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Cross sections of laser-induced collisional processes: Excitation transfer and charge transfer
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The standard theory for laser- I,
'or light-) induced collisional processes is applied to excitation

transfer and charge transfer. Detailed calculations are carried out for specific processes which have
been studied experimentally, with good understanding resulting for most of the observed features.
We study the variation in cross-section magnitude and line shape with transfer laser intensity, and
find characteristic differences between the excitation-transfer and charge-transfer processes.

I. INTRODUCTION

A laser-induced collisional process

A(i)+B(i)+fico~A(f)+ B(f)
is one which requires both the absorption (or stimulated
emission) of radiation and the presence of the atom-atom
interaction for its completion, with state changes taking
place in both of the participating atoms. Thus it differs
from a simple line-broadening process

A(i)+B(i )+fun~A(f)+B(i),
where the absorption of radiation takes place in only one
of the atoms, while the role of the other atom is simply to
perturb the energy levels of the absorbing atom during a
collision.

The first theoretical discussions of these processes for
excitation transfer were by Gudzenko and Yakovlenko. '

A complete description of them from the pseudomolecu-
lar point of view was given by Gallagher and Holstein.
Contributions to the theory from other points of view
have been presented by a number of other authors.
Several review papers have covered laser-induced col-
lisional excitation transfer (LICET) and other laser-
induced collision processes. At low laser intensities it is
essential to treat the problem from a molecular (or
perturbed-atom) point of view since the atom-atom forces
are much larger than the laser-atom interactions. This
leads to the characteristic asymmetric line shapes for
LICET. As shown by Payne, Anderson, and Turner,
when the laser intensity is increased such that the transi-
tion probabilities become saturated the line shape tends to
become symmetric.

Most of the many experimental observations of LICET
processes have been made by the Harris, and Cahuzac
and Toschek groups. They are qualitatively well under-
stood in terms of the existing theory and the known van
der Waals interactions. On the other hand, the process of
laser-induced collisional charge transfer (LICCT)

A+(i)+B(i)+fico~A(f)+B+(f)
has only been observed in the laboratory by Wright et al.
Furthermore, it is characterized by relatively narrow pro-

files having large shifts from the asymptotic energy
differences, which are not present in the LICET process
and which have not been well understood in terms of ear-
lier theoretical work on LICCT.

Our objective in the present paper is to outline the gen-
eral theory and apply it in detail to two cases which have
been studied experimentally, namely the LICET process

Sr(5p 'P, )+Li(2s S)g2)+fico~Sr(5s . 'So)

+Li(4d Ds)2 ),
and the LICCT process

Ca+(4s S,q~)+Sr(5s 'So)+%co~Ca(4s 'So)

+Sr+(5p 'PJ) .

We will identify the particular features of the two pro-
cesses which lead to qualitatively different cross-section
frequency shifts and shapes. The intensity dependence of
the magnitude of the cross section and its profile will be
studied.

II. BACKGROUND THEORY

The essential physical picture which allows a tractable
evaluation of laser-induced collision cross sections is the
semiclassical one of straight-line trajectories for the rela-
tive motion of the two atoms and a quantum evaluation of
transition probabilities. A first-order expression for the
transition amplitude in this picture is

a;t(t)= —i fdr&I '(r, t) f dt' f dr'G(r, t;r', t')V(r', t')

where p,'I' are eigenfunctions of H —V, V is an interac-
tion, and G is the Green's function corresponding to
H —V {H is the full quantum Hamiltonian on the
straight-line classical path). If Vis taken to be H„(the in-
teraction of the atoms with the laser field) plus H, (the in-
teratomic interaction), then G =G, is a Green s function
constructed of products of free-atom wave functions.

For lower laser intensities, such that H, ~&H„, a per-
turbative reduction of ( I) should involve orders higher
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than the first for H, while keeping H„ to first order. As
this would become a rather intractable calculation, one is
led to the alternate treatment of (1) in which V is taken to
be H, alone. This requires that H, now be included in

I

H —V and that 6 =G is a quasimolecular Green's func-
tion. Using this representation, the first-order perturba-
tion transition amplitude in the rotating-wave approxima-
tion as a result of a single collision becomes

Eo
! a;r! = f dt exp —i f dt'Ice [Ef(—R') —E;(R')]I f draff'(r, R)e rN;(r, R) (2)

where Eo is the laser electric field magnitude and e is its
direction of linear polarization. (We use atomic units
throughout unless otherwise specified. ) If the laser fre-
quency is resonant with a transition in one of the initial-
state atoms such that a Stark shift is present which would
alter the value of Ef( oo ) E;( co ), —then this shift, BEO,
should also be included in the phase factor above.

The transition cross section as a function of the laser
detuning from the asymptotic energy difference,

o=co [Ef( ~—) —E;( ~ )],
is then

o(5)=2-~ f dppP(p), (3)

where the transition probability P(p) =!a;f! . P and o
are also dependent on v through the classical trajectory as-
sumed for R(t). Thus o(6) is the collisional cross section
in the presence of a laser field and it also represents the
absorption line shape for the laser-induced process that we
are studying.

We will need to examine the adiabatic energies E;(R)
and Ef(R) which enter the phase of the integrand in (2),
and the molecular (or perturbed-atom) wave functions C;
and Nf. In general, we sha11 retain the lowest-order ap-
proximation of these quantities needed to obtain the dis-
tinctive features of the LICET and LICCT cross-section
line shapes.

III. LASER-INDUCED
COLLISIONAL EXCITATION TRANSFER

In this section we present a detailed application of the
theory to the LICET process

Sr(5p 'P( )+Li(2s S,q2)+Pm(670 nm)

~Sr(5s 'So)+Li(4d D5~q), (4)

which has been studied extensively in the measurements
of Zhang, Nikolaus, and Toschek. ' A partial energy-
level diagram is given in Fig. l.

We first note that since both atoms change state, the di-
pole matrix element in (2) would vanish for the simple
separated-atom product wave functions. It is thus neces-
sary to improve the initial and/or final wave function by
the introduction of quasimolecular character which re-
sults from the interatomic interaction H, . The longest-
ranged term in H, for neutral atoms is the dipole-dipole
interaction

I

where r, b indicate a sum over all active (outer) electrons
on each atom. The near-energy-resonance (Fig. 1) be-
tween Sr(5p 'P~ )—Sr(5s 'So) (21 698 cm ') and
Li(4d D)—Li(2p P) (21719 cm ') will lead to a much
larger perturbation of Nf ' than N,' ' by the dipole-dipole
interaction.

Applying first-order stationary-state perturbation
theory,

~ f +f + g &,( (R)C'„'j'
n, E, m

(6)
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where +„'E' is the separated-atom wave function for the
Sr(5p 'P~) + Li(2p PJ) intermediate state. The nlm index
refers to these quantum numbers for both atoms. Thus,
a„E will contain the small energy denominator 6 result-
ing from the above near-resonance, while it also depends
on the direction R and is proportional to R as indicat-
ed in (5). The m sum is to be taken over all the degen-
erate magnetic quantum numbers associated with both
atoms. Since Sr(5p 'P~ ) occurs in both the intermediate
state N'„E' and the initial state N'; ', the dipole matrix ele-

Hdd —— [r, rq —3(R.r, )(R.rb)],R3
FIG. 1. Partial energy-level diagrams for Sr and Li showing

important states for LICET process (4).
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ment in (2) no longer vanishes, and has a value propor-
tional to a„~~.

The dipole-dipole interaction (5) may be rewritten in the
form

1 Ut
Hdd = 'X Xb 1 —3

R R

'2 2

pvt—3
2 (xgyb+ygxb)+zgzt,

R
(7)

T2 ——J dt
~

cos[5t —P(t)],(Ut )

T3 ——J dt sin[6t —P(t)] .

The integral occurring in the phase is

P(t)= J dt'AE(R)

dt Ef R Ef (x) E) R Ej op

and may be evaluated in closed form for the asymptotic
integrand EC6/R, where b,C6 ——CIf' —C6". An evalua-
tion of the van der Waals coefficients for this system us-
ing Bates-Damgaard atomic radial matrix elements gives

C6' ——6.63 X 10 a.u. ,

C6
' = 1.30 X 10 a.u.

The large magnitude for CII' is also attributable to the
same small energy denominator 6=21 cm ' which
makes a„i large, but we have included many other inter-
mediate states which contribute appreciably to the C6's.

Averaging over initial and summing over final m states,
and averaging over all orientations between laser polariza-
tion e and collision plane, we find the following for the
transition probability:

E2
P(p)=

2 (5p
I

r
I
5s)s„(2s

I
r

I
2p)„,(2p

I

r
I
4d)L,

where the relative velocity is taken along X, the XY plane
is the collision plane, and t =0 occurs at the distance of
closest approach. From this we see that there are three in-
dependent trajectory integrals which enter:

|X3

T, = J dt
3 cos[5t —P(t)],

behavior by letting P(p)= —,
' for all p for which Eq. (9)

would lead to a probability exceeding 1. This im.position
of unitarity is an approximation which we believe is good
to the order of 20%, well within the uncertainties expect-
ed from the other approximations made. ' The trajectory
integrals are evaluated numerically. To avoid the prob-
lems of doing a quadrature in the region of small R where
AC6/R becomes very large, we introduce a cutoff Ro,
such that for R (Ro, AC6/R is cut off to the constant
value b, C6/Ro and 1/R and (8) is truncated to 1/Ro.

This cutoff in the phase will only be felt for detunings
5 AC6/R p which are very far out in the quasistatic
wing of the line. We use Ro ——20 which corresponds to
EC6/Ro ——222 cm ', so our results at appreciably smaller
detunings than this value will be essentially unaffected by
the cutoff. Another way of seeing that this cutoff will not
affect the central part of the line is to note that it is much
smaller than the Weisskopf radius 35.3 a.u. The cutoff of
1/R is consistent with the physical condition that the di-
pole matrix element of the quasimolecule cannot go as
1/R to the R ~0 limit but rather must approach a finite
value representing the united atom. We use the Bates-
Damgaard radial matrix elements (5p

I

r
I

5s )s, ——3.870,
(2s

I

r
I
2p)L;=3.889, and (2p I

r
I
4d)L;= —1.962. All

present LICET calculations are done for the rms relative
velocity (3kT/M)'~ for a temperature of 700'C.

A comparison of our low-field line shape with the mea-
surement of Zhang, Nikolaus, and Toschek' is given in
Fig. 2. The absolute measurement of a peak cross section
of 2&10 ' cm at 1 MW/cm light flux compares very
well with our calculated value of 2.23&(10 ' cm . Also
the quasistatic wing (6& 0) of both the measurement and
calculation vary as 6 ', which is consistent with the
quasistatic theory discussed below.

In the limit where the atomic motion is negligible in the
effective time for photon absorption, and we are not at
stationary points of the difference potential, these process-
es may be regarded as governed by the quasistatic law

X( —, T, + T2+ T3 —T, T~) . (9)

O

JD
C

O

As this is based on first-order perturbation theory it can
be expected to be valid only if P(p) « l. Other au-
thors '" solve the two-state coupled equations in a;; (t) and
a;t(t) to which the time-dependent Schrodinger equation
reduces. That procedure is more laborious computational-
ly but ensures that transition probabilities will not violate
unitarity. Our expression (9) will certainly give P(p) & 1

for sufficiently high values of laser intensity, and thus
cannot be used in every case as it stands. Since a two-
state strongly coupled situation gives P(p) which would
oscillate rapidly as sin between 0 and 1, we model this

0-—
—ZO —IO 0

I I

I 0 20 50 40 50 60 70
S(cd I)

FIG. 2. Low-field cross-section line shape for LICET process
(4). Calculation is dashed line. Measurement is that of Zhang
et al. (Ref. 10) for the fluorescence signal for the process (in-
cluding background signal). The smooth solid line through the
measured signal indicates the behavior of 6 ' for 6& 5 cm
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et al. , and their results show striking qualitative differ-
ences from the line shapes seen in the LICET process as
discussed in Sec. III. They found very large positive ener-

gy shifts of the LICCT lines from the asymptotic energy
differences, and the lines themselves were almost sym-
metric, even for low laser intensities.

In applying the present theory we start with Eq. (2),
and note that E; f must now also contain a polarizability
term, —a/2R . Furthermore, there is a nonvanishing
value for the dipole matrix element even in the separated-
atom forms for N;f. These states are the three-electron
wave functions

FIG. 5. Calculated intensity dependence for various detun-
ings of the LICET cross section for process (4j. The powers of I
indicate intensity dependences.

cross section with a finite spectral resolution will neces-
sarily give a result which will move below the I' depen-
dence at some high intensity.

IV. LASER-INDUCED
COLLISIONAL CHARGE TRANSFER

We now apply the above theory to the LICCT case, and
in particular to the process

Ca+(4s S&&z)+Sr(5s 'So)+Pug

~Ca(4s 'So)+Sr+(5p PJ), (11)

where the asymptotic energy difference corresponds to
photon wavelengths of 473 nm for J= —', and 492 nm for
J= —, (see Fig. 6). The measurements of the cross sec-
tions for these processes were carried out by Wright

Ca+(4s S,~~))!Sr(5s So))

Nf =!Ca(4s 'SD) )!Sr+(5p PJ) ) .
(12)

&& (Sr(5s ) ! r ! Sr+ ( 5p ) ) TJ, (13)

From this it can be seen that there is a nonvanishing di-
pole matrix element between Sr+(5p PJ ) and one of the
5s electrons in Sr(5s 'So). This matrix element is multi-
plied by an overlap integral between Ca+(4s S,zz) and
one of the 4s electrons in Ca(4s 'So), and also by an over-
lap integral of the other 4s electron in Ca(4s 'So) and the
second 5s electron in Sr(5s 'So). Since this latter overlap
integral involves an electron which is transferred from one
atomic center to the other, it will be a short-ranged func-
tion of R.

Carrying out the appropriate angular algebra for the
two possible final fine-structure states J= —,

' and —,', we
find the transition probability to be

E2
PJ(p)= (2J~1)(Ca(4s)!Ca+(4s))

72

%8 1i 2~5I7 cm- I

5P P~ 2

where the trajectory integral is

TJ = f dt F(R)cos[5t —PJ(t)] . (14)

Co+
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~9&O5 cm-I ~

I

!

I
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Here F (R ) is the two-center overlap integral
(Ca(4s)! Sr(5s)), which depends only on the magnitude
of R since we are dealing with s orbitals. We use
Bates-Damgaard wave functions, which give the radial
matrix elements (Ca(4s)! Ca+(4s)) =0.926 and
(Sr(5s)!r!Sr+(5p))= —3.885, and find the F(R) given
in Fig. 7. We use the recommended values' for atomic
polarizabilities

a; =a(Sr(5s 'So ) ) = 168.6 a.u.

and

af ——a(Ca(4s 'So))=186.0 a. u. ,

and evaluate the following van der Waals coefficients with
the use of Bates-Damgaard radial matrix elements:

C6' ———2.21 &( 10 a. u. ,

Cf (J= —, )=5.59)&10 a.u. ,

Cg'( J= —, ) =3.61 X 10 a.u.
FIG. 6. Partial energy-level diagrams for Ca, Ca+, Sr, and

Sr+ showing the important states for LICCT process (11). The large difference in C'6 's for the two fine-structure
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LICCT (13) and LICET probabilities (9) is the occurrence
of an exponentially decreasing F(R) compared with a
1/R factor in their respective trajectory integrals.

In attempting to apply the quasistatic law (10) to the
LICCT process, one can identify the effective molecular
dipole matrix element p(R) as proportional to the overlap
coefficient F(R) occurring in (14). If we ignore for now
the small contribution of the polarization interaction
(since Aa is so small in the particular case we are study-
ing), then again bE=AC6/R, and taking
F-exp( —13R ), we find from (10) that

lG
0 ]O l5

R (a. u. )

20 25
o -5 exp[ 2/3(A—C6/5)'~ ] . (15)

FIG. 7. The transition matrix element F(R )

=(Ca(4s)
~

Sr(5s)) for the LICCT process (11). It has the
asymptotic form 15.5 e " . Also shown for comparison is a
curve proportional to 1//R, the variation of the effective transi-
tion matrix element for the LICET process.

1

Eo Z2I—

2(

w
Z.
w

20—

3/2

J =(/2

80

p

E;

components of the final-state Sr+ ion arises because the
fine-structure splittings in intermediate states are large
enough to affect the energy denominators significantly.
The asymptotic potential curves and the difference curves
are shown in Fig. 8. Note that the diabatic curves for
Ef(J= —, ) and Ef(J= —, ) cross at R -=23 a.u. Since b,a is
small and AC6 ' is large and positive for both J values,
one expects at least a large asymmetry of trJ(5) toward
6 & 0. The main qualitative difference between the

Unlike the atomic line broadening and LICET cases,
which were consistent with a line centered at 6=0, this is
consistent with a cross section having its maximum value
shifted to some positive value of 6. This is apparent be-
cause 6 is monotonically decreasing and
exp[ —213(b,C6/5)' ] is a monotonically increasing func-
tion of 6.

However, the result of applying the above quasistatic
formula directly to the present LICCT problem leads to
very bad results if no cutoffs or modifications are applied
to the asymptotic potentials. One finds shifts of the order
of 50000 cm ' for J= —, and 10000 cm ' for J= —,, and
FWHM's of the same order of magnitude, very different
from the values of 595 and 75 cm ', respectively, found
in the measurement. Both of these quasistatic maxima
correspond to R of about 10 a.u. , which is a region of
questionable validity for the asymptotic difference poten-
tial being used.

This indicates that, unlike in the LICET case, the
choice of a cutoff or modification of the asymptotic po-
tentials is crucial in the determination of the details of the
shifted LICCT profile. As a first step we again take the
simple cutoff bEJ(R) =bEJ(Ro) for R &Ro, and adjust
Ro for each J so that the LICCT cross section is centered
at the observed detuning. This leads to the condition that
AEJ(Ro) is just equal to observed detuning 5o, as would be
expected from the quasistatic law (10). However, we, can-
not use that form for a detailed description of the line
shape since the dhE/dR in the denominator vanishes
over the entire region R =0 to R o in our model. The
dynamic theory yields the approximate trajectory integral
for (14),

&GO t=

400--
Q
w 200
w

0
IB

—59

. -75/

I~
20 22 24

R (Q. u. ]

26 3C

XK~ p

2
6—6o +p'

1/2

T- I dt e ~ cos[(5—5o)t]
2 —1/2

pP 5 —5o

(16)
FICz. 8. (a) Asymptotic potential curves and (b) difference po-

tential curves, bE =Ef(R)—Ef( oo ) —[E(R) E; ( co )], for—
LICCT process (11). The solid lines are the diabatic curves
based upon the polarization and van der Waals interactions for
the initial and final states. The dashed extensions of the differ-
ence potentials are the cutoffs used to fit the LICCT shift data.
They correspond to the dashed extensions for the 3 II&/p3/p
final-state adiabatic curves. The dashed line in the B XI/2
curve is purely schematic.

where we have approximated F(R ) by ce ~ . Note that
because of the exponential decay of F(R), the part of the
integral from t = ( 1/U )(R o —p )' to oo is negligible.
This indicates that the basic line shape is a Lorentzian,
which is modulated by the Bessel-function coefficients. It
also leads to the central cross section varying as I/O g',
and being approximately the same for both J's.
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From the measured shifts of 5O(J= —, )=595 cm ' and

5o ———', ) =75 cm and our asymptotically calculated
potentials, we find the cutoffs Ro(J = —,

'
) =24.28 a.u. and

Ro J= —, ) =21.50 a.u. Thus, the larger shift is correlated
with the larger calculated CIf' coefficient, and we also
note that the fitted Ro's lie on either side of the crossing
point 23 a.u. ) of the diabatic final-state potential curvcurves.

is is consistent with the fact that the adiabatic molecu-
lar curves for this system would not cross but rather repel
one another in this region. The asymptotic J = —diabatic2

curve goes into an adiabatic A H&/2 curve and the J=-
diabatic curve splits into 3 H and B X d' b3/2 )/2 a ia atic
curves (see, for example, Ref. 14).

The effect of our cutoff of the difference potential
curves is equivalent to the modification of the Ef curves
indicated in Fig. 8 (assuming that E; remains unchanged)
Since the uppermost B X&/2 curve rises sharply we do not
identify it with either of the two observed LICCT peaks,
but rather associate them with the low -1 3 H
and 3

wer- ying 1/2
and 3 H3/2 curves. Since it is unlikely that the B X&/2
curve will have a stationary point at moderate R, there is
probably no LICCT peak associated with it. However, we
must remove its statistical weight from our Eq. (13), and
recognize that each of the 3 H states have an equal sta-
tistical weight of 2, by replacing (2J+1) in (13) by the
factor 2 (for both J's). The use of the cutoff difference
potentials is now consistent with the adiabatic 2 H
curves given in Fig. 8, and the empirical magnit d fu es or

e o s are consistent with the avoided crossing of the
calculated diabatic curves.

We have not made any short-range modifications in
F(R) since it is well behaved into R ~0. Since the
present LICCT cross sections strongly depend on contri-
butions to the trajectory integrals at small R, and in reali-
t they the two atoms have strong repulsive forces at small
separations, we have introduced a hard-sphere radius R Hs
as an additional parameter. The trajectory is assumed to
undergo specular reflection at RHs when p & RHs. The ef-
ect of this is to exclude a region where F(R ) is its largest,

and thus reduce the magnitudes of the LICCT cross sec-

reasonable on the basis of known atom- t 1om-a om ow-energy
scattering measurements' and ab initio theory for other
cases, ' as well as for providing a reasonable fit to the ab-
solute LICCT cross sections measured by Wright et al
We apply the same unitarization procedure as before, but
i does not come into play until much higher laser powers
because the present LICCT transition probabilities are
much smaller than those of the LICET case studied. All
calculations for the LICCT process are done for the rms
relative velocity at a temperature of 850'C (used in the
measurement).

The resulting LICCT cross sections are compared in
Fig. 9 with the observed fluorescence signals which are
t e signature of the process in the experiment. The cal-
cu ated LICCT line shapes are quite symmetric and have
F HM's which are about —, of the observed widths (apart
from the additional broad feature in the J= —measured—

2

spectrum). The calculated widths could be expected to in-
crease with some softening of the sharp cutoff which we

2
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0
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P D
I0

4700
L

4720 474740 4760 4780 4800 4820 4840
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are using, and with more curvature in the trajectories, as
is present in the real situation.

A graph of the calculated LICGT transition probabilit
as a fununction of impact parameter is given for J= —, in

''
npro a iity

Fig. 10 for two laser intensities. The effect of the ex-
clusion of the trajectory from the inner hard sphere is to
scoop out transition probability for p &RHs. The unsa-
turated I'(p) does not have the oscillations found in the
LICET case, which indicates that P(oo ) does not now

ave as much variation with p as in the LICET calcula-
tion (see Robinson, Ref. 3). The introduction of some
rounding in AE for R &Ro is seen to restore these oscilla-
tions. The imposition of our unitarization procedure at
the higher intensity in Fig. 10 produces the intermediate
region of P= —,'. This onset of saturation in the LICCT
transition probability, as in the LICET case, leads to a

eparture of the cross section from its linear variation
with laser intensity.

~ 1 ~

e variation in cross-section line sh thape wi intensity
is shown in Fig. 11. These are rather unusual looking line
shapes, but it is intriguing to note that the measured ro-
files in Fi . 9 alg. so appear to have shoulder or pedestal

easure pro-

structure. The increasing widths with
'

wi increasing intensity

I.O

0.2 —I -10~

0
0

I

8

p (a. u. )

12 16

FICx. 10. Transition probabilities for LICCT process (11) for
J=

2 and at the detuning for maximum cross section, 6O
——75

cm ', for two laser intensities. The J= z results at its max-

imum, 6O ——595 cm ', are very similar.

FIG. 9. Comparison of calculated low-intensity wavelength
variation of LICCT cross sections for process (11): (a) for
J=—,(b) for J=-=

z (dashed lines), with experimental traces of
fluorescence signals for these processes (Ref. 8).
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FICs. 11. Calculated cross-section line shapes for the LICCT
process (11) for J=

2 for various laser intensities. The J=
2

results centered at 6p= 595 cm ' are very similar.

is in sharp contrast to the decreasing widths occurring for
LICET (see Fig. 4). This behavior can be understood to
arise from the exponential decrease of F(R), the overlap
integral which is the effective transition matrix element
for the LICCT process. As an extreme case of short-
range behavior consider the sharp cutoff where F(R)=0
for R &R, . Then it is clear that P(p)=0 for p&R„and
at moderate intensities a line shape is present because
P(p) for p &R, will maximize around some central value
of detuning. However, as the intensity increases P(p) will
increase until it saturates at —,. The effect of limiting the
growth of P(p) by both the unitary condition and the cut-
off at p=R, is to produce a cross section which cannot
exceed (vr/2)R, , and this limit holds for all detunings.
The result is a line width which increases indefinitely with
I, since the central value is bounded and the wings contin-
ue to increase toward this bound.

Figure 12 contains the calculated LICCT cross sections

-(4

—l5Io

(at their tuned maximum value) as a function of laser in-
tensity. At line center our present model gives a negligi-
ble difference in LICCT cross section for the two final
fine-structure states. This follows from the effective J in-
dependence of the trajectory integral (16) at 6=60 and the
equal statistical weights for the adiabatic molecular states.
A more precise description of the inner behavior of these
adiabatic difference potential curves would very likely
lead to different maximum cross sections. For example, if
a localized maximum occurred in AE near Ro, a large
contribution to the trajectory integral would come from
the region of the maximum since it is a stationary phase
point. This should lead to o(J= —,

'
) & o(J= —, ) be-

cause Ro(J= —, ) &Ro(J = —,
'

), and F [Ro(J= —, )]
&F [Ro(J= —, )], which is consistent with the measure-
ment. With our choice of RHs ——9 the calculated cross
sections are essentially within all the error bars associated
with the J= —, measured points. This puts them about a
factor of 2 above the upper edge of the error bars associat-
ed with the J= —, measured points. This factor of 2 could
easily be accounted for by the use of a better difference
potential, as discussed above.

A more serious potential discrepancy lies in the ap-
parent nonlinearity of the J= —, data points. We are un-
able to suggest any theoretical modification which would
give a departure from linearity at an intensity as low as
10 W/cm, where the J= —, data appear to have a change
in slope. Our calculations begin to show saturation effects
only at I & 10' W/cm . However, the error bars corre-
spond to an uncertainty in absolute cross section of about
a factor 20 at each intensity. Since each point corresponds
to a completely independent measurement' the full error
bar must be allowed for each of the points, and this then
does not exclude linear behavior over the range of the
J= —,

' measured points. In fact, our calculated curve is at
the top of a band of straight lines linear in the intensity
and covering about a factor of 3 in magnitude, which
would run through al1 the error bars of the J= —,

'
points.

The line at the bottom of this band would be consistent
with most of the data points (both J= —,

' and —, , excepting
the one low J= —, point), but would require a hard-sphere
radius in our model of about 10.5 a.u. , which is probably
somewhat unrealistically too large.
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FIG. 12. Maximum cross section for the LICCT process (11)
as a function of laser intensity. Presently calculated (solid lines)
and measured values of Ref. 8 (solid circles J= —, , open circles
J= z). The typical experimental error bar shown applies to

1

each of the measured points.

V. SUMMARY

We have outlined the standard theory for describing
laser-induced collision processes, and have applied it to
particular LICET and LICCT transitions which have
been experimentally studied in considerable detail. Addi-
tional approximations have been made in cutting off the
phase interaction energies, in altering trajectories in a
reasonable way at small interatomic separations, and in
unitarizing transition probabilities at high laser intensities.
The characteristic low-intensity asymmetry of the LICET
process is well represented in the calculation, and the peak
cross section is obtained within 25%%uo of the experimental
estimate. The asymmetry of the LICET line shape is seen
to disappear as laser intensity is increased and the
linewidths are seen to decrease, in agreement with previ-
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ous theoretical work.
The treatment of the LICCT process by a similar

theory shows that the dipole-dipole transition matrix ele-
ment of the LICET process is replaced by an overlap in-
tegral of much shorter range. This has the effect of intro-
ducing large shifts in the laser wavelength for maximum
cross section as well as drastically reducing the magnitude
of the cross section from the calculated LICET values.
The observed shifts in the measurements of Wright et al.
can be fitted by a simple difference potential model which
is consistent with an interpretation in terms of adiabatic
potential curves. The measured cross-section magnitudes
can be obtained with the use of a reasonable hard-sphere
radius in the calculation. The expected linear dependence
of cross section with laser intensity is not inconsistent
with the measurements, but the agreement is not entirely

satisfactory. At higher intensities, when saturation sets
in, the calculated maximum cross sections increase more
slowly than linearly with laser intensity. The LICCT
cross section widths also increase with intensity (unlike
the LICET case).

ACKNOWLEDGMENTS

I would like to thank Peter Toschek, Alan Gallagher,
Jean Pascale, John Delos, Michael Wright, and Stephen
Harris for very helpful discussions, and Chela Kunasz
and Steve ONeil for computing advice. This work was
partially supported by the National Science Foundation
through Grant No. PHY86-04504, and all computations
were done on the Joint Institute for Laboratory Astrophy-
sics (JILA) VAX 8600.

'L. I. Gudzenko and S. I. Yakovlenko, Zh. Eksp. Teor. Fiz. 62,
1686 (1972) [Sov. Phys. —JETP 35, 877 (1972)].

2A. Gallagher and T. Holstein, Phys. Rev. A 16, 2413 (1977).
V. S. Lisitsa and S. I. Yakovlenko, Zh. Eksp. Teor. Fiz. 66,

1550 (1974) [Sov. Phys. —JETP 39, 759 (1974)];S. Geltman, J.
Phys. B 9, L569 (1976); A. M. F. Lau, Phys. Rev. A 14, 279
(1976); P. L. Knight, J. Phys. B 10, L195 (1977); J.-M. Yuan,
J. R. Laing, and T. F. George, J. Chem. Phys. 66, 1107
(1977); M. H. Nayfeh and M. G. Payne, Phys. Rev. A 17, 169
(1978); E. J. Robinson, J. Phys. B 9, 1451 (1979).

P. R. Herman and E. J. Robinson, in Photon-Assisted Collisions
and Related Topics, edited by N. K. Rahman and C. Guidotti
(Harwood, Chur, 1982), p. 15; R. S. Berry, in Physics of Elec
tronic and Atomic Collisions, edited by S. Datz (North-
Holland, Amsterdam, 1982), p. 413; F. Roussel, Comments
At. Mol. Phys. 15, 59 (1984); J. Weiner, ibid. 16, 89 (1985).

~M. G. Payne, V. E. Anderson, and J. E. Turner, Phys. Rev. A
20, 1032 (1979).

S. E. Harris and D. B. Lidow, Phys. Rev. Lett. 33, 674 (1974);
R. W. Falcone, W. R. Green, J. C. White, J. F. Young, and S.
E. Harris, Phys. Rev. A 15, 1333 (1977); D. B. Lidow, R. W.
Falcone, J. F. Young, and S. E. Harris, Phys. Rev. Lett. 36,
462 (1976) [37, 1590(E) (1976)]; S. E. Harris, R. W. Falcone,
W. R. Green, D. B. Lidow, J. C. White, and J. F. Young, in
Tunable Lasers and Applications, edited by A. Mooradian, T.
Jaeger, and P. Stokseth (Springer-Verlag, New York, 1976), p.
193; L. J. Lynch, J. Lukasik, J. F. Young, and S. E. Harris,
Phys. Rev. Lett. 40, 1493 (1978).

7Ph. Cahuzac and P. E. Toschek, Phys. Rev. Lett. 40, 1087
(1978), C. Brechignac, Ph. Cahuzac, and P. E. Toschek, Phys.
Rev. A 21, 1969 (1980).

M. D. Wright, E. L. Ginzton Laboratory Report No. 3330,
1981 (unpublished); W. R. Green, M. D. Wright, J. F. Young,
and S. E. Harris, Phys. Rev. Lett. 43, 120 (1979). [After this
manuscript was submitted, another measurement of an
LICCT process was published by A. Debarre and Ph.
Cahuzac, J. Phys. B 19, 3965 (1986).]

R. Z. Vitlina, A. V. Chaplik, and M. V. Entin, Zh. Eksp. Teor.
Fiz. 67, 1667 (1974) [Sov. Phys. —JETP 40, 829 (1975)];D. A.
Copeland and C. L. Tang, J. Chem. Phys. 66, 5126 (1977).
D. Z. Zhang, B. Nikolaus, and P. E. Toschek, J. Appl. Phys. B
28, 195 (1982).

"S. E. Harris and J. C. White, IEEE J. Quantum Electron.
QE-13, 972 (1977).
An alternate form of unitarization that would perhaps appear
less severe would be to take P = sin (V P& ) for all p, where P~
is the first-order nonunitary calculated value [Eq. (9)]. We es-
timate that the two forms should differ by less than 40%%uo in
the region of p where P~ & 1, and should lead to differences in
o. of about 20% or less.

' T. Miller and B. Bederson, Adv. At. Mol. Phys. 13, 1 (1977).
' J. Pascale and J. Vandeplanque, J. Chem. Phys. 60, 2278

(1974).
~5R. B. Bernstein and J. T. Muckerman, Adv. Chem. Phys. 12,

289 (1967)~

M. D. Wright (private communication).


