ) =0, q&0, below a temperature Ts(a)
which is shown in Fig. 3. Unlike the case in Hopfield s
model, the SG solution appears discontinuously: both q, r
and J exhibit a discontinuity at Tg. The zero-temperature
limit of the SG solution is calculated in detail in Appen-
dix 83. The zero-temperature energy is shown in Fig. 4.
As a—+0, Tg~l, the zero-temperature energy E~ ap-
proaches the value —1/~ and ra~2/mThu. .s, in the
limit of a~0 the SG phase coincides with the "high"
mixture states of the finite-p case, just as in Hopfield s
model. 3 As a increases from zero, Tg decreases very rap-
idly, 1 —Tg(a) ~a'~ (see Fig. 3). It vanishes at a=ag,

F. Absence of an SG solution above ag

The absence above ag of solutions other than the re-
trieval states would suggest that for large value of a,
(a~ &a&1) spurious states do not exist or at least that
their number is reduced considerably relative to smaller
values of o;. This would imply a remarkable increase in
the basin of attraction of the memories as a increases.
Another unusual feature of the above results is the degen-
eracy of the SG state and the ground state at ag, see Eq.
(3.15). Recalling the geometrical interpretation of the en-

ergy, Eq. (2.17), the result (3.15) means that as a in-
creases, the distance between the spin configuration which
corresponds to the SG phase and the linear space of the
memories decreases until it vanishes completely at cx.
Note that, as cz —+ng,

Eg(a)~ ——,', a~ag . (3.15) (3.16)

0.5

05

~ 1/4

t

FICi. 3. Results of the MFT for the temperature below which
an SCx phase appears as a metastable state. Note that Tg van-
ishes at a= 1 —2/m.

see Appendix B3. Equation (3.16) implies that the SG
solution does not merge, at as, with one of the embedded
patterns [for which the left-hand side of Eq. (3.16) is
necessarily one]. Instead it has small linear coefficients,
a& of O(1/~N ), with an infinite number of patterns.
This would seem to suggest that at ng the SG state be-
comes an exact linear combination of the embedded pat-
terns. This interpretation, however, contradicts the fact
[see Eq. (2.18)] that the probability of having even a single
linear combination state is exponentially small in the ther-
modynamic limit, for all a & 1. We have to bear in mind
that the above replica symmetric SG solution is unstable,
and has a negative entropy at T =0. It is thus quite pos-
sible that in the full mean-field theory including replica
symmetry breaking, the value of as will be shifted to 1.
Another possibility is that at ag the energy of the SG
phase is not exactly —N/2 but is higher by an amount
which is not proportional to ¹ This would mean that at
ng the SCx state is very close to the subspace spanned by
the memories but does not lie in it.
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IV. THE BASINS OF ATTRACTION
OF THE MEMORIES

finite p, the radius of attraction of the patterns is, accord-
ing to the definition (4.1),

A. Generd. l discussion R=1. (4.2)

Stability of the learned patterns in a neural network is
not sufficient to guarantee the emergence of associative
memory. An important requirement is that the stable pat-
terns have a sizable basin of attraction. This ensures the
recall of the full memory by an input which contains only
partial information on it. The importance of investigating
the basins of attraction of the patterns is exemplified by
the discussion of Sec. I on the model of Personnaz et al. ,
Eqs. (1.2)—(1.4). This network ceases to provide associa-
tive memory above a= —, because the radius of attraction
of the patterns is zero although they are stable for all
a&1.

It is important to note that the basins of attraction are
not isotropic in phase space. In other words, the flow of a
state to a pattern is not determined solely by the Ham-
ming distance, d =1—m, m being the overlap of the state
and the pattern. Firstly, the flow depends also on the
proximity of the state to the other stable states, i.e., the
spurious states. Secondly, the flow depends in general
also on the path that is taken. This means that the basins
of attraction are sensitive to the details of the dynamics.
For instance, serial and parallel dynamics may define dif-
ferent basins of attraction. The basins may be affected
also by order of updating in the serial dynamics.

Given specific dynamic rules, the radius of attraction R
of a pattern is defined, in the present work, as the largest
Hamming distance within which almost all of the states
(but not necessarily all of them) flow to the pattern. More
specifically, a state which is chosen at random subject to
the constraint that it has an overlap m with the pattern,
will flow to it with a probability Prob( m), where

1, m)1 —R
lim Prob(m, N) = ~

X—+Do ~1, m(1 —R .
(4.1)

The present study of the basins of attraction is restricted
to random uncorrelated patterns.

B. Finite-p limit

Certain aspects of the basins of attractions become con-
siderably simpler in the limit of finite p and N~no. In
this limit, the present model is equivalent to the Hopfield
model, and the only spurious state are the mixture states,
as discussed in Sec. III. The closest spurious state to a
pattern is the mixture of three patterns, e.g.,
S;=sgn(g +g;+g;). Its overlap with each of the three
patterns is —,-. Thus, beyond a radius of —, some states
will not flow to the patterns but to the mixture states.
Nevertheless, the (relative) number of these states is negli-
gible. Suppose a state is chosen so that it has an overlap
m with a pattern and is random otherwise. Then its over-
lap with the rest of the patterns is only O(1/~N ) and its
overlap with the mixture state is m /2. If m retains a fi-
nite value as %—+no, the state will flow to the pattern
with probability which approaches 1 as 1V—+ 00 Thus, for

C. Results of simulations

The radii of attraction of the embedded memories were
measured by following the time evolution of states with
varying initial overlaps. For a given set of p random pat-
terns, an initial state is chosen so that S;=g,',
i =1,2, . . . , mN, and S; with i &mN are random (+1).
The state evolves according to the dynamic rules (which
will be specified below) until a stable state is reached. The
process is repeated for different initial states. At a high
value of m, states always flow to the patterns g'. As m is
reduced, a value mo is reached where substantial number
of states (or all of them) flow to different fixed points.
Averaging mo over different sets of patterns yields

(4.3)

Simulations were performed with sizes X= 100—400.
The main limitations on size comes not from inverting the
matrix Cz but rather from the evaluation of J,J.. In the
present case, each one of the Ji, Eq. (1.2), requires a time
of order a N . In the Hopfield model, ' this time is aN.
At small values of a, where R is close to unity, finite-size
fluctuations are big. In particular, the O(1/~N) over-
laps of the initial state with the rest of the patterns are not
negligible. To partially compensate this effect, we use as
a definition of R,

(4.4)

where m~ is the largest overlap with the rest of the pat-
terns, i.e., m

~
——max [m& J, p & 1. Thus, when the initial

prescribed overlap with tg;) is the same as the random
overlap with another. pattern (i.e., mo ——mt) the state is at
the maximum distance (R =1) from [g J. As N~oo,
m t ~0 and Eq. (4.4) reduces to Eq. (4.3). The correction
(4.4) suppresses the finite-size effects especially at small a.

1. Parallel dynamics

Parallel dynamics at T=O consists of updating all the
spins simultaneously according to

S;(t+1)=sgn[h;(t)], i=1,2, . . . , N, (4.5)

This holds also for the radii of attraction of metastable
mixture states. The result (4.2) is relatively insensitive to
the details of the dynamics of the system. Of course,
most of the states in the phase space lie at distance 1 from
the pattern and their flows depend in a complicated
fashion on overlaps which are of O(1/V N ) as well as on
the details of the dynamics.

The interesting questions pertaining to the flows of
states with initial overlaps which vanish as X—+oo are
beyond the scope of the present work. Here we are mainly
concerned with the reduction of R from unity as a =p/N
increases.
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/

where h;(t) is given by Eq. (2.3) with IS;(r)I. The dashed
line a of Fig. 5 shows the result for the radius of attrac-
tion. As a~0, R —+1 in agreement with the finite-p case.
As u increases, R decreases monotonically and vanishes at
a, = l. Inside the basin of attraction the flows to the pat-
terns are fast: starting from the edges of the basin, the
typical time is 10—20 steps.

The dashed line b of Fig. 5 represents the numerical re-
sults for R(a) with the original model of Personnaz
et al. , again with parallel dynamics. The drastic effect
of the self-coupling terms. on R is clearly seen. In this
case, R vanishes above a= —,

' in agreement with the
analysis of Sec. I.

In general, parallel dynamics may lead to attractors
which are cycles rather than fixed states. For symmetric
connections JJ

——Jz, such as in the present case, the cycles
are at most of length 2 (i.e., the system may oscillate in-
definitely between two states). ' ' Indeed, we have found
in our model that in almost all cases where the flows did
not end up in the patterns they end up in cycles of length
2. The number of spins that flip during the cycle fluctu-
ates from a few spins in some cases to most of the spins in
others. The abundance of spurious cycles may be useful
in that the system is able to distinguish through the
dynamics between the desired attractors (i.e., the patterns)
and the spurious ones.

Modifying the parallel dynamics by introducing
memory terms affects strongly the flows of the system.
This has been demonstrated by simulating (at a =0.6)

S;(r+ I)=sgn[ —,
' h;(t)+ —,

' h;(t —I)],
i =1,2, . . . ,N, (4.6)

0.6

instead of Eq. (4.5). The dynamics of Eq. (4.6) led to a
substantial increase in R(a), particularly at high values of
o.', as shown in Fig. 5. The origin of this improvement is
twofold. Firstly, with Eq. (4,6) the only allowed cycles
are of length 3 and those are very rare. More importantly,
the memory has an effect somewhat similar to annealing.
It enhances the influence of the strong ordering fields,
produced by the initial overlap with the pattern, at the ex-
pense of the weak local noise. This enables the system to
escape from shallow spurious valleys.

2. Serial dynamics

Simulations with T=O single-spin-flip dynamics yield-
ed a radius of attraction slightly higher than that of the
serial dynamics. This slight enhancement may be attri-
buted to the absence of spurious cycles in the serial
dynamics. The fact that the difference is rather small im-
plies that the spurious states and cycles lie mostly in the
same regions of phase space.

In the above mentioned single-spin-flip simulations the
sequence of spin flips was random, i.e., uncorrelated nei-
ther with the particular form of the initial state nor with
the nearby pattern. Substantial increase in R is obtained
if the order of updating is such that the initial updatings
are more likely to increase the overlap with the pattern
than to decrease it. The "ideal" order would be to update
first the spins which are antiparallel to the pattern. This,
however, is impossible since the system does not know in
advance where the errors are. However, one may envisage
a situation where the system does identify quickly regions
where errors are more likely to be. In the context of pat-
tern recognition these regions might be, for instance, the
boundaries of the figure.

Recall that in our simulations the initial state is S;=g;,
1&i &mX and the rest are random. Thus the region
mX &i &X represents an area where errors are more like-
ly to occur. We have measured R for a serial dynamics in
which the initially "random" spins I S;,mN & i & N I are
flipped before the "parallel" ones IS;,1&i &mNI. The
results are presented by the solid line a of Fig. 5. They
follow approximately a straight line.

0.4
R(a)=1 —a, 0&a&1 . (4.7)

0.2

0O 04 0.6 0.8

FKx. 5. Measurements of the radius of attraction R, by com-
puter simulations. The lines are guides to the eye. Typical size
of the statistical fluctuations is indicated. Lines denoted by a
refer to the present model. Lines denoted by b refer to the
model of Personnaz et al. (Ref. 5) which contains the self-
coupling terms. Solid lines refer to serial single-spin-flip
dynamics with a specific order of updating as described in the
text (Sec. IV). Dashed lines refer to parallel dynamics. Open
triangle results from parallel dynamics with memory, Eq. (4.6).

A similar increase in R is seen in the model of Personnaz
et al. , Fig. 5(b). A mixture of serial and parallel dynam-
ics would also substantially increase R (relative to that of
the parallel dynamics) as long as the spins which are more
likely to be in error (i.e., the random spins) are flipped be-
fore the rest of the system.

It should be noted that changes in the details of the
dynamics affect the final destiny only if they are made in
the first one or two sweeps across the system. Modifying
the dynamics of the subsequent steps does not usually
change the end of the flow. Finally, in terms of steps per
spin the flows to the pattern (inside the basin of attrac-
tion) are very fast in the serial dynamics: the typical time
of flow from the edges of the basin is 5—7 steps per spin.
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D. Properties of the spurious states

The preceding results clearly imply an increase in the
number of spurious states as a function of a. This is an
apparent contradiction with the prediction that the SG
state disappears above ag=0.363 [see Eq. (3.14)]. Most of
the spurious states, obtained from initial states which
were at a distance d )R from a memory, have a substan-
tial overlap with the memory and hence are not pure SG
states. To obtain a more direct comparison with the pre-
diction regarding the SG phase, we have studied the spuri-
ous stable states which are obtained at the end flows of
random initial states. At very small a, the states flow al-
most always to either one of the memories or to one of the
mixture states. Above a=0. 1 mixture states do not ap-
pear, in agreement with the results of Sec. III C. Instead,
most of the spurious states have very little [of 0(1!~X)]
overlap with individual patterns. Are these states related
to the SG phase? In Fig. 6 we plot the energy of these
spurious states as a function of a. At small a, the results
are close to the theoretical curve, Fig. 4. At large values
of a the measured energy deviates strongly from E~(a).
In particular, the measured energy approaches ——,

'
only

as a~1 whereas Es(a)~ ——,
' as o.~ag.

The observed spurious states do not exhibit any singular
behavior at any value of a between 0 and 1, and certainly
do not disappear as o; increases. One possible explanation
is that the observed spurious states at T=0 are local
minima which are stable only to a small number of spin
flips whereas the mean-field theory refers to macroscopi-
cally stable states. Indeed, most of the observed spurious
valleys are shallow. Random flips of few spins are suffi-
cient to get out of them. Nevertheless, this does not ex-
clude the possibility that there is an underlying truly
metastable SG state. In fact, preliminary finite-T Monte
Carlo simulations have indicated that there is a tempera-
ture T below which a SG state is stable for long times
and T (a) decreases monotonically to zero as a~ l. This
seems to support the suggestion made at the end of Sec.

FIG. 6. Measurements of the energies per spin of spurious
stable states as a function of n, by simulations at T =0. These
spurious states which are obtained from initial random states
have only small overlap with the patterns.

III, namely that the prediction of Eq. (3.14) may be an ar-
tifact of the approximation of replica symmetry, and that
in the full mean-field theory, the SG state exists (as a
metastable state) at all a, with T~(a) which vanishes at
cx= 1.

Finally, we emphasize that none of the numerous spuri-
ous states that have been observed has an energy ——,, i.e.,
is a linear combination of the original patterns. This
clearly implies that the occurrence of "linear combina-
tion" states is very rare, as expected, and in any case does
not affect the basin of attraction of the memories.

In this work we have studied the performance of a
neural network which has the ability to retrieve perfectly
any p linearly independent patterns for all p &X, X being
the number of neurons. The model is based on a Hamil-
tonian version of the network of Personnaz et aI. The
facts that the patterns are retrieved without errors and
that correlated patterns can also be stored is a great ad-
vantage. The price is that the Learning rules are nonlocal
which makes the model unattractive from a biological
point of view. Nevertheless, the model is interesting not
only because of its potential practical applications but. also
because several general features of neural networks can be
more easily studied. In particular, the study of the basin
of attraction as well as the roles of the different dynamic
rules is more readily investigated in a model where the at-
tractors themselves are unambiguously identified.

The stability of the patterns has been built into the
model. The main questions have been the robustness of
this stability to thermal fluctuations and the attraction of
the patterns. Here again, statistical mechanical methods
proved to be very useful. We have shown that below a
critical temperature TM(a), states which are. fully corre-
lated with the patterns appear. The states are stable to
flips of up to O(X) spins and are separated from each
other by infinitely high barriers (in the N~ oo limit). At
T=O they become the ground states of the energy func-
tion. The temperature T~(a) decreases to zero as a~1,
hence the maximum capacity of the network is a, = l.

In addition to the retrieval states, other locally stable
states exist. At finite p, they are mixture states, identical
to those in Hopfield's model. At finite o., spurious stable
states appear which have zero overlaps with the patterns
and have the usual properties of SG states. According to
the replica symmetric theory the SG states disappear
above ag -0.36 but the numerical evidence is that they ex-
ist at all values of a&1. From the point of view of the
SG theory the structure of valleys is rather unusual. The
ground states are well defined "Mattis states" with no SG
features. The energy surface in the immediate neighbor-
hood of each of the 2p ground states is smooth even in an
energy scale of O(1) as is demonstrated by the T=0 simu-
lations. Far from these regions, the energy surface is very
rough and is dominated by an enormous SCx-like metasta-
bility. This is analogous to the situation in most real
glasses where the metastable glass states are well separated
from the crystalline ground states.

The enormous increase in the number of spurious states
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as a increases affects the radius of attraction of the
memories. This radius has been defined in a statistical
sense, namely, the maximum Hamming distance away
from a pattern at which the probability of a flow to the
pattern is unity in the X~ ao limit. The radius of attrac-
tion R(a) is unity as a~O and decreases monotonically
to zero as o;~a, . These limits are quite general. The
value of R(a) for 0~a & 1 depends on the details of the
dynamics. Parallel dynamics is fast but has a relatively
small R at large values of a. In addition, almost all of the
spurious attractors in a parallel dynamics are cycles of
length 2. In a serial dynamics cycles do not exist and the
resultant R(a) is higher than the parallel one. A very
substantial improvement in R is achieved if the spins
which are known to initially align with the pattern are the
last ones to flip.

The network considered here is governed by an exten-
sive cost function which is the square of the Euclidean
distance from the random linear space spanned by the
patterns. All states which are linear combinations of the
original patterns are therefore ground states as well. In a
linear network, this would have implied the existence of
an enormous flat region in the bottom of the energy sur-
face. However, in the case of two-state neurons which are
considered here, the linear combinations states are very
rare (in a large system). This is another demonstration of
the important role of the nonlinearity in neural networks.

Finally, the above results refer to a network whose
synaptic matrix does not contain self-coupling terms. In-
clusion of the self-coupling terms reduces the radius of at-
traction and leads to the vanishing of R(a) above a= —,'.
The reduction in the radius of attraction due to self-
coupling terms probably goes beyond the present specific
model.¹teAdded: After the completion of this work we have
received a report of some interesting work by Personnaz,
Guyon, and Dreyfus (see Ref. 5) in which they define an
energy function identical to our Eq. (2.1), and discuss its
geometrical interpretation. However, they consider in de-
tail only parallel dynamics with the self-coupling terms.
We are grateful to them for sending us their results before
publication.

APPENDIX A: PROOF OF EQ. (2.13)

From Eqs. (1.1) and (1.2) it follows that

g Jz N-2 g g y /PE(rg (C . l) —(C—
) s

j =1p, +=1 y, S=1

=J;;, i=1,2, . . . , X. (A 1)

Therefore

Ji; —J;;= g J,q )0, i = 1,2, . . . , N,
j (~i)

(A2)

which implies that

0&J;;&1, i=1,2, . . . ,X. (A3)

APPENDIX 8: REPLICA MEAN-FIELD THEORY

1. Derivation of the mean-field theory (MFT)

The MFT is derived using the replica method. The
averaged free energy per spin is given as

cussions. We are grateful to Dr. G. Kalai and Dr. N.
Linial for most helpful discussions on random linear
spaces. %'e are particularly indebted to Dr. Andrew Od-
lyzko for communicating to us the proof of the result
(2.18) and for correcting an error which appeared in an
earlier version of the paper. We thank AT(IkT Bell La-
boratories for providing the oppurtunity of interacting
with Dr. Odlyzko. This work has been supported in part
by the Fund of Basic Research administered by the Israeli
Academy of Science and Humanities.
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f= lim lim — ((((Z"))—1)
1

o(v ~ 13Nn

where

(81)

Z"=TrI
~I exp

N p n

g (c-')„gpss g spsp
ij =1p, v=1 p=1

(82)

r

n p N )) 1' (v P n((z"»=((Te„f 11 + dx'e f . 11dyrexp + l g g (yy)'+ g g g texr(yy+~P&f)))'
p=l @=i i =1 i =i p=l N i=i((p=lp=i

(84)

C is the overlap matrix (1.1), and (( )) stands for averaging over the g s. Using a Gaussian transformation yields

oo n p n p N p n

«z"&)=Tr„((f 11 jfdxrexp ——,
' g g c„~„x„+(i)/y()' g g gx„spic )), ())3)

p=. 1 p=:1 p=1 p, v=1 i =1@=1p=1

where we have neglected the Jacobian
~

detC
~

' . Substituting the expression (1.1) of C in Eq. (83) and linearizing the
resultant quadratic form by a Gaussian transformation, Eq. (83) reduces to
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Following Ref. 3 we divide the patterns into two sets: the first s patterns (with s finite) are macroscopically condensed
and the rest (p —s) which are uncondensed. For simplicity we will consider here explicitly only the case s = 1. The vari-
ables (; need not be averaged explicitly since the free energy is self-averaging with respect to them. The rest p —1 pat-
terns have to be averaged explicitly leading to a term

N p n

g ln cosh g x~z(yf'+V Ps/')/v X
l=1 @=2 p=l

Since these modes are uncondensed, x~& is of O(1), and only the terms quadratic in x~z/v N survive. This leads to

n p ioo N n N n . n N
«z"»=T f II IId ' f, II IId~" p +- X X ~7~'(5.+x-)—~~X X~Psf

p=l p=l i =1p=l i =1p, o=1 p=li =1

n N

+ g m~ g g (yP+

~PS/�

) + —,13n (85)

where

p
Xp~= g xpxp

p=2

and m~=x~&/V%P is the order parameter corresponding to the macroscopic overlap with the pattern Ig,'I, see below.
Integrating Iy; I yields

n p«Z"»=Tr„ f II II dx exp ——Tr»(I+X)—
p= 1 @=1

Qp I+X) 'p

p, o=l

where

n N n

m~m (I+X) q +13+ g Sg;I (I+X) z~+ 2Pn
p u=l i=1p &=1

Q,.=—g SI's, .po (88)

Finally, introducing Lagrange multipliers Xz and R~~ for the constraints (86) and (88), respectively, and integrating

[X&,p & 1I one obtains for f, Eq. (Bl), the following expression:

/3f = —, Tr ln(I+—X)—+—Tr[Q(I+X) ']+ —,
' Tr(XX)——Tr lnX ——,

' aP Tr(RQ) ——g m~m (I+X)
p, o=1

n n

+ln Tr ~exp ,'af3 g R~ S—I'S + g I3mf'S (I+X) '~ +———,'(1—a)ln(1 —a) ——
p, o=l p~o =1

(89)

The last two constants are (1/2X)Tr lnC which comes from the neglected Jacobian of the transformation leading to Eq.
(85). The variable S~ in E9. (89) is a single-site variable Sg;. Note that the matrix Rz is nonzero only for p&o. The
order parameters Q, R, X, X, and m are determined by the, saddle point equations for f(Q,R,X,X,m ).

2. Replica symmetric solution

In the replica symmetric saddle point, the order parameters are

Qp ——5p +q(1 —5p ),
Rp ——R(1—5p ),
Xp~ =XO5p~+X

&pa =xo&pw+x

mp=m .

(810)

(811)

(813)

(814)

Substituting this Ansatz in Eq. (89), yields at the n —+0 limit,
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1 X Q w 0 X 1 ~ ~ w PP—f= ——,ln(1 —xo)— ——lnx, —— + —,(x,x, + xxp+xx, ) ——
2(1+xo) 2 2 x 2 1+XQ

(1—q)x P m

(I+xo)z 2 I+xP

+ e ' ln2 cosh R o,z+
&2m. 1+xp

+———(1—a)ln(1 —u) .p
2 2 (815)

Differentiating with respect to xp, x, xp, x, q, R, and m
yields after some algebra the following saddle point equa-
tions:

Ha(1 —a)
2(yr —2)

(830)

Equation (829) has a solution with positive C only for

1+xp ——
I 1+C ~ [(1—C) +4ac]' y I,2(l —a) (816) 0&a&ag ——1 —2/m . (831)

where C =P( 1 —q ),

x =P(q —m )xo/[1 —2a+2xo(1 —a) —C],
Xp =(X/Xp,

2X = —(XX/Xp

R =x/aP(1+xp)

(817)

(818)

(819)

(820)

As a~ag, y approaches unity, C diverges as
(4/m —1)/(1 —y), J vanishes as 2/mC, and ra=2/yrJ C
approaches yr/2.

Equations (823)—(825) also have a solution with
0&m &1 and r&0. This is true also for finite T. How-
'ever, calculating explicitly X=8m/Bh we find that this
solution has a negative X, hence, is not a minimum (with
respect to m). On the other hand, both the above retrieval
state and SG solution have a positive g.

r =R(1+xo) =—x/Pa,
J=(1+xo)

(823)

(824)

3. Solutions at T =0

q= I e ' ~ tanh [P[v'Raz+m/(1+xp)]I,
2K

(821)

m =I e ' ~ tanhIp[v'Roz+m/(1+xp)]I .
21T

(822)

A straightforward generalization of the above equations
to the case where s patterns have macroscopic condensa-
tions yield Eqs. (3.7)—(3.10), where we have denoted

APPENDIX C: INTERPRETATION
OF ORDER PARAMETERS

In this Appendix the physical meaning of the order pa-
rameters X~ [Eq. (86)] is clarified. We introduce external
fields conjugate to the variables a&, i.e., we add to the re-
plica Hamiltonian a term

n, p N—g g h&C '„„gg-;Sf'. (Cl)
p=1 v, @=1 i =1

Differentiating the averaged free energy with respect to
h~& yields,

(C2)

At T=0 the above MF equations reduce to

2

C=J 'v'2/~raexp
2p cx

m =erf(m /v'2ra),

(825)

(826)

On the other hand, we can absorb (Cl) in ((Z")) by shift-
ing X~&~X~&+h ~~/v'XP where

h &=g(C ')„P~ . -
1 —m

2+ C—2CJ (827)

and J is given by Eq. (3.8). Here C is limy p[P(1 —q)].
The energy per spin at T =0 equals

E= ——,(1—J)—, raJ C ——,Jm— (828)

C= Il —2a+[(1—2a) +y —1]'~ ],l
(1—y)

(829)

The retrieval state is given by I = 1, r =0, and E= ——,
' .

The SG state is defined by m =0. Solution of the above
equations with m =0 yields

Differentiating ((Z")) with respect to h~ and comparing
with Eqs. (C2) and (C3) in the n~0 limit, one finds

« &"„&)&=« &X'„»&/&W, (C4)

(«~'„~:),&&=(( &x'„x:),—(C-')„p "))/Xp.
(C5)

Thus, xz are the order parameters which measure the
coefficients az in the linear expansion of the state (S;),
Eq. (2.5). In particular, specializing to the replica sym-
metric theory [Eqs. (810)—(814) and (821)] one obtains,
for a state with no more than one macroscopic overlap,
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m =a, =x, /&PX, (C6) m„~ =2qCJ xo+TxC 2 —xo J +o.'q .
p=l

(C9)

Additional information is obtained if one does not ab-
sorb h ~& by shifting x~ but instead, calculate ((Z")) in
the presence of h Pp using the same method as in Appendix
8 and taking derivatives with respect to h ~& at the end.
Comparing the result with the equality 8 f/Bh &Bh,
=X(( (m~&m, ) )) one obtains

Pl @
= a~Alp = —2Eg (C10)

Comparison with the expression for the T=0 SG ener-
gy [Eq. (B26)] one finds that the right-hand side (rhs) of
Eq. (C9) equals at T=O to 2Eg—. Comparing with Eq.
(2.9), we conclude that in the SG state at T=0,

(C8)

In particular, in the replica symmetric SG solution, Eq.
(C8) reduces to

However, ((g~ &a&)) =ra is larger than Eq. (Cl 1).
Whether the equality (C10) holds for the SG state beyond
the replica symmetric approximation is not known at
present.
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