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1/f noise, log-normal distribution, and cascade process in electrical networks
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The relation between the log-normal distribution and the 1/f noise is experimentally studied by
use of cascade electrical networks. Results show that the 1/f spectrum can be obtained only in net-
works consisting of resistances and inductances, whereas the log-, normal distribution for bifurcated
currents is always accompanied for cascade networks in general. . The log-normal distribution is ob-
served even in the case where parts of branches of cascade networks are coupled to each other.

I. INTRODUCTION

The so-called 1/f noise is observed universally in na-
ture. A noise in a semiconductor such as a flicker noise
and a fluctuation in a traffic flow on a highway are exam-
ples. ' Mechanisms of these phenomena still remain un-
solved. A simple realistic model may help us to under-
stand the mechanisms of these unsolved phenomena. Re-
cently orie of us (HF) proposed a cascade model for a
crystal growth, which can be also applied to motions of
electrons in conductor. ' In the latter case, a 1/f noise
spectrum is obtained. It is also well known that the self-
similar cascade process of bifurcation of physical quanti-
ties is closely related to the log-normal distribution. A
typical and well-known example is the cascade-energy
transfer of eddies in a turbulence, the so called log-normal
model by Kolmogorov. ' Intermittent chaos in nonlinear
dynamical systems also shows 1/f' spectra. ' ' These
problems are subjects in different fields of science and en-
gineering, that is, the fluid mechanics '" and the chaotic
dynamics, ' the statistical mechanics, ' ' the crystal
growth kinetics, ' the electronics, and the communication
engineering. ' ' The aim of this article is to study the
cascade electric networks experimentally in order to
understand these problems from a unified viewpoint. We
expect to find a universal relationship among the cascade
process, the log-normal distribution, and the 1/f noise.

Several kinds of electrical networks generating 1/f
noise have been studied. Most of them are infinite net-
works with self-similar structure, such as an infinite
ladder, an infinite lattice circuit consisting of resistances
(R) and inductances (L) or capacitances (C). ' ' Qne
cannot, however, examine the log-normal distribution by
use of those networks. We now realize the bifurcating
cascade networks which consist of A and L,. This net-
work corresponds to the one used for a simulation of crys-
tal growth proposed by Furukawa. '

II. THEORETICAL AND EXPERIMENTAL

A. Theory

Networks used in the present study are shown in Fig. 1.
Figures l(a), l(b), and 1(c), respectively, show an R-R cas-

cade of seven bifurcating steps (n =7) and an R Lcas--
cade of eight steps (n =8) without and with coupling
among bifurcating branches. In Fig. 1(c), the strength of
the coupling is effectively controlled by the magnitude of
RL. The bifurcating ratio of the current amplitude

~

I
~

is g:1—g where g is Zz/Zz (inverse ratio of the im-
pedance). Denoting ~Ip

~

as an initial current at the
zeroth step of the cascade process, the current

~
I~

~

after
the first bifurcation of the process can be given by g ~

Ip
~

and (1—g)
~
Ip

~

(see Fig. 2), respectively. Repeating this
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Here Np,
~ IJ ~, and tTJ are the normalization constant, the

mean value of
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[=(1/2J)g,.
~ IJ ~;], and the variance

at jth step cascade, respectively.
As already described by Furukawa, ' the total im-

pedance Z is given by

Z =(ZwZ~)' (4)

for infinite cascade (n =Do) (Refs. 5 and 6). Therefore,
when we choose Z~ ——R and Zz ——icoI., the current power
P(co) is expressed as
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Here co=2mf. Namely, the power spectrum of the
current through the infinite cascade is proportional to
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FIG. 1. Cascade networks used in the present study. (a) R-R cascade networks with seven steps of bifurcation (Rl ——1.2 kQ and

R2 ——2 kQ). (b) R-L cascade networks with eight steps of bifurcation {L=10 mH, rl. ——21 0, and R =1.2 kQ). (c) R-L cascade net-
works with coupling {RI.) among branches (L = 10 mH, rL ——21 Q, R = 1.2 kQ, and RL ——1.5 kQ).

f '. For a finite step (n & oo), the 1/f spectrum must be
observed in the range

R/4n L &co&4n R/L,
and therefore the band width is given by

hlnm-21n4+41nn .

Also the variance of the distribution can be given by

o =(n/16)[ln(aiL/R)]

For the R-I. cascade networks, we used the inductance
I.=10 mH with the internal resistance rz ——21 0 and the
resistance R =1.2 kQ.

To keep Eqs. (6) and (7) valid, co must be much higher
than (rl /L)=2X10 sec ', that is, the low cutoff fre-
quency is about 330 Hz which makes the band width of
1/f spectrum narrower. The current distribution is not
sensitively influenced by this narrowing of the band width
because it is essentially related to the short time correla-
tion. Contrary to this, the power spectrum is strongly in-
fluenced.

B. Experiments and results

~'=(I/x)g( I+~ I

—II) I
)'/Ili

I
(9)

experimentally. Figure 3 shows the step dependence of
the total impedance of the R-R cascade networks where
Z (=620 0) is the value theoretically expected for the

The experiment was performed using a signal generator,
a computer-controlled fast Fourier transform (FFT)
analyzer (Iwatsu SM 2100 A), and a white-noise generator
(N.F. WG-722) whose statistical property can be varied,
for example, a binomial, a Gaussian white noise, and so
on. To obtain the distribution and the power spectrum,
we use a single sinusoidal wave and a noise source, respec-
tively. We took the distribution of the current amplitude
of the branches at each step from the first to the final of
the cascade. The power spectrum was obtained, on the
other hand, from current fluctuations through the load
resistance Ro which connected all branches at the final
step and was varied from 50 Q to 1.5 kQ. The variance o.

was obtained as
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FIG. 2. Current flow at a bifurcating branch.
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infinite cascade [Eq. (4)]. The value (Z5 ——605 0) for
n =5 already reaches that of the infinite cascade more
than 97%. Therefore the networks with n &5 may be
used to study a self-similar cascade.

The result obtained from the R-R cascade of seven
steps of Fig. 1(a) is shown in Fig. 4. Figure 4(a) indicates
the current amplitude distribution in branches at the sixth
step (j=6), with a single sinusoidal wave current source.
This is well fitted to the log-normal distribution. When
the R-R bifurcation ratio of the cascade is close to 1:1,
the distribution becomes 5-function-like. Applying
white-noise current source Io to obtain the power spec-
trum of the current through the cascade networks, it is in-
sensitive to the bifurcation ratio and shows the white
spectrum independently of the bifurcating ratio [see Fig.
4(b)].

Figure 5 shows the result for the R Lcascade wit-hout

coupling among branches. In this case, we have a log-
normal distribution and a 1/f spectrum as expected from
Eq. (5). Since Zz coL, the bifurc——ation ratio can be con-
trolled by change of the frequency. The solid line in Fig.
5 shows the theoretical curve of the log-normal distribu-
tion. Figures 5(a), 5(b), and 5(c) show distributions of
current flow amplitude at each branch in the seventh step,
respectively, for co &co„co=co„and co& co, . Here f, =19
kHz at which Z~ ——Zz and the distribution will be ex-
pected to be 5-function-like, but the observed one is slight-
ly different from the theoretical expectation because of
the scatters of elements (R and L). One can find that no
significant change in the current distribution occurs when
frequency changes. That is, the log normality of the dis-
tribution function is maintained (see Fig. 5). Figure 6
shows the frequency dependence of the variance o.. The
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FIG. 4. Current amplitude distribution (a) and the power
spectrum (b) of R-R cascade as shown in Fig. 1(a). The solid
line shows a log-normal distribution with o. =0.095,
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FIG. 3. Cascade-step dependence of total impedance (resis-
tance). Here Ri ——R~ ——620 Q, that is, Z„=620 Q for infinite
cascade.

FIG. 5. Current amplitude distribution at the seventh step
for the R Lcascade shown in Fi-g. 1(b). (a) co~co, (f=10 kHz).
o =0.187 (theoretical value),

~
I7

~

=7.72 pA. (b) co=co,
(f=19 kHz). o =0.004 (best fitted value by eye),

~

I7
~

=1.77
pA. (c) m & co, (f=30 kHz). o =0.081 (theoretical value),

~
I7

~

=1.44 pA. The solid lines are drawn with cr given above.
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FIG. 6. Frequency dependence of the variance 0. for the
eight-step R-L cascade. The data are taken from branches of
the seventh step of the cascade (j =7, n =8). 0, experimental
results;, theoretical results.

solid line demonstrates a theoretical curve obtained from
Eq. (8). As expected from Eq. (8), cr linearly varies with
the step number n experimentally, such as o. =0.08,
0.135, and 0.187 at f= 10 kHz, and o =0.037, 0.062, and
0.081 at 30 kHz for n =3, 5, and 7, respectively. The
band width showing the 1/f spectrum increases with the
increase in the step number of the cascade (see Fig. 7).
There occurs, however, narrowing of the band width hco
for the low-frequency regime (f &300 Hz) due to the
internal resistance of inductance (L) and for the high-
frequency regime (f & 500 kHz) due to the internal capaci-
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FIG. 7. Frequency dependence of the current power in the
R-L cascade networks at a branch of n = 1—7.

tance of L, even for large n The .agreement of Leo with
the theoretical prediction by Eq. (7) is very good up to
five-steps cascade, but becomes poor with the increase in
n by the reason described above. Figure 8 shows the
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FIG. 8. (a) Current amplitude distribution, (b) frequency dependence of the variance, and (c) the power spectrum of the coupled
R Lcascade. (a) T-he solid line shows the inversely plotted log-normal distribution with cr =0.04 (f=40 kHz).
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= 1.21 duA, and the dotted line shows the distribution expected from Lifshiz-Slyozov-Wagner theory (Ref. 20). (b)
0, the experimental result;, the best'fitted line by eye. (c) The solid line shows 1/f.
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current distribution, the current variance, and the power
spectrum at the cascade with coupling (Ri. ) among
branches. With the increase in Ri from 20 Q to 1.5 kQ,
the distribution deviates from the log-normal distribution
and becomes the oppositely asymmetric distribution (with
negative skewness) for all frequencies. For RI ——1.5 kQ,
we have tried to fit the distribution with an inversely plot-
ted log-normal distribution where ~I

~

in Eq. (3) is re-
placed by

~

I
~

—
~

I ~, where
~

I
~

is the upper limit of
the variables. The result is shown in Fig. 8(a) by the
solid line which gives good agreement with the inverse
log-normal distribution. Frequency dependence of the
variance, however, is quite different from those of non-
coupling cases and shows more complicated features with
the shift of f, (=32 kHz) [Fig. 8(b)]. ln addition, the dis-
tribution is not so sharp at f„which is clearly recognized
-as non-Gaussian profile. Nevertheless, the power spec-
trum shows' a 1/f type profile similar to that of noncou-
pling cascade [Fig. 8(c)].
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FIG. 9. Crystal size distribution of NaNO& in the aqueous
solution. The fitting with the log-normal distribution (solid line)
was done using o. =0.073. The dotted line shows the distribu-
tion curve expected from a second-order reaction controlled
growth (SORG) proposed by Kahlweit {Ref. 20). N/N and
r/r + were used as the same values for data at T=298 K and
t =67 h later in the original paper (Ref. 17).

C. Discussion

Furukawa proposed a cascade growth model of a crys-
tal (grain) growth process and gave the possibility of the
log-normal distribution in a grain size. ' Some experi-
mental facts show such a behavior. ' ' For example, the
experimental result, which is a crystal growth from super-
saturated aqueous solution of NaNO& done by Hohman
et al. ' fits better with a log-normal distribution than the
distribution expected from the second-order reaction ki-
netic growth (SORG) proposed by Kahlweit. This result
is shown in Fig. 9. The distribution as shown in Fig. 8 is
also similar to Lifshiz-Slyozov-Wagner (LSW)—type dis-
tribution in a diffusion controlled growth process. The
coupling among current pieces increases through all
branches of the eighth step in our networks when RL in-
creases. In the case of the crystal growth, it can be said
that the increase in the coupling among grains is due to
the increase in an interaction among crystals through the
bulk. It may be said that the growth kinetics in
polydispersed crystals is similar to the cascade process. '

Similar aspects have been observed in formation processes
(transient phenomena) of a dissipative structure in an elec-
trohydrodynamics of nematic liquid crystals under appli-
cation of Gaussian white noise in an electric field external-

ly. ' Thus it seems that the cascade process is observed in
many phenomena and may have universal properties for
nonequilibrium systems.

III. SUMMARY

The results obtained in the present study for the cas-
cade process are as follows: (1) it shows a log-normal dis-
tribution at the independent cascade which has no cou-
pling among branches of the process, (2) it shows inverse-
ly log-normal distribution when it has the coupling, and
(3) it shows a 1/f spectrum if the bifurcating kinetics
contain different properties such as L and R. We would
like to stress that the cascade process can introduce not
only log-normal but also inversely log-normal (or LSW-
like) distributions.
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