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We consider collisions between (quasi-) one- or two-electron atoms, each of which has been
prepared in a fixed distribution of hyperfine magnetic substates. The resulting “polarization-
dependent” reaction rates are functions of (1) the (experimentally adjustable) orientation of the
quantization axis associated with the hyperfine substates, (2) the hyperfine terms of the colliding
atoms, and (3) the detailed reaction dynamics as characterized by preparation- and fine-structure-
independent cross sections. These effects are deconvoluted and analyzed, and their use in elucidat-
ing reaction mechanisms is discussed. Particular emphasis is placed on the associative ionization of
two Na(3p) atoms, each prepared by adsorption of resonant laser photons. The quasimolecular
states of Na - - - Na that might react in this case are limited by selection rules. More information on
the reaction mechanism is then obtained by using experimental data, in combination with the formal
analysis, to draw further conclusions about the active quasimolecular states.

I. INTRODUCTION

The theory presented in this paper is designed to aid in
analyzing measurements of the reaction rates of atoms,
the electronic orbitals of which have been oriented prior
to collision. The orientation or “polarization” dependence
of the rates is intrinsically interesting; it also can be used
as a tool for investigating reaction mechanisms. Our goal
is to establish the connections between the mechanisms of
reactive collisional events and the polarization dependence
of experimentally determined rates of reaction. Although
much of the theory presented here is directly applicable or
easily adapted to a variety of situations, focus is lent to
the presentation by keeping in mind a specific prototypi-
cal process. The particular case to which we repeatedly
shall refer is the associative ionization of two colliding
atoms which have been excited into reactive electronic
states by polarized lasers. Kircz, Morgenstern, and
Nienhuis' were the first to report on how the rate of a
process such as this varied with the angle 3 between the
direction of laser polarization and the direction of the rel-
ative velocity of the colliding atoms. Their observations
subsequently were confirmed by Hertel> and his co-
workers and by Rothe® and his collaborators. In these ex-
periments a linearly polarized Na D,-line laser pumps the
F=2—F=3 hyperfine transition between the 32S,,,
ground state and the 32P;,, excited states of sodium.
This laser is arranged so that it intersects an effusive oven
beam of atomic sodium at right angles. Subthermal col-
lisions between pairs of excited atoms occur because of the
axial dispersion of the beam. The diatomic ions produced
by the reaction

2Na(3?P; ;) —>Na, ' (X 3] )+e ™ (1.1)

are then collected and counted.

The pumping process prepares the atoms in an aniso-
tropic distribution of magnetic hyperfine substates, con-
sisting (in the stationary limit) of five (Mp=0,+1,+2)
for the case of linear polarization and of only one
(Mg= 43 or Mp=—3) for the case of circular polariza-
tion. The projection quantum numbers appearing here are
referred to the “photon frame,” the polar axis of which
coincides with the laser polarization axis in the first case
and with the direction of photon propagation in the
second. The delicate aspects of atomic structure which
are needed for characterizing the hyperfine states popu-
lated by the preparative laser play no significant role in
the dynamics of the subsequent collisional chemiioniza-
tion. The rates of these events can be described accurately
and efficiently in terms of transitions between quasimolec-
ular adiabatic (or diabatic) Born-Oppenheimer (ABO)
states of pairs of reactant atoms and, in the case of Pen-
ning ionization, the analogously defined states of the ionic
products. Therefore, what one must learn is how to
transform information about the populations of the atom-
ic hyperfine states (referred to the laser photon frame)
into information about the populations of the ABO initial
states [referred to a “laboratory frame” determined by the
orientation(s) of the atomic beam(s)]. By convoluting the
latter with scattering amplitudes specific to individual
quasimolecular ABO initial states, one then can produce
rate expressions appropriate for comparison with experi-
mental observations. It is obvious but remarkable,
nevertheless, that these individual scattering amplitudes
are basic components which can be compounded to con-
form to a variety of experimental arrangements, each
represented by a different initial-state density operator.

One of our goals is to extract numerical estimates of
state-to-state cross sections from a knowledge of the ex-
perimental reaction rate and of the initial-state density
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matrix. The procedure for doing this is illustrated by the
following considerations. When the angle between the
laser polarization and the direction of relative motion of
the colliding atoms is equal to zero, the sodium p orbitals
tend to lie along the beam axis, whereas B=m/2 favors p
orbitals oriented perpendicular to the beam. One might
expect these two arrangements to favor the formation of o
and 7 bonds, respectively, with the relative populations of
the quasimolecular Na, initial states controlled by altering
the value of B. Thus, it is expected that the rate of associ-
ative ionization will depend upon this angle and, indeed,
the rate of production of Na,* ions is observed to dimin-
ish by as much as 40% when S varies from O to 7/2. Ex-
perimental observations for two values of the beam’s aver-
age relative velocity are shown in Fig. 1.

One expects on intuitive grounds that the integral cross
section appropriate to this experiment can be written in
the form

o(E,B)= 3 0,y(E)pp,(B) (1.2)
p

with the labels p indicating quasimolecular states of reac-
tant atomic pairs and E the mean kinetic energy of their
relative motion. Here o,,(E) denotes the cross section
specific to the quasimolecular state p and p,, (/) the cor-
responding element of the density matrix. The angle (5)
dependence of the latter accounts for the difference be-
tween the polarization axis of the preparative laser and
the direction of relative motion of the colliding atoms. If
o(E,B) and the set of density operator components p,,(3)
are known, (1.2) can be used to constrain the possible
values of the cross sections o,,(E). This is the basic idea
underlying the calculations in Sec. VI.

In a previous paper® (henceforth referred to as I) we
used conventional quantal theories of associative ioniza-
tion to obtain a formula similar to (1.2) but augmented by
“off-diagonal” terms o,,p,," (p'sp) which were bilinear
with respect to transition amplitudes associated with two
different quasimolecular initial states. Many but not all
of these interference cross terms were then found to be
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FIG. 1. Dimensionless cross section o(E,B)/o(E,0) for the
associative ionization process 2Na[2P;,;(3p)]—Na, (X 2=})
+ e, after Ref. 2. B is the angle between the electric field vec-
tor of the preparative laser and the direction of initial relative
velocity.
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zero, either because of dynamic selection rules (properties
of the objects g,,') or because off-diagonal elements of the
initial-state density matrix were zero due to symmetries of
the preparative procedure. Although most of the cross-
section selection rules were quite rigorous, one was ob-
tained using an approximation which has been an integral
part of most theories of ionizing collisions,” including our
own generalizations of these theories to laser-induced
chemiionization® and excitation transfer.” According to
this approximation, off-diagonal matrix elements of the
transition operator connecting states with different rigid-
rotor angular momentum quantum numbers, L and L',
are assumed not to differ significantly in value from the
corresponding diagonal elements. Although it is unlikely
that this approximation adversely affects calculations of
the heavy-particle motions, which usually involve relative-
ly large rotational quantum numbers, it is less certain that
it can be trusted to produce a valid selection rule for the
electronic angular momentum quantum number A, which
rarely assumes values other than O, 1, or 2. Recently we
have succeeded in deriving an almost equivalent selection
rule without recourse to this questionable approximation,
cf. Sec. IIC.

Another of the selection rules requires for its im-
plementation qualitative information about the shapes of
the adiabatic (diabatic) energy curves associated with the
quasimolecular states of Na,. In particular, one must
know whether and where these curves intersect that of the
product Na, T (X 22;’) diatomic ion. At the time when pa-
per I was written a potential energy curve was available
for only one of the excited electronic states that were pos-
sible contributors to the experimentally observed rate of
associative ionization, namely, the lowest-lying 12; state
which correlates asymptotically with Na(3p)+ Na(3p).
The results of our analysis of the experimental data de-
pended critically on this one potential energy curve, which
subsequently was found to be seriously in error, cf. the
dotted curve of Fig. 3. The analysis presented here makes
use of more recent and presumably more reliable informa-
tion about these energy curves.

The presence or absence of “interference cross sections”
is a delicate issue which requires proof and not simple as-
sertion. In writing (1.2) we referred to “intuitive grounds”
for expecting that there would be no interference contri-
butions when the colliding pairs of atoms were classified
according to quasimolecular ABO states. This expecta-
tion may be more a reflection of conventional wisdom or
habit than of sound fundamentals, but we have succeeded
in proving that it is a good approximation for the specific
situations treated here. To illustrate the pitfalls of which
one must be wary, let us assume that (1.2) has indeed been
proved. We then consider a different labeling of the two-
atom precollision states, indicated by the Latin indices
i=1,2,.... It would not be correct to assert that
o< 8;, cf. Sec. IIC. In particular, there generally will
be nonzero interference cross section o (i54i’) for a basis
consisting of direct products of atomic states labeled with
quantum numbers such as (L,M;,S,Ms),® (L,S,J,M;)
(Refs. 1 and 9 ) or (L,S,I,F,Mp). It is therefore our con-
tention that interference cross sections cannot be assigned
zero values unless there are solid, fundamental reasons for
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doing so. Simple intuitive arguments do not suffice and
studies’®® which ignore interference terms from the
outset will reach conclusions of uncertain validity.

The theory of paper I has been considerably refined,
amended, and corrected. In particular, the cross-section
selection rules have been revised and placed on firm fun-
damental foundations. Also, a much more powerful di-
agrammatic method has been used to perform the angular
momentum manipulations needed for constructing the
density matrix of quasimolecular precollision states from
a knowledge of the laser-prepared atomic beam(s). This
part of the theory is quite general and not at all restricted
in its applicability to associative ionization. To appreciate
the complexity of the problem one must recognize that
the angular momenta of the states populated by the
preparative laser are sums F=I+J=I+(L+S) of three
angular momenta and that the density operator pertains to
two such atoms. What the evaluation of the density ma-
trix entails is a recoupling of these six angular momenta
into the composite electron spin and orbital angular
momentum of the two atoms as well as a sum (the taking
of a trace) over the collisionally irrelevant nuclear spins.
Complications arise when the nuclei are identical for then
the nuclear statistics impose symmetry restrictions on the
wave functions descriptive of the heavy-particle motions
[for example, recall the restrictions on the rotational
quantum numbers of orthohydrogen and parahydrogen].

The coupling of two angular momenta involves a 3j
symbol and the coupling of three requires 6;j symbols.
When six angular momenta are involved, 15/ symbols can
enter the picture. This does, in fact, occur when one
transforms the density matrix from the atomic basis to
the molecular basis. Furthermore, it should be remem-
bered that the photon and collision (laboratory) frames are
not the same, so that rotational transformations also must
be taken into account. It is for problems with this degree
of complexity that the diagrammatic techniques are high-
ly desirable if not wholly indispensable. The density ma-
trix has invariants and symmetries and the various angu-
lar momenta conform to a number of constraints, such as
triangle rules. The diagrammatic procedure delicately ex-
tracts these important characteristics from the jungle of
algebraic complexity associated with the recoupling of so
many angular momenta. This analysis of the density ma-
trix is an important component of the theory of laser-
prepared atomic collisions to which little attention previ-
ously has been directed. Indeed, the only studies of which
we are aware are those of Hertel and co-workers!® and
Nienhuis,® both of whom limited their studies to direct-
product states of independent (distinguishable) atoms in-
stead of the diatomic, ABO states to which the general-
ized cross sections 0,,+(E) are related.

The plan of the paper is as follows. Section II provides
a detailed formal treatment of the density operator ap-
propriate to a pair of laser-prepared atoms. The matrix
elements of this operator are then combined with elements
of the transition operator to produce formulas for reactive
associative-ionization cross sections. Results are present-
ed for both identical and distinguishable nuclei. Section
IIC is devoted to cross-section selection rules, some of
which are specific to associative ionization and some of

which are not. Section III is a brief summary of the nota-
tion and methods associated with the diagrammatic tech-
niques for handling the algebra of angular momenta. In
Sec. IV these techniques are used to derive a compact,
general formula for the density matrix of quasimolecular,
laser-prepared precollision states. This formula is used in
Sec. V to produce a number of symmetry-related predic-
tions about the cross sections for polarization-dependent
collision processes. At the end of Sec. V, we comment
upon how the theory presented to that point can be ap-
plied to other processes. In Sec. VI the theory of the
preceding sections is applied to the analysis of the experi-
mentally measured, polarization-dependent associative
ionization of two Na(3 %P5 ,,) atoms. The paper ends with
a summary, some conclusions, and a few comments about
future experiments and theory in this general area of
research.

II. RESULTS FROM THE THEORY
OF ASSOCIATIVE IONIZATION

In this section we present results from the theory of as-
sociative ionization (AI) that are needed for analyzing the
experimentally observed laser polarization dependence of
the rates of processes such as 2Na((3p)?P;,,)
~>Na, " (X 2} )+e~. The first item to be considered is
the density operator associated with the initial laser-
prepared state of a beam atom. The theoretical cross sec-
tion corresponding to the measured rate of AI is then ex-
pressed in terms of state-specific cross sections ¢,, and
“interference cross sections” o, (pp’), all of which are
independent of the laser polarization, and a polarization-
dependent density operator p,,(a,). The labels p and p’
appearing here refer to quasimolecular electronic states
that are descriptive of the state of the system prior to col-
lisional ionization. The angles a and S are the first and
second Euler angles (equal to the polar spherical coordi-
nates ¢ and 6, respectively). These specify the direction of
@, the “photon-frame” space-quantization axis measured
relative to a laboratory-fixed frame. In the case of linear
polarization, @ is coincident with the polarization axis of
the laser; for circular polarization it is parallel to the
direction of the laser beam.!! The analysis presented here
is specific to a single laser or to two which share a com-
mon photon frame. The extension to lasers with different
photon frames will be presented separately.

The representation of the Al reaction rate in terms of
quasimolecular state-specific cross sections and the corre-
sponding density operator is done first without regard for
nuclear statistics and then again allowing for the indis-
tinguishability of identical atomic nuclei. General formu-
las are reported for the cross sections and density matrix.
(In Sec. IV the density matrix is expressed in terms of
readily computable objects such as 6j symbols. This com-
putation is not specific to AI and can be applied to a gen-
eral atomic reaction.) Finally, we report “selection rules”
that greatly diminish the number of nonzero off-diagonal
cross sections o, (psp’), thereby enabling a more pre-
cise identification of the quasimolecular states of the reac-
tant atoms which contribute to the measured rate of reac-
tion. Details omitted here can be found either in a previ-



35 THEORY OF THE POLARIZATION DEPENDENCE OF . . .

ous paper* or in a forthcoming communication on the
theory of chemiionization. 2

A. Initial-state density operators

The events that concern us involve pairs of atoms X
and Y, excited into hyperfine states |n) and |n’),
respectively, by the resonant absorption of single-mode cw
laser radiation. The gas density and the intensity and spot
size of the laser(s) are assumed to be such that each atom
interacts with many photons before striking another.
Consequently, the density operators specific to the elec-
tronic and nuclear spin states of these atoms may be writ-
ten in the forms

px= 3 Px(n)[n)n|, 2.1)

py= > Py(n)|n'){(n"|, (2.2)
<

with Py(n) and Py(n’) denoting the probabilities of find-

ing atom X in the state | n) and Y in the state | n’). De-

tails about these hyperfine states are given in Sec. IV.

We distinguish between two types of (initial) atomic
kets. The first (of which the angular brackets |n) and
| n') are examples) have the photon-frame quantization
axis @, with Euler angles (a,3,0). The second type,
represented by rounded brackets as | n) and | n’), have a
space-quantization axis which points in the direction of
the initial relative momentum Ak=4A[(u/my)ky
—(u/my)ky] of the two colliding atoms. Here, #ky and
#iky are the atomic momenta, my and my the atomic
masses, and .~ '=my l-{—m,? !, These two sets of kets are
connected by the relationships

nYy=R(@)|n),
|n'y=R'@)|n"),

(2.3)
(2.4)

with the operator R(&) denoting an active rotation on the
state space of atom X and R'(@) a similarly defined
operator specific to atom Y. As indicated in (2.3) and
(2.4), the quantum numbers associated with the two kets
| n) and | n), including projections of angular momen-
tum, are numerically equal.

Throughout this paper initial internal states will be
represented by angular or rounded brackets, whichever is
appropriate, and by small Latin letters. The internal
states of the product XY * ions will be denoted by angular
brackets (which have no special significance in this case)
and small Greek letters.

Because the probabilities Py(n) and Py(n’) do not de-
pend on the direction @, the density operators given by
(2.1) and (2.2) may be rewritten in the alternative forms

px= > Px(n)R@)|n)n |RT(@), 2.5)

py= 3 Py(nR'@)|n')n'|R"(@) . (2.6)

It will become apparent that the @ dependence of the rate
of associative ionization is confined completely to the ro-
tation operators R(@) and R'(@).
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Finally, we write the density operator for a pair of
laser-prepared atoms as

p= A4 |n) |n'YPx(n)Py(n'){n|{(n' |4’

= 2 Il)Px(n)PY(n’)<l | ’

n,n'

(2.7)

with |i)=4 |nn’) denoting the product state | nn'), an-
tisymmetrized in all electronic coordinates. This expres-
sion for the initial-state density matrix is appropriate
when the states of the atomic reactants have been
prepared independently, as they have in the situations
considered here.

B. Scattering amplitudes and cross sections for AI

We now consider an Al collisional event beginning with
two atoms X and Y in the hyperfine states |n) and
| n'), respectively, and moving relative to one another
with a momentum equal to #ik. The products of reaction
consists of an XY * ion and a free electron, which travels
in the direction q with a momentum #g (measured relative
to the XY* product ion). The spin of the free electron
and the internal state of the diatomic ion are described by
a ket |y). The scattering amplitude for this process is
written as

FHqy;knn')=(m, /27#*){qy | T |knn') , 2.8)

with T the transition operator, m, the electron mass, and
q=4qg. This scattering amplitude is associated with a
process which we write as

X(nk)+Y(n'k)»XY*(y)+e~(q).

The plus superscript indicates that £+ is the amplitude
associated with the conventionally defined “out” boun-
dary condition of scattering theory. Two points regarding
f should be mentioned. The first of these is that f+
will be computed as if the nuclei were distinguishable,
even when they are identical. The consequences of nu-
clear statistics will be treated separately. Secondly, f+ is
computed using a spin-free, nonrelativistic Hamiltonian.
The errors incurred by this approximation will be negligi-
ble provided that the electronic spin-orbit coupling is
small compared with the other interactions that come into
play during the collision. The thing to notice here is that
the part of the system Hamiltonian which shapes the
scattering amplitude f 7 is far different from that which
accounts for the photoabsorptive events that are respon-
sible for populating the atomic hyperfine states prior to
collision. Although the electronic and nuclear spins are
important contributors to the latter events, they usually
have little effect upon the former.

Because the transition matrix notation, (|7 |), is
better suited to our needs, we use it in place of the
equivalent scattering amplitude notation.

Let us now introduce the transition matrix elements

(q8| T |kp)=3 3 (8|y){(nn'|p)qy |T |knn')
v nn’
(2.9)

and
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(gA\ud| T |kp)
=33 fda<5[7><nn'|P)Yzy(a)<q7 | T | knn')

v nn'

= [dd4Y3,(@<as|T |kp) , (2.10)
where it is to be understood that | p) lies in the same de-
generate manifold as 4 |nn')=4 |n)|n’) and |8) in
the same degenerate manifold as |y ). We assume that
the states within each of the sets |n), |n'), |p), |8),
and |y ) are orthonormal.

The symbol A appearing in (2.3) is the angular momen-
tum quantum number of the free electron and u# is the
projection of this angular momentum in the direction of
k=kk. The kets |p) invariably will be identified as
“molecular-type” states, which are bases of irreducible
representations for one or the other of the diatomic
groups C_, and D_,. (m,/27#)(qd|T |kp) and
(mg /2w#2){qAud | T | kp) are scattering amplitudes for
the processes

X(pk)+ Y (pk) XY *(8)+e—(q)
and
X(pk)+Y(pk)>XY T(8)+e " (gAu),

respectively.

With these definitions and notations in hand we now
can write cross-section formulas for associative ionization.
Our attention will be confined to the integral cross section
since this is the observable which has been measured.' 3
In the case of distinguishable nuclei this cross section is
given by the expression

o(@,E)=(m,/2m#*)
X33 [ dq [ dk(w, /v)P(K)Px(n)Py(n’)

vy n,n’

X |{qy|T |knn')|?, (2.11)

with the ¥ summation extending over all open channels
and with

v, /v=nuq/m.k (2.12)
equal to the ratio of the speed of the free electron to the
relative speed of the two colliding atoms. Formula (2.11),
as well as other cross-section formulas in this paper, is
also appropriate for cross sections specific to a narrow
range of q. We only need limit the sum over ¥ to final
states consistent with energy conservation. P(k) is the
probability that the initial relative momentum equals 7k
and E = f dkP (k)#’k?/2u is the mean of the associated
relative kinetic energy. It is assumed that the distribution
P (k) is sharply peaked in a direction /l\(O.

By using (2.10) and selecting |8) to be identical with
|77, (2.11) can be rewritten in the form

o(@,E)= prp:(&)appv(E) , (2.13)
p.p’

with

Opp(E)=(m, /2#)
X33 [ dk{ghuy | T |kp)

Apy
XP(K)v, /v){qipy | T | kp")*

(2.14)

and

pop(@)= 3, Px(n)Py(n')p |nn'){nn"|p') . (2.15)

The basic formula (2.13) expresses the integral cross sec-
tion for AT in terms of single-state and interference cross
sections, 0,,(E) and o,,(E) with ps£p’, which are specif-
ic to the states |p) and |p’) but have no dependence
whatsoever on the populations of these states nor the
means by which they are populated. In particular, these
cross sections are independent of the polarization and in-
tensity of the laser. The dependence of o(@,E) on the
laser intensity is confined to the probabilities Py(n) and
Py(n') and the dependence upon @ is completely incor-
porated within the factors (p |nn’) and {(nn’|p’). Thus,
the collision dynamics determines the cross sections
0pp(E) and 0,,(E), p7p’, and the laser preparation of the
atomic hyperfine states determines the density matrix
ppp(@). Because the elements of the density matrix can be
computed analytically (see paper I and Secs. III and IV
below), it is clear that measurements of the integral cross
section o(@,E) can be used to gain information about the
state-specific cross sections.

The cross-section formulas that we have just presented
will now be generalized to include the effects of nuclear
statistics. Although these are normally expected to be
small, there are situations for which the effects of nuclear
indistinguishability can become experimentally observable.
The question of concern here is how nuclear indistingui-
shability affects the polarization dependence of the in-
tegral cross section for AI. We shall find [cf. the discus-
sion following (2.24)] that the dependence upon polariza-
tion usually is given by the theory for distinguishable nu-
clei. Numerical estimates of the effects associated with
Na-Na collisions are included in Sec. VI. For the AI pro-
cesses of concern here, these changes turn out to be rather
small.

It is necessary at this point to become more explicit
about the quantum numbers of the states represented by
the kets |y ) and | p). Thus, we write

|7)=|A,Q,Bv; S Q5 Q') (2.16)

with A, denoting the projection (in units of #) of electron-
ic orbital angular momentum along the internuclear axis
of the XY ion. Q is the total orbital angular momentum
quantum number of the ion and B is the projection quan-
tum number of this angular momentum on the direction
k. v denotes the vibrational quantum number of the ion.
& and Q- are the corresponding pair of electron spin
quantum numbers for all of the electrons. Finally, I and
I' are the spins of the two nuclei, .# is the quantum num-
ber of the total nuclear spin, and ), is the projection
quantum number of this total spin on the direction k.
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The generalization of (2.11) to include nuclear statistics
now can be written as'?

o(@,E)=(m, /27#*)*N
x 33 [ dd [ dk(v,/v)P(k)Px(n)Py(n’)
T x|a(yXay | T [knn")
yqy | T |knn') |?
(2.17)

with 7 denoting the same set of quantum numbers as y
except for A,, which is replaced with A,=—A,. The
factor N is defined by

N=(14+A)" (2.18)

J

0 E)=(m, 207N 3 S, [ dkP(k)(

Ap oy

v, /v)a(y)

X[a(y){(qruy | T |kp")+b(y){qru7 | T |kp")]*

In order to convert this expression into a more useful
and revealing form we specify that the sets of initial-state
quantum numbers p and p’ include the fotal nuclear and
total electron spins as well as the projection quantum
numbers of these spins in the direction k. Thus, in an ob-
vious notation, p includes %, Q. yp,f »»and Q s, SO that

|p)= |x;fpﬂfp;./pﬂlp) . (2.22)
The symbol x appearing here denotes the remaining set of
“molecular type,” initial-state quantum numbers, one of
which is A, =A,, the projection of the total electronic or-
bital angular momentum in_the direction k. Since the
matrix element (gAuy | T | kp) is to be computed using a
spin-independent Hamiltonian and treating the nuclei as if
they were indistinguishable, it can be written in the form

(gruy | T |kp)
=(qlﬂfgl|T|?kfxmffﬁnfnffnrﬁn,a,p .
(2.23)

Here (gAp7E||T||kFx) is a “reduced transition ma-

SN S E)=N(m, /20?3, S [ dkP(k)ve/v)
Ap &

(grpy | T |kp)+b(y)

with A=1 for identical nuclei and A =0 otherwise. Final-
ly, the two numbers a(y) and b(y) are given by the for-
mulas

a(y)=1+A(—1)"+QSA7,0 (2.19)

and

b(y)=A( —1)f+Q(1_5A7,0) . (2.20)

The use of (2.10) allows us to obtain an equation for
o(@,E) of the form (2.13), with the same density matrix
as before [namely that defined by (2.15)], but with the
state-specific cross sections previously defined by (2.14)

replaced with those given by the formula

(qAu7 | T |kp)]

(2.21)

I
trix” which depends on £=(
upon ¥ and p.

The result of inserting (2.23) into (2.21) is the formula

A,,Q,B,v) and x rather than

o(a, E)—zza;;“fE szx (£7,a)
x,x' 7

e

+3 S0 GNAE) S pl ISR, (2.24)
x,x' S £o

with .#, denoting the set of all even values of .# and .#,
the set of all odd .#. The density matrix appearing in this
expression is defined by

(I, a)
= 2 2 Px(n)Py(n )

ﬂf,ﬂfn,n'
X(x; Qe IQy | nn')
X{nn'|x";:LQeIQ,) (2.25)

and the cross sections by

X1+ (14+2p*)A84 0] gAu T & T| kS x)(gAu T & T| kS x")*

+[pH(1-84,0)A[{gAuSE||T| kS x)(qAuSE| | T| k7 x")*

+(gAuFE|| T kFx) A FE| | T||kFx")*]

+[(1=8,,0)AN gAu S 8| T| k.7 x)(gAp S E|| T| [kFx")*] .

(2.26)
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In the second of these formulas vg=v,, Ag=A,, and

AU +A/DFN/D+Q (2.27)

pr=(—
The set £ is the same as £=(Ag,Q,B,v) except that A is
replaced with Ag= —A;.

The formulas for the AI integral cross section provided
by equations (2.24)—(2.26) are quite general and, as such,
deserve several comments. The first of these concerns dis-
tinguishable nuclei, in which case A=0. From (2.26) it
then follows that o'}’ and o'y’ have a common value,
Oxx» SO that (2.24) reduces to the familiar form [see

(2.13)—(2.15)]

0@,E)=3 3 0u(FE) S pulF @) . (2.28)
x,x' S

A second observation hinges upon the fact that the
algebraic sign of p* changes with each successive value of
the orbital angular momentum quantum number Q.
Therefore, o'}’ and o'y should be approximately equal
to one another provided that the objects
(gAnFE||T||kFx) (gAuSE||T||kFx")* are slowly
varying functions of over the allowed range of this
quantum number. o'}’ and o'y’ may, of course, be dif-
ferent if only a few values of Q contribute to the rate of
reaction. It is precisely when this happens that one can
expect to see significant effects due to nuclear statistics.
For example, in Al few if any Q values will be open to re-
action when the measurements are restricted to an
electron-energy differential cross section and the initial
velocity distribution P(k) is sufficiently narrow. o'/’
and o'y’ may also differ from one another in the vicinity
of a channel threshold. Furthermore, small values of the
initial relative kinetic energy and/or processes involving
light nuclei will limit the set of participating Q’s, and so
may produce observable consequences of nuclear statis-
tics. It is worthy of notice that even though o}’ and
o'’ may be nearly equal, they are specific to different
processes. For example, in the case of A;=0 (the XY+
product ion in a ¥ state) oL’ is a cross section for the
production of ions with even values of 2I +Q whereas
o's’ pertains to ions with odd values of 21 +Q. This is
related to the absence of states with odd values of
21 +Q +.7 from the spectra of diatomic molecules with
indistinguishable nuclei. Finally, it is clear from (2.24)
that, all other considerations aside, nuclear statistics will
have little effect upon the polarization dependence of the
Al integral cross section when 3 s, Pxx(FF,@) and

Efe pxx(F L ,a@) are nearly equal. This often is the case
(cf. Sec. VI).

C. Selection rules

We have stated repeatedly that formulas such as (2.13)
and (2.24) can be used in conjunction with experimental
measurements of the Al cross section o(@,E) to obtain in-
formation about the state-specific cross sections o, (E)
and/or o'3/(.#,E). The efficacy of this procedure will be
enhanced if we can succeed in establishing that some of
the og') are equal to zero or are, at least, very nearly so.

This objective can be achieved by invoking a number of
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selection rules. Detailed proofs of these rules are not
presented here but can be found in Refs. 4 and 11.

It will be recalled that (gAu.7&||T ||k x) is computed
as if the nuclei were distinguishable. Therefore, we elect
to associate nucleus 4 with atom X and nucleus B with
atom Y. Furthermore, the set x includes A,, the projec-
tion quantum number of the electronic orbital angular
momentum along k. We now observe that prior to col-
lision the direction of the internuclear vector,
R=Rjz—R,, coincides with that of the initial relative
momentum k. Consequently, the precollisional value of
the projection along k of the total orbital angular momen-
tum is equal to #iA,. The postcollisional value of this
same component of the total orbital angular momentum is
#i(u+B). Since the collision dynamics are governed by a
spin-free Hamiltonian the total orbital angular momen-
tum is a constant of the motion and

(g FE||T|[kFx) <8, A - (2.29)

The result of inserting this into (2.26) is the selection rule
0% (S E) By A, - (2.30)

If the two nuclei have the same atomic number, then
both of the sets x and £ will include total electronic parity
quantum numbers. Let us denote the initial-state parity
by 7, and the parity of the XY™ ion by 7. The parity of
the final state | gAu.#£) is then me(—1 ). The conserva-
tion of total electronic parity implies that

(g €| T| kS0 <5, (2.31)

(—DA

and this, when combined with (2.26), produces the selec-
tion rule

OGS E) 8y o . (2.32)

The composite statement of the selection rules (2.23),
(2.30), and (2.32) is that the interference cross section con-
necting two sets of initial-state quantum numbers p and
p' can be different from zero only if I =,
Q“(pzﬂ_/p', yp:yp', pr=ﬂypr, Ap:Ap', and
m,=m,. The sole limitation upon the validity of these
selection rules is the assumption that the collision dynam-
ics are governed by a Hamiltonian operator which is de-
void of spin-orbit couplings.

These considerations permit one to draw firm con-
clusions about the interference cross sections associated
with the quasimolecular basis. However, even if all of
these were to vanish, the interference terms associated
with a different initial-state basis would not, in general, be
equal to zero. To be more specific let us transform (2.13)
from the quasimolecular basis to another, the states of
which are labeled with Latin indices. The integral cross
section then can be rewritten in the form

o(@,E)="3, ppp!@)0,(E)
p.p’
= Eppp‘(&) 2 C;,Cpf,"ai,"(E) 5
p.p’ L'

with ¢, denoting a matrix element of the unitary
transformation defined by the connection

(2.33)
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p

Suppose now we somehow have established that
Opp =0p,8,, for all of the quasimolecular states which
conceivably could contribute to the observed cross section
o(a,E). (An obvious example is a situation where only
one quasimolecular channel is open.) As a consequence of
this, (2.33) reduces to

A& E)= 3 ppp(@)0,,(E)
p

= P, (a) C‘,’C i'U',‘,"(E) . (2.35)
pp &t~ PITP
p ii

This identity is valid for any set of states p that includes
all reactive states. We now test the assumption that
o;i(E)=0;(E)8;. Ifitis valid, (2.35) then can be rewrit-
ten in a form

0'(&,E)=zppp(a)2 ICP,'|20',',‘(E)
P i
=@ 3 [cpi|? 3 chicgiog(E)
14 i 99
= Sem@3 lz_ a2 a2
P i

04 E)

(2.36)

which must be equivalent to (2.35). This means that the

relationship

EPPP a) 2 |CPI 1 2|qu '2 _qu(a)=0 (2.37)

must be satisfied for all states such that o4, (E)50, and
for any set of states p that includes all reactive quasi-
molecular states. From this, we also find

E |Cp,"2|Cq,' |2 (237’)
i

Prp

must be satisfied for any reactive g and nonreactive p.
Equations (2.37) and (2.37') often are not satisfied. At
least in these cases, the resulting conclusion is that (@, E)
cannot be represented in the form o(@,E)
= ¥, pi(@)o;(E). Whether this form is numerically ac-
curate in a particular instance may be discovered by
checking the magnitude of any interference terms, but it
cannot simply be assumed. Examples where (2.37) and
(2.37') are violated easily can be found. For example, if
only one ¢q is reactive, (2.37') is clearly violated since
> gl 2| Cgi |2 will not be unity [unless | q) is identical
to some |i)]. Another example results when the states
| ¢) and | i) both include the quantum number (Q, specify-
ing the projection of total angular momentum on the labo-
ratory z axis. One then can verify that (2.37') is violated
under the experimental conditions studied in Sec. VI, if
| ©) is a direct product of atomic states, labeled by quan-
tum numbers such as (L,M;,S,Ms) (Ref. 8) or
(L,S,J,M,).""° Since the integral cross section for this
process is of the form (1.2) [or (2 35)], the above com-
ments regarding o(@,E)= 3, p;(@)o;(E) apply fully.

This illustrates the danger of a cavalier disregard for
the contributions of interference cross sections. An
analysis that disregarded this fact could yield invalid con-
clusions. If it appears that we are unduly stressing the
rather obvious fact that a matrix known to be diagonal in
one representation need not be diagonal in another, it is
because arguments to the contrary have received wide
currency.

We now derive a more specific selection rule which will
be used in Sec. VI. It is assumed that the initial electronic
state is a = state (A, =A,=0). The quantum number as-
sociated with the reflection of this state in a plane con-
taining the internuclear axis R is denoted by o,. The
state of the product XY ion also is taken to be a = state
(A,=Ag=0) with a reflection quantum number og.
There is an approximate selection rule specific to this
case,'? according to which the projection along R of the
free-electron’s orbital angular momentum is zero. Conse-
quently, the reflection quantum number of the free-
electron orbital will equal unity and this, in turn, means
that the reflection quantum number of the ket | gAu&S)
is og. Because the reflection character of the electronic
states is a collisional invariant, it then follows that

(qkuf§]|Tkax)c:80§,ax for A,=A;=0.

(2.38)

According to this, a collision beginning in a quasimolecu-
lar =~ state cannot result in a product £+ diatomic ion.

The selection rule used in deriving (2.38) is obtained by
treating the component of electronic orbital angular
momentum along the internuclear axis as if it were a
constant of the motion. This is an approximation because
the axial symmetry of the system is broken by the Cori-
olis force (rotational Born-Oppenheimer couplings).
Nevertheless, it is to be expected that violations of the
selection rule (2.38) rarely will occur unless the collision
velocity is very large.

Finally, we observe that for relatively small values of
the initial-state de Bro%he wavelength  [e.g.,
kdeB—Zﬂ'/k 2rh(2uE) /2 (Bohr radius)] the mag-
nitude of o'/ (%, E) will be neghglble unless the classical
turning point associated with x (for all x’) lies within the
electronic continuum region of XY+ 4e~ (cf. Fig. 3).
This approximate selection rule is based on arguments in-
volving the overlap of nuclear wave functions and has
been discussed elsewhere. *

III. DIAGRAMMATIC METHODS
FOR ANGULAR MOMENTUM ALGEBRA

In Sec. IV we shall obtain an explicit formula for the
density matrix p,,(.#.7,a) defined by (2.25). As already
pointed out in Sec. II, this will establish a linear algebraic
connection (cf. 2.24) between the experimentally deter-
mined integral cross section for Al and the smgle state
and interference cross sections, ag‘ and a ) (x5£x’),
respectively. The process of evaluating the densxty matrix
is a tedious exercise in angular momentum algebra which
can be expedited by the introduction of diagrammatic
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techniques.!®> The diagrammatic and algebraic methods

are, of course, equivalent, the principle advantage of the
former being that one can invoke geometric intuition to
simplify complicated algebraic expressions. Since these
techniques are useful, but probably unfamiliar to most
readers, we provide here a resumé tailored to the needs of
Sec. IV.

A. Angular momentum eigenstates

The angular momentum eigenket associated with a gen-
eric angular momentum j is so defined that
Plim)=®jG+1)|jm),
(3.1)

We adopt the usual phase convention'* ¢ for these and all
other angular momentum kets, namely, that

(e tijy) [ jm ) =A(iTm)j+tm + D]'? | jm£1) . (3.1)

Beginning with » commuting angular momenta j,
(a=1,...,n), we can establish a coupling scheme which
incorporates a number of “intermediate” angular momen-
tum Ig. Each of these intermediate angular momenta is
the sum of two other angular momenta, either or both of
which also may be intermediates. Only one rule need be
observed in constructing the coupling scheme, namely,
that once any angular momentum one j, (Ig) appears, it
can occur in the definition of only (one other) intermedi-
ate angular momentum. It is possible to define n —1 in-
termediates, Ig, including

n
g=l, 1= 3 ja- 3.2)
a=1

We soon shall construct simultaneous eigenkets of j2
(@=1,...,n), I3 (B=1,...,n—1), and I,_, , =g, and
then adopt one of two notations for these states. Thus, if
there is no cause for confusion (the coupling scheme is
known and fixed) we shall denote the quantum numbers
associated with the set lé (B=1,...,n—2) by the letter
a, the quantum numbers associated with the set jtz,
(a=1,...,n) by {j}, and the quantum numbers for g?
and g, by g and m,, respectively. The simultaneous
eigenket of all these operators is then denoted by the sym-
bol | {j}agmg ). It satisfies the equations

ix| (jlagmg) =#ja(ja+1)| {j}agmg) ,
a=1,...,n
I | {j}agmg)=#lglg+1)| {j}agmg) ,
B=1,...
g’ | {j}agm, ) =#g(g +1)| {jlagmg)

,n—2
(3.3)

8z | {j]agmg>:ﬁmg | [J}agm8> *

On the other hand, when it is necessary to indicate the
coupling scheme, we shall do so by using a nested set of
parentheses. For example, the symbol (j;,j,)!{, contain-
ing the quantum number j,, j,, and /; (corresponding to
the three angular momenta jj, j,, and I, respectively), in-
dicates that j; + j,=1,. Similarly, the symbol
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((jI’jZ)Il’(j3?j4)12 )g
indicates that j1+j2=11, j3+j4=12, and ll+12=gEl3.

B. Addition of angular momentum

Consider two angular momentum kets |£J/M) and
| KM ), the first of which is an eigenstate of J? and J,
with corresponding quantum numbers J and M and the
second of which is an eigenstate of K2 and K, with quan-
tum numbers K and N. The letters £ and § denote addi-
tional quantum numbers not related to J and K. If J and
K commute, we can immediately construct the object

|ECUKILM, )= |&JM) |(KN)(JMKN |LM; ) ,
M,N

(3.4)

which is an eigenket of each of the operators J?, K2, L?
(L=J+K), and L, with eigenvalues #I(J +1),
#K (K +1), #2L (L +1), and %M, respectively. The ket
defined by (3.4) is, as well, an eigenstate of the operators
associated with the quantum numbers £ and §

The symbol (JMKN |LM;) is the usual Clebsch-
Gordon coefficient. For future reference we recall the fol-
lowing basic properties of these coefficients:

(aabBlc >:[c]l/2(_1)a—b+7 a b c (3.5)
14 a B —v|’ '
with [ x]=2x + 1 and where (gff) is the 3j symbol;
8ccdyy = (cy|aabB)(aabB|c'y') , (3.6)
a,B
Baadpp= D, (aabB|cy){cy|aa'bB’), (3.7
o
and the coefficients are real, i.e.,
(aabB|cy)={cy|aabB) . (3.8)

From the discussion of Sec. III A it follows that when-
ever we wish to introduce a new intermediate angular
momentum, we add two commuting angular momenta.
Thus, by repeated applications of (3.4) we can generate

| {j}agmg) from the product states
[jimy) - |jam,>=|{m}). This is denoted as fol-
lows:

| {ilagmg)= 3, ({m}|{j}agmg)|{m}) 3.9

{m}

It is straightforward to show [using (3.6) and (3.7)] that
the transformation (3.9) is unitary, i.e., that

8({m},{m' =3 ({m}|{j}agmy){{j}agm,|{m'})

a,g,mg
(3.10)

and

Saa’sgg'sm "‘gI: [2} ({]}agmg | {m} ><{m} | {j}a'g'mg’> .

g

(3.11)

The real-valued objects ({j}agm, |{m}) are called gen-
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eralized Clebsch-Gordon coefficients (GCGC). They play
an important role in what follows.

C. The transformation matrix

The problem encountered in this section is closely relat-
ed to that of evaluating the inner product of two angular
momentum eigenkets | u) and |v). These may be indi-
vidual kets of the type |{j}agm,) or direct products
| {j'la'g'mg) -+ | {j?}aPgPmf) formed from disjoint
sets of angular momenta, {j,} with i=1,...,p and
a=1,...,n;. We impose the obvious restriction that
| ) and | v) be eigenkets associated with a common set
of angular momenta. Then, with [{{m}}) denoting the
direct product of all the kets |j,m, ) belonging to this
set, it follows that

(ulvy=23Cu | {{m}D{{{m}}|v) .

mg

(3.12)

The objects {u |v) are elements of the transformation
matrix, so called because it connects states having dif-
ferent coupling schemes. The form of the right-hand side
of (3.12) demonstrates that an element of the transforma-
tion matrix can be expressed as a sum of products of
GCGC’s. This observation will be useful when we reach
the stage of constructing diagrammatic representations of
(u |v) and similar objects.

D. Graphical representations of algebraic expressions

(3.13)

n

We are now ready to introduce graphical representa-
tions of the algebraic objects discussed in the preceding
parts of this section. Once the transcription into this rep-
resentation has been made we can concentrate on the ma-
nipulation (simplification) of diagrams, a task considered
in Sec. IITE.

There are two ‘“fundamental” diagrams; all others are
constructed from these. One is the diagram for the 3j
symbol, (555),

ao a
>— oy >——— c
bp b
The plus sign attached to this graph indicates that the
motion in going from (aa)—(bB)—(cy) is counterclock-
wise. By using the symmetry properties of the 3j symbols
one can show that the object represented by this diagram
is unchanged by a cyclic permutation of the lines labeled
a, b, and c¢. As indicated by the figure, the magnetic
quantum numbers a, 3, and y are suppressed whenever
their omission produces no confusion. We also define
another symbol equivalent to (& 5%),
ao a
>— bp = >—— b (3.14)
cy c
The minus sign appearing here indicates the motion asso-
ciated with the sequence (aa)—(bB)—(cy) is in the
clockwise direction. This symbol also is invariant with
respect to cyclic permutations of the line segments.

The preceding considerations, taken together with the
familiar symmetries of the 3j symbols, show that the alge-
braic meaning of a 3j diagram is unchanged when we (1)

permute two lines and change the sign of the diagram, (2)
change the sign of the diagram and multiply the result
with (—1)?+%+¢ and (3) permute two lines and multiply
with (—1)* +o+e,

The second fundamental diagram corresponds to the
so-called “metric tensor”

ao | =(=1°48, o, (3.15)
The diagram for this object is
a a = —-— (3.16)
[0d a
We now consider an expression of the form
B= 3 F(Q;})G(R;)H(S) , (3.17)

all y

with F and G denoting 3j symbols or metric tensors and
H a sum of products of 3j symbols and metric tensors.
Q, R, and S are angular momentum quantum numbers
other than ¢ and y. Any summed magnetic quantum
number, such as y in (3.17), is called ‘“contracted.” The
diagrammatic convention for indicating that y is con-
tracted is to connect the two cy lines of the diagrams for
F and G. This process is repeated for each contracted
quantum number in B. Thus, the diagram for B will con-
tain one ‘“node”[+>—1]for each 3j symbol and, in general,
lines connecting the nodes. Some or all of these lines will
be decorated with one or more arrows[——]. We distin-
guish between “internal lines” which connect two nodes
and “external lines” which connect to only one.

Many diagrams are equivalent in the sense that they
have identical algebraic meanings. To see if two diagrams
are equivalent, we first determine whether they are “simi-
lar.” By definition, two diagrams 1 and 2 are similar if
(1) we can deform the lines and nodes of 2 so it lies in
coincidence with 1 without breaking any lines; (2) the to-
tal angular momentum quantum numbers of correspond-
ing internal lines are then the same, and (3) the total and
projection angular momentum quantum numbers of corre-
sponding external lines also are the same. The arrows and
signs of nodes are disregarded in performing these steps.
Let us call the two nodes in the ith corresponding pair
above i; and i, (it is evident two similar diagrams must
have the same number of nodes).

Two similar diagrams also may be equivalent. This re-
quires that (1) the 3j symbols associated with i, and i, (in
their original forms) be the same and (2) the arrows on
each pair of corresponding lines must be such that the
metrics or products of metrics associated with the two are
equal.

We soon shall want to replace a diagram with one to
which it is equivalent. Equation (3.18) provides a list of
identities which can be used for this purpose. Each is
readily proved. The validity of these identities is, of
course, unaffected by the relationship of the displayed ele-
ments to the rest of the diagram.

(3.18a)
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a
b>—<—c (3.18b)

o [
Y
(s}

"

o o
Y
(e}

n

a = (-1)2 > a a
= (-1)% = -
= (3.18¢)

To the identities listed here one may add results obtained
by cyclic permutation. Any of these may be freely used to
convert a diagram into a simpler form—as long as no
lines are broken in the process. Some example of this will
be given in the paragraphs which follow below.

Our objective is the evaluation of expressions contain-
ing matrix elements such as {u |v) of (3.12). The dia-
grams for these objects are easy to draw once we know
those for Clebsch-Gordon coefficients and GCGC’s. We
consider these now. From the definition (3.5) and the dia-
grams already encountered in Sec. III D one finds that the
diagram for the Clebsch-Gordon coefficient (aabB|cy)
is

J

Cu |v)=(G1,72)712:U374)73a)8m [ ((G1,73)713:(G2:4))24)8'M") .

The two GCGC'’s required for this are

X ([i12Niza g N2
(-1 )201 +i3+i12)

(3.22)
X (L1 izallg D'
x(-1)201+i2+ I13)
(3.23)
X([ir2 Miza Mirgina D2 (9]
~" J
A

[with g, =([j11[j34]0j13][j241)'/*] which is equivalent to
(u |v) defined by (3.21).

E. Simplification of diagrams

Because most diagrams are too complicated for direct
numerical evaluation, a procedure is needed for reducing
diagrams to sums of readily computed objects, such as 6;
and 9j symbols. The reduction procedure consists of two
steps. One first manipulates the diagram into “standard
form,” namely, a form with one arrow on each internal
line. This can always be done for the diagrams of

a

[c]'2(-1)%2 >———c
b

Given this and the preceding discussion, diagrams for the
GCGC’s can be drawn immediately. One simple draws a
Clebesch-Gordon coefficient of the type

j
(412 (-2 >—>—z

]

[cl=2c+1 . (3.19)

=747 (3.20)
for each intermediate angular momentum I/=j+j’, in-
cluding g. There will be two lines for every intermediate
angular momentum except g. By connecting these pairs
one obtains the diagram for the GCGC. All GCGC dia-
grams have a branch structure (without closed loops) con-
sisting of n —1 nodes. The diagram for (u |v) is ob-
tained by putting several GCGC’s together and connect-
ing each pair of j; lines (for all j).
This is illustrated by constructing the diagram for

(3.21)

T
GCGC’s and for transformation matrix elements (u |v).
The second step is to simplify the standard diagram by a
procedure which will now be described.

The main tool used to simplify standard diagrams is the
“expansion theorem.” Consider a standard graph with N
external lines, each without an arrow. (This restriction
causes no practical problems.) If we represent this object
by the symbol

Ji In

FMI...MN

’

then the expansion theorem states that (see Appendix A)

Ji o In
E M, My
Ty —My
=(—1) S Ra){{J}aJy—My | (M}), (3.24)
with
J J
R(a)=[J ]—1 F 1’ 1\1
Y lglg My My
< | Ky | {M'})
qulv N9 ’
(3.25)
and where [J}EJ],...,JN_I, {M}EMI,...,MN__I,

and {My}=M',... , My_,. {{J}aJyg|{M'}) is the
previously defined GCGC. This expansion theorem ap-
plies even for N=1 and 2 provided that we delete the sum
over a and define
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({J)al,M, | {M})

Jy J, O Jm
- 1—M, 172
~ My —M, O (=D [J2] 85,,0,8m,—m,
(3.26)
and
J, 00
({J}aJ M, | {M})= M, 0 0 =8;,,00m,,0 -
(3.27)
The formulas (3.24) and (3.25) also apply if
Ji I
Elm, " My

is part of a larger diagram. This results in a compelling
diagrammatic interpretation of these equations, which is
shown below for N=1, 2, and 3,

N=3
1 ol Q J v
EECR N Js J3 N
(3.28a)
N=2
J1 // J1 J1 -
Flo|Br— =8,|F ) B :—' (917
N ~
(3.28b)
N=1
- -
Jq d J d
F B —— = BJ‘Q F — B ——
N N
(3.28¢)
The square labeled F is a schematic diagram for
J] JN
F .
=M My

B is unrestricted; it may have external lines other than
Ji,...,Jy and it need not be in standard form. (Any ar-
rows on Jy,...,Jy can be absorbed into B.) Diagrams
that can be changed using figures such as these are called
“separable;” they can be separated into products of simple
diagrams.

A simple example may prove helpful. Using (3.18) we
convert C of (3.23) into standard form:

x (129 q [g]. (3.29)

3699

Next we use (3.28b), identifying B with the “unit object”
through which the external lines from F pass unaltered.
The hexagonal diagram which appears in the result

— j12 +
i34 j
C= +14]:—3 x 6(gg') 8 (mg mg') qe
+

(3.30)

is the 95 symbol

Ja J2 Jn2
J3 1 Ji3
Jaa Jiz J

Yutsis, Levinson, and Varagas'® give a rather complete
list of angular momentum identities and so we shall bela-
bor the point no further.

Much of the utility of the diagrammatic method flows
from the ease with which (3.28) can be applied. It is easy
to look at a diagram and see how it might be simplified.
The corresponding algebraic manipulations are invariably
more difficult.

IV. DENSITY-MATRIX CALCULATION

The techniques summaried in Sec. III enable us to com-
pute the elements of the initial-state density matrix [cf.
(2.25)], which we now write in the form

Prx (IS, @)
= 3 S P IS0, i | X IR,

Q0 i
4.1

with |i)=A4 |nn') and P;=Px(n)Py(n’).

It is useful to recall several items discussed in Sec. II.
For one thing, the electronic-nuclear spin matrix elements
appearing in (4.1) are to be computed for some very large,
fixed value of the internuclear separation. Secondly, an-
gular kets such as | i) have the photon-frame quantiza-
tion axis @, whereas rounded kets such as
| x;.7Q 5.79Q,) have a laboratory-frame space quantiza-
tion axis that is parallel to k, the initial relative momen-
tum of the colliding atoms. Furthermore, the computa-
tion of the density matrix can be performed treating the
nuclei as if they were distinguishable. We may therefore
associate nucleus 4 with atom X and nucleus B with
atom Y and henceforth cease to distinguish between the
labels 4 and X or B and Y. Finally. the set of
molecular-type quantum numbers x includes A, the pro-
jection quantum number of the component of electronic
orbital angular momentum along /12, but not the electronic
and nuclear spin quantum numbers %, ), .# and Q.

For simplicity, we consider a system such as
Na--- Na, in the pseudo-two-electron approximation.
However, many of the results obtained here easily are gen-
eralized to situations involving more electrons than two,
cf. the end of Sec. V.

The initial state |i) is the antisymmetrized product of
two atomic hyperfine states,
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|iY=A |n((LS))),FMg;A) | n'((L'S")J)',F'Mi;B)
=A|{FMp;A) | §'F'Mp;B) . 4.2)

The quantum numbers appearing in these kets include
those (L and S) for electronic orbital and spin angular
momentum, J the total electronic angular momentum,
and I the spin of the atomic nucleus. F and M are the
quantum numbers associated with the magnitude and pro-
jection (along @) of the total atomic angular momentum.
Finally, n is a label that distinguishes between different
states which share common values of L, S, J, I, F, and
M.

It is convenient at this point to introduce the
laboratory-frame atomic orbital product states

|8, 7 Q Q)
=A[|nLQ;A4)|n'L'Q';B) | (SS").7 Q)]
X |UIsQ,),
| 5,7 Q07Q,)
=A[|nL;4)|n'L'Q";B) | (S8").7 Q)]
X |7 Q,),

(4.3)

so that the density matrix (4.1) can be rewritten as a sum
of products

P IS 0)= 3 (Fx | LN x| LSD*V(F L)
1T
(4.4)
of laboratory-frame objects,

(Fx | FD=(x; 700, | 1;,70,7Q,), (45

which are independent of the quantum numbers Q y,.#
and , and the polarization-dependent objects

S SP50,00, i)

Q,pQy i

V(L LM =

X{i |55Q20,) . (4.6)

For two-electron systems it is not at all difficult to ob-
tain analytical expressions for the integrals (*x | 1), cf.
Appendix B. Thus, the main computational task is the
evaluation of V(#.7ff). (It is easily verified that the

Viesi = 3 Ry (B0

,0.,M; L,

evaluation of V given here holds as long as each reactant
is an effective one- or two-electron atom.) This is made
somewhat easier by recognizing that the antisymmetriza-
tion operators appearing in the definitions of the bras and
kets of (4.6) can be discarded without affecting the value
of V.

The Euler angles of @ are (a,B3,0) and those of the
laboratory-frame space quantization axis k are (0,0,0). In
accordance with the rotation conventions of Messiah!® it
then follows that

|SS'#Q »)=R ~Ya,B,0)|SS'F Q)
S ' '
= QE Ao a3 @B0)|SS'7Qy) (47
"

and

[II'F Q) =3 RG a@BO) | II'FQ,) . (48
a,

By substituting these expressions into (4.6) and making
use of the unitary property of the representation coeffi-
cients we find that

i MM,

(M, [ (M| (2]i)]
X[G D[S Mye) | FM)],

(4.9)

with | ) and |7) denoting the unsymmetrized products of
atomic orbitals

|t)= |nLQ;A)|n'L'Q’;B)
and (4.10)
|T)=|nLQ;A4)|n'L'Q";B)

and where | i) is now unsymmetrized, in accordance with
the remarks above.

The next step is to transform these two laboratory-
frame kets into the photon frame, using the relationship

|nLQ;2)= S #5y(a,B,0) | nLM;z), z=A,B .
M

When this is done and the results substituted into (4.9) it
is found that ¥ may be written in the form

a(TQp,LL, ¢ £',(Q}) 3 [P(MsMp)g(TMy,T,.L . \McMi)] |,

’
MpMp

(4.11)

where P(Mp,Mp)=P(FMg,F'Mg) has been inserted in place of the less explicit P; =Px(n)Py(n’). The set {2} consists

of the four quantum numbers, 2, ', , and Q' associated with ¢ and 7, "= {FF',JJ',1I',SS’,.¥ .7 }, and

a(TQp,LL, L L', {Q))=(—1E+'=8-8(00' 6O’ |(LL).Z,(LL")L")TQr) .

Finally, g is defined by

(4.12)
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g(TM;, T, L L' MpMg)
- Lo\ LD MM | (L) (LL) ") TM )
{M} I’I' ZM I'M !
X 3 (IM NI My | (b |iNKi|B)Y| S My) | IM,)) (4.13)
MMy
-
with { M} =(M,M’',M,M ') and F
|b)Y=|nLM;A)|n'L'M";B) , ( e F
~ _ - 4.14) . _ -
| b)=|nLM;A) |n'L'M";B) . 94*% sz I Txxw,m,o,m
The diagrammatic analysis is now applied to this func- *
tion g. Using the rules presented in Sec. III we obtain for F
g the standard diagram Q(T. 7F)
g (4.182)
Mg F
C A
! X = (4.18b)

g=/x T lennn B (4.15a)
A
F F L L
O- 1 @ \
= Y J = J
Jr. - S Jy +
‘rs# \5 S o i I
L L £
(4.15b)
wherein
/=(—l)L+L'+Y+2j'([3][,7‘][T])1/2
X[FIFIV N (4.16)

Next we apply the expansion theorem at the five points
marked A in (4.15a), using the GCGC
((FF"% (FF)%',TMy | MgMp,Mp,Mp). Then (3.7) is
applied at B in (4.15a) to yield the result

g=/ 2 [QUFIF1QT;5,7)

F,7,Q

xX(&FF',L2L,0,I), (4.17)

with @ and X defined by the following:

The function X =X(¥.¥',.£.7",0Q,T') can be separated
into three simpler parts by applying the separation
theorem at the points C of (4.18b) and again at the points
D. This leads to the formula

X(F7,L2,0T)
=D(I,.£FQEFF',L L . QDET, L' 7'Q),

(4.19)
with D, E, and F defined by
L F|\& F L' F’
D= J Q J’
S 1|\~ S |S’ I
X (— 1)2(J+7+1+f)+(?+Q+Y)
X(—1)F+F+F)4+I'+J' +F )+ (I +J +F) , (4.20)
_|F 7T (127 HIT+Q+L)+(7 +Q+.2)
- <L <L Q

(4.21)
and



3702 DUMONT M. JONES AND JOHN S. DAHLER 35

Z|F L’
F=1 J 0 J'
7\ s’

(4.23)
x(—1 )2(vf’+f+7’)+(‘l +I+F)+(J' +I'+F")
X(—1) @+ + A HQ+ L + TN+ (L +L'+L")  (427) 15)
The first objects occurring on the right-hand sides of these
last three formulas are defined by the following equations:
J
The following identity can be verified:
Q=([FIFNTD~ "2 — 1) Tt E+ME
X (— D)EFEPI T+ 74 DHAF+T) (Af My — My — M} | ((FF)F ,(FF).F')TMy) . (4.24)
By combining these results we obtain for g the formula
g(ITM, T, L L' MeMrp)
=(—1) TMHTME S (MM — My — M} | (FF').7,(FF')%")TMy)
FL,F
L F|.¥ S |L' F' | |F L|¥' L F' L’
x> J Q J J Q J'
2 s 1|7 S |S I\ S|s S| S’
s ' T
XN\ & ollQl (4.25)
with
¢:([f][fl][.7][y'] )1/Z[F][F'][J][J'][,/][f]( -1 )(.7+7’+T)+(Q+J+Lf)+21./+1'+F+J’+J?+2(L +L'+.7) . (4.26)

All of the objects occurring in (4.26) can be computed
readily. Therefore, the task of reducing the evaluation of
the density matrix to manageable proportions has come to
an end. The GCGC appearing in (4.25) is different from
zero only if M;=0. This reduces to a single term the
sum on this quantum number appearing in the formula
(4.11) for V(7 7).

V. SYMMETRY CONSIDERATIONS

By exploiting the properties of the various factors [e.g.,
(Fx | 1), P;, a and g] that contribute to the density
matrix (4.4), one can obtain a number of useful con-
clusions about polarization-dependent collisions. These
conclusions, which are examined in this section, pertain
both to the functional dependence of the integral cross
section upon @ [ =(«,B,0)] and to the populations of the
various electronic initial states.

We begin by establishing some limits on 7, the degree
of the associated Legendre polynomial to which the repre-
sentation coefficient

R, ol B,0)=(—1)"T[4m /2T + D17, o (Ba)
(5.1)

is proportional. Because the GCGC occurring in the defi-
nition (4.12) of a contains a factor proportional to the
Kronecker delta 8g (Q7 | (Q2+Q')—(Q2+Q7)), it follows
that

T>Q:=(0+0)—(Q+Q") . (5.2)

Consider next the 6j symbol {fp; 5} which occurs in the
formula (4.25) for g. Because the angular momentum
quantum numbers at each node [cf. (4.23)] must satisfy
the “triangle rule,” T is further restricted by the condi-
tions
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T<min(¥ +5',.L+.L’)<min(2(F +F'),2(L +L")) .
(5.3)

The conditions (5.2) and (5.3) severely restrict the allow-
able values of T. A simple example is a collision between
two Na((3p)*P) atoms. In this case L =L'=1 and so T
can be no greater than 4. However, if the experiment is so
arranged that these two atoms are prepared in hyperfine
states with F =F'=0, then the only allowed value of T is
zero and the cross section will be independent of the laser
polarization. This illustrates a general rule—that the po-
larization dependences of the integral cross section are in-
timately related to the atomic hyperfine structure,
whereas the dynamics of the state-to-state transitions de-
pend only upon the atomic quantum numbers L, L',
and (for indistinguishable nuclei) .#. This fact may be
useful in designing experiments to uncover the mecha-
nisms of complex atomic reactions (cf. Sec. VI).

The quantity Q2+ Q' that appears in (5.2) is the sum of
the electronic orbital angular momentum projection quan-
tum numbers of the two atomic orbitals associated with
j

prA s )= (Fx | LNFT| Fx")
tT L,.L

We next consider the special case of initial states for
which

P(FMp,F'M})=P(F —Mp,F' —M}) . (5.6)

Among the many experimental situations to which this
condition applies is the excitation of ground-state Na
atoms by linearly polarized D,-line radiation resonant
with the (F =2—F =3) hyperfine transition. By using
the identity

(MM} —Mp—M; | ((FF'F (FF)"),T0)
—(— 12 F+F+T

X —Mp—MpMpMg | (FF')F ,(FF')'),T0)
(5.7
in conjunction with the formula (4.25) we find that
g(To,I,L L' MpMp)
=(—1)2F+F+Te(TO,I,. L. L', —Mpr—Mp) . (5.8)
Consequently, the factor
G= 3 PMp,Mp)g(TOI,.L L \McMp) , (5.9

Mg, My,

which occurs in V(£ 7t), (4.11), can be wntten
in the form G =Gw(2(F —+—F +T) where v(n)=+[1
+(—1)"] is 0 or 1 depending on whether the integer n is
odd or even.

The conclusion which can be drawn from this is that
when the condition (5.6) is satisfied, the only nonzero con-
tributions to V(£ .%tf) are from values of T for which
T +2(F+F’) is an even integer. In the Na preparation

S a(TO,LL', % .%",{
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the product state | z) of (4.10); (Q+Q7) is the analogous
quantity associated with the product state |7). Returning
now to (4.4) and (4.5) we see that the only states | ¢) and
| ) which contribute to the density matrix are those for
which Q+Q'=A, and Q+Q'=A,. Therefore, when
the axial projection quantum numbers of the two quasi-
molecular states x and x' are equal, the only value of Q
which contributes to p,, (.7 ,&) is Qr=0. The polari-
zation dependence of the density matrix is then a depen-
dence upon the second Euler angle =20, which occurs in
the Legendre polynomials #%(aB0)=Pr(cosB). This is
an important observation because we already have seen in
Sec. II that o'2/(.% yE) 85 _a . Consequently, the only

contributions to the mtegral cross section for AI [cf.
(2.24)] will be from pairs of quasimolecular states with
A=A, and the cross section itself will be represented by
the Legendre polynomial series

prxF L @)= Pr(cosBlphAs5) , (5.4)
T
with
) S P(Mp,Mp)g(TO, £ L' \MpMp) . (5.5)
Mp,Mp

f

mentioned above F =F'=3, so that the only contributors
are even integral values of 7. However, if one but not
both of F and F’ were half integral, the only nonzero con-
tributors to ¥ would be odd-integral values of T.

Let us next focus our attention upon two ‘‘atomic
states,” | z) and |7), [or two “molecular states,” | p) and
| p')] with the respective angular momentum projection
quantum numbers (,Q’) and (Q,Q’) [or A, and A,]
which are equal but of opposite algebraic sign, that is,
OQ=-—0Q and Q'=—Q'. Then, analogous to (5.7) is the
relationship

(Q,—Q—Q'|(LL")Z,(LL"Y."T, Q4+ Q' —-Q—-Q")
=(—D(—Q—-0, Q0" |((LL".ZL,(LL").ZL")
XT,—Q—-Q'+Q+Q") .
(5.10)

It follows from this that when the only contributors to
(4.11) are even integral values of T (namely, when F + F’
is an integer),

P =pPre (Ppp =Ppp) - (5.11)
To obtain this result we have used the facts that M;=0
in (4.11) and that the only elements of the density matrix
that contribute to the integral cross section are those for
which Q=0 in (4.11). An example of this is provided by
the previously mentioned excitation of Na atoms
by linearly polarized light; according to (5.9) the polariza-
tion dependence of the two molecular states
| p) A{[I%)I7r —|oy) !vg)]ifﬂf)} and |p’)
=A4{[|og) |7my ) — lau)lﬂ' )] £ Q) will be identi-
cal.
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A rather obvious but nevertheless important observa-
tion is that the isotropic part of P(FMg,F'M), namely,
the part which is independent of My and M., contributes
nothing to the polarization dependence of the reaction
cross section. Thus, the part of V(. . 1f) associated with
the isotropic (I) part of P(FMp,F'Mg)=P,
+8P(FMg,F'Mp) is given by the expression

V(s S =P; 3a(00,LL", ¥ £,{Q})g" (T, £ L),
<

(5.12)
with
L F|l¥ F|L’ F’
g, L)=3 ¢ J Q J’
72 S 1|7 7|8’ r
F L|7 Z|F L’
X J [6) J'
I S |7 L\ S’
xX[F 1V 0] (5.13)

and where ¢, cf. (4.26), is to be evaluated with .¥'=_%.
This result is a direct consequence of the formulas of Sec.
IV and the identity

> (MyMp—Mp—M;|((FF')F,(FF')')TO0)
Mg, M,

F4+Mp+F +M;
x(—1) i F=[F1"%8 75870 »

(5.14)

which is satisfied provided that F, F’, and .# from a tri-
angle. Clearly, a necessary condition for polarization
dependence is that at least two of the factors
P(FMg,F’'M) be different from one another.

The last rule to be considered pertains to the special
case defined by the conditions

F’ZL’—-I—-S'-FI' ,
P(FMp,F'Mp)=8y +pb

(5.15)
MptF

This unusual population can be produced experimentally
(at least for the geometry B=m/2) by excitation with a
circularly polarized laser. It is a remarkable fact that .7,
the total electron spin quantum number associated with
the population (5.15) of atomic states, is restricted to the
single value of S +S’. This is of great practical value be-
cause it identifies the condition for preparing pairs of
atoms in a single, pure spin state, namely, that with
S =S+S8'. It provides a filter for experimentally
separating the reactive contributions of these “maximum-
spin states” from those of all others; in Na-Na collisions it
separates the triplet states from the single states.
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A proof of this rule can be obtained by examining the
formula (4.25). From the conditions (5.15) it follows that
F =5%"'=F+F'. The triangle conditions on the triples
(7,0, L'}, {F7,0,.L}, and {.#,#,0]} then require that

F+F L L' <Q<F+F+L+L' (5.16a)
and

|/ —F | <Q<I+.5 (5.16b)

These two ranges overlap only if .# =, =I+1I' and
S = max=S +S’, in which case the overlap is restricted
to the single value Q@ = .+ L ax=T +I')4+(S +S’).
Thus, V(¥ .2ff), and the density matrix itself, are zero
unless & =I +1I' and . =S +S".

This result has a very simple interpretation in terms of
the vector-model picture for the addition of angular mo-
menta. The condition (5.15) amounts to the assertion that
all of the angular momentum vectors L, L', S, S', I, I', J,
J', F, and F’ are colinear. In this special case the recou-
pling of the vectors is a trivial task leading directly to
S =I+I"and =S +S"

It is well to conclude our formal analysis with some
general remarks on the results obtained and their applica-
bility. While the discussion here has been cast in terms of
Al the results obtained can be applied to other processes
without much difficulty. Indeed, the analysis of Secs. IV
and V can be carried through for any atomic scattering
process in which the electronic and nuclear spins are con-
served and each atom effectively has less than three elec-
trons. However, it is important to remember that (5.4) is
valid only if A, =A,.. This equality follows immediately
from the conservation of angular momentum for any
field-free process; it may not hold exactly for laser-
induced processes.

The other equations required for the construction of a
general theory are (2.13) and (2.15), which are generally
valid, and
2

LS [dk(f|T |kp)P(K)
f

o ES)= |57

X(ve/0)kp' | T | f) . (2.14)

Here, in contrast to (2.14), we do not specify the final-
state quantum numbers f, except to note that they must
include .#, Q &, .#, and Q. Indeed, f may include a par-
ticular final velocity vector v,. Given (2.13), (2.14'), and
the results of Secs. IV and V, one can investigate the po-
larization dependence of any (spin-conserving) atomic
process. It should be pointed out, however, that the de-
tails of arguments regarding selection rules and the effects
of nuclear statistics are process dependent; these must be
investigated separately. Finally, it must be remembered
that our results are specific to the case of a single exciting
laser or to two with a common photon frame.

VI. APPLICATION TO THE EXPERIMENTS
INVOLVING POLARIZATION-DEPENDENT Al

As we have pointed out in Sec. I, it is observed experi-
mentally that the integral cross section for the associative
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ionization process 2Na((3p)*P;,;)—Naj (X 22})+e ~ de-
pends on the polarization of the laser used to prepare the
initial state. The theory which has been developed here
enables us to turn measured values of this polarization
dependence into tools for determining the state-specific
cross sections ag’ (&), and, if they occur, the interference
cross sections of{E)(.%), x+x’, as well. Our method is of
value not only because it is complementary to purely nu-
merical calculations but also because accurate computa-
tions of the state-specific cross sections are so very diffi-
cult to perform.

In this section the data of Fig. 1 will be used, together
with theoretically derived information about Na, potential
energy curves, to extract information about the reactive
states which contribute to the measured rate of associative
ionization. We begin by making a number of imprecise,
but definite, conclusions about the characters of the reac-
tive states. We then proceed to more specific but less reli-
able conclusions. The section ends with suggestions of ex-
periments which might aid in refining the analysis, there-
by further elucidating the reaction mechanism.

A. Qualitative considerations

The quasimolecular initial states considered here are
listed in Table I. This set consists of all which correlate
asymptotically with the configuration, Na(3p)+ Na(3p),
except for A states. These apparently are quite unenerget-
ic'® and so, for the reasons stated in the final paragraph of
Sec. II, cannot contribute to the rate of AI measured at
moderate temperatures. Our general conclusions will be
based upon the selection rules of Sec. II and the polariza-
tion dependences of the ‘‘single-state” density matrix
components  pi (L, a) = s, Prx (S Z.a) and
P (S @)= 2,0 Pxx(FF,@), shown in Fig. 2. The pro-
cedure for calculating these quantities, given V(. 7).
is summarized in Appendix B.

The curves of Fig. 2 show the polarization dependence
that would be observed if only one state were reactive.
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Curves labeled “even” refer to values of p%,(.%,a), and
those labeled “odd” refer to p2(.%,&). Since o'}’ and
o';’ are both positive valued, it is clear that no single
electronic state can account for the experimentally ob-
served polarization dependence of the Al integral cross
section. In particular, we will see that no one of these
states can reproduce the flat portion of the experimental
curves (cf. Fig. 1) which extends from B=60° to 90°.

This simple line of argumentation can be carried fur-
ther; the selection rules of Sec. II indicate that of the
states listed in Table I, only the two pairs (a,c) and (b,f)
can have nonzero interference cross sections. Given these
facts it follows that

(1) the 7 state (c—f of Table I) alone are unable to ac-
count for the observed polarization dependence of o(@,E).
These states, without others, would give rise to an integral
cross section that increased with increasing /3.

(2) The o? states (a and b of Table I) cannot account
for the experimental observations. Without contributions
from others these states produce a cross section which de-
creases too rapidly with increasing /3.

(3) The om states (g—j of Table I) are incapable,
without others, of accounting for the flat portion of the
o(@,E) curve extending from =60 to 90° [see comment
after item (4)], and also fail to account for the rate of de-
crease of the experimental curves from 3=0° to 40°.

(4) For the second reason in (3), no combination of 7
and ow states can reproduce the observed polarization
dependences.

(5) No combination of 0% and o7 can reproduce the ob-
served polarization dependence in the region 3=60° to
90°. This is the weakest of our qualtiative conclusions, for
it depends most strongly on the accuracy of the theoreti-
cal and experimental curves. However, it can be seen
from Fig. 2 that each of the 0? and o theoretical plots
does indeed fall more quickly near B=90° than
Pxx(0)0exy(B) (represented by a dashed line, within an
overall additive constant). This observation, along with
the normalization conditions O,y (0)= EPXX(O)O'XX(E )

TABLE I. Quasimolecular states of Na, which correlate asymptotically with Na(3p)+Na(3p). The
polarization dependence of column 4 refers to the variation with the angle 3 (between the beam axis and
the polarization of the laser) of a corresponding diagonal element of the density matrix.

Polarization
Asymptotic Term dependence
Label configuration symbol (see caption) Comments
a o}-0; 'zt Falling Same term as ¢
b 0,0,-0,0, iz Falling Same term as f; large
nuclear statistics effect
c 17"17',;1-77',1,17',,"l ’2; Rising Same term as a
d ey ey ! 33 Rising
e Ty -y Tl 137 Rising
f ey gty ! S Rising Same term as b; large
nuclear statistics effect
g oo,y I, Flat
h o, '-o,,mfl i, Flat Large nuclear statistics effect
i oy -0,y ', Flat Very weakly populated
J oy o,y T, Flat
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FIG. 2. Polarization dependence for the populated quasimolecular states [which correlate with Na(3p) - - - Na(3p)] that are listed
in Table I. The numerical value of the ordinate is given by p%,(.%,3) (curves labeled “odd”), or p,(.*,) (curves labeled “‘even”). [
is the angle between the photon frame (see text) and the direction of initial relative velocity. A dashed line indicates the experimental

polarization dependence near 3=90° plotted on the same scale.
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FIG. 2. (Continued).

=1 (x =02, o states), leads directly to the stated con-
clusion.

We can add to these conclusions one which follows
from a separate experiment in which Na atoms were excit-
ed by circularly polarized D,-line radiation, resonant with
the (F =2—F =3) hyperfine transition. The occurrence
of associative ionization was observed.!° To appreciate
the significance of this one also must know that Hertel
and his co-workers!! have shown that the hyperfine distri-
butions P(FMy) and P'(F'M') appropriate to this situa-

tion are SF,MF and 5F, M respectively, with F=F'=3.
[ay o

According to the last of the rules obtained in Sec. V, only
triplet states can exist under these conditions. Thus, we
conclude that

(6) At least one triplet state is a contributor to the asso-
ciative ionization of two Na ((3p)2P; ,2) atoms.

The final entry in this list is a consequence of the ap-
proximate selection rule (2.33), according to which the re-
flection quantum number of a = electronic initial state
must be the same as that of a 2-state product ion. The
only conceivable ionic product is Na, " (X 2] ) and so

(7) Cross sections specific to £~ initial states should be
negligibly small.

Our qualitative findings can be summarized as follows:
at least two quasimolecular states of Na, participate in the
Al process, 2Na(3p)—Na,* +e ~; at least one of these
has the asymptotic configuration o?; at least one the con-
figuration 7%; at least one is a triplet; and =~ initial states
(such as d and e) are not expected to be significant con-
tributors.

B. Quantitative considerations

Our next objective is to obtain numerical estimates of
the state-to-state cross sections which contribute to the
measured rate of AI. The first step in this direction is to
determine which electronic states are able to participate.
The qualitative findings of Sec. VI A somewhat limit the
field but to proceed further we must have some idea of
which molecular channels are open. This requires quanti-
tative information about the adiabatic potential energy
curves of the ten Na, states listed in Table I. The validity

of the conclusions which we can make will depend upon
the accuracy of the potential curves used in our calcula-
tions. However, the demands of the analysis are not terri-
bly exacting; we simply need to know whether and where
these curves intersect that of Na, " (X *27) ion.

Our first attempt to analyze this problem was based
upon the single potential energy curve!’ (the dotted line in
Fig. 3) for which information then was available. This
curve subsequently was found to be so inaccurate that our
analysis was completely invalidated. The more recent and
presumably more reliable potential energy curves which
we use here are those of Henriet, Masnou-Seeuws, and
LeSech?® some of which are shown in Fig. 3. For the two
') states shown in Fig. 3, we have assumed that the
higher in energy is dominated by 7* (rather than ¢2) con-
figurations at large internuclear separations. A similar as-
sumption is made for the two 33 states. We shall
proceed without questioning the accuracy of these curves
but the analysis will be presented in a way which easily
could be adapted to another set of curves should a reason

1+ |
Q 3 e +
: X2%, (Naz*\)y’\»_\,
< o5
e
>
(4]
& E in ~ 0.01
A kin ~ V0T -
z ° 0.05 eV.
-1
05
1 1 1 1 1 1 1 1 1
5 7 9 1 13
INTERNUCLEAR DISTANCE (a.u.)
FIG. 3. Potential energy surfaces for some states of

Na - - - Na which asymptotically correlate to the 2Na(3p) limit,
and the potential energy surface associated with the
(X 23] )Na,* ion, after Ref. 20. The asymptotic assignments
0,0,(°=F) and mymy '('2]) have been assumed.
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TABLE II. Legendre polynomial expansion coefficients of
the density-matrix elements, defined by (6.4).

State label
[cf. (6.1)]
a a, b, Ca
1 0.090 74 0.1217 0.01905
2 0.0452 —0.03263 0.003174
3 0.037 81 0.01236 0
4 0.037 81 0.03263 —0.01905

for doing so ever be found (cf. discussion at end of this
section).

Curves with classical turning points which do not lie in
the Na,* 4+e~ continuum are assumed to be unreactive
(cf. final paragraph of Sec. II). This energetic criterion,
together with the approximate selection rule responsible
for item (6) of Sec. VI A, limits the contending states to
the following four:

(1) *=f(0g0,), b from Table I
(2) '3F(mam; "), ¢ from Table I
(3) 1Hu(agﬂ'fl), g from Table 1
(4) 3II,,((Tgﬂ'fl), h from Table I .

According to the selection rules of Sec. 11, there are no in-
terference cross sections associated with these four states.

Furthermore, we ignore the effects of nuclear statistics
by setting

oL E)=0' (S E)=0,E), a=(x,%). (6.2)

This is tantamount to assuming that the state-to-state
cross sections depend only weakly upon Q, the orbital an-
gular momentum quantum number of the product dia-
tomic ion, cf. the discussion of Sec. II.

Subject to these restrictions and approximations, the
cross-section formula (2.24) becomes

o@,E) =3 04(Elpy(@) 6.3)

with

pa(a)z Epn(/f,&)zaaPo+baP2+caP4 (6.4)
5

and where P, denotes the Legendre polynomial P,(cosf3).
Therefore,

o(@,E)= [Eaaaa]P(ﬁ— {zbaoa]PZ
+ Igcaoa]P“

> gn.(E)P,(cosB) . (6.5)

n=0,2,4

I

The procedure for computing the coefficients a,, b,, and
Cq, defined by (6.4) is summarized in Appendix B. Their
numerical values are listed in Table II. The coefficients
g.(E), defined by (6.5), are obtained from measurements
of the integral cross section o(@,E). Values specific to
two different beam energies are listed in Table III.

The procedure for determining the cross section o, is
straightforward: (6.5) provides three equations which the
set of four o,’s must satisfy, subject to the constraints

0,(E)>0, a=1,2,3,4. (6.6)

These equations and constraints are so restrictive that we
are able to draw quite definite conclusions about the rela-
tive magnitude of the state-specific cross sections. The re-
sults of the calculations are given in Table IV. The blank
entries are indicative of the fact that the data for
v=5.2%10* cmsec™! do not yield reliable estimates of
the two very small cross sections o3 and o4. The zero en-
tries for v =1.56xX 10° cmsec™! indicate that o3 and o,
are at least an order of magnitude smaller than o,.

C. Summary and concluding remarks

We conclude by briefly reviewing our current
knowledge of the mechanism of the AI reaction
2Na(3°P;,;)—Nai (X 23] )+e~ and by considering the
outlook for further progress in this direction. One can
conclude with certainty that at least two ABO electronic
states participate in the reaction, that at least one of these
is a triplet, and that both ¢ and 7? configurations must
be reactive. Finally, as part of our symmetry analysis, we
have found that £~ terms are very unlikely reactants.
One 3} state and one 12; state tentatively have been
identified as the dominant contributors. However, this
last conclusion is dependent on rather uncertain informa-
tion about the Na - - - Na energy levels.

The implication of the preceding sentence is that
current information about the Na, energy levels still may
be insufficient to insure the accuracy of our quantitative
conclusions. Indeed, the most recent communication
from Henriet and Masnou-Seeuws'® indicates that of the
states which correlate asymptotically with 2Na(3p) only
two have potential energy curves which intersect that of
the X 23} of Na,™ and that one of these is a '=, state.

TABLE III. Legendre polynomial expansion coefficients of the integral cross section, defined ac-
cording to (6.5). v is the average velocity of the beam atoms.

v (cmsec™!) 90 q2 q4
5.2x10* 0.7341 0.2192+0.003 0.0466+0.005
1.56x 10° 0.6516 0.2585+0.004 0.0885+0.003
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TABLE IV. State-specific cross sections for AI. The states
are labeled according to (6.1).

v (cmsec™!) o,/0, o3 o4
5.2x 10* 1.8
1.56<10° 1.7 0 0

According to our theory reaction from this state is disal-
lowed by symmetry considerations. This would leave only
one strongly reactive state, a situation which is incon-
sistent with what we and others such as Weiner®!° have
found. Only two conclusions appear to be admissible: (1)
the new energy curves are inaccurate or (2) one or both of
two selection rules must be abandoned, namely, the “semi-
classical” rule which requires that reaction occur only if
there is a crossing of a Na - - - Na energy curve with that
of the product ion and the “first-order” rule (2.33), broken
by Coriolis forces, which disallows the reaction of X~
states. Conclusion (2) seems so unlikely, particularly for
the thermal energies at which the rates were measured,
that we are forced to conclude that the new energy curves
are qualitatively incorrect.

New experimental measurements should permit us to
refine our knowledge of the reaction mechanism, regard-
less of uncertainties about the energy curves. For one
thing, AI can be investigated using atoms prepared by cir-
cularly polarized light. We already have mentioned an
experimental procedure which populates only the
Na(3%P;,,) hyperfine states Mr=M}=3. By using a cir-
cularly polarized laser which intersects each of two
crossed beams at an angle 8547 /2, it is possible to pump
one to the hyperfine state Mp=3 and the other to
Mpg= —3. This requires the Doppler detuning of a Na
D,-line laser which is then split into two circularly polar-
ized components. Although Weiner has not yet reported
an experiment of this sort, a related experiment which he
recently performed!® demonstrates the feasibility of the
concept. If the integral cross section were measured for
this arrangement we could add another equation to the set
(6.3) and thereby obtain a further constraint on the cross
section o,(E). In principle, one could go a step further by
measuring the polarization dependence for these state
preparations. In experiments of this type the frequency of
the laser would be changed as its direction relative to the
atomic beam is altered. Thus, by varying the degree of
Doppler detuning one could resonantly excite atoms hav-
ing a selected, fixed value of relative velocity regardless of
the direction and polarization of the laser. Experiments
of this sort very well might lead to an unambiguous iden-
tification of the reactive triplet state.

Other sources of valuable information are measure-
ments of how the polarization dependence of the Al rate
varies with the relative velocity of the reactant atoms.
These variations not only are intrinsically interesting, they
reveal much about the reaction mechanism. Consider, for
example, the general observation? that with linearly polar-
ized light the polarization dependence of the AI rate di-
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minishes as the relative velocity of the reactants decreases.
This immediately suggests that some state with a o7 con-
figuration plays a dominant role at low energies but is rel-
atively inconsequential at higher energies such as those of
Fig. 1. Ideally, one would find that a single state was par-
ticipating at very low energies and then identify it by its
characteristic polarization curve (cf. Fig. 2), but the situa-
tion probably is not that simple.

Finally, other, complementary approaches are being
developed as tools for extracting information about the re-
action mechanism from experimental observations. Of
particular interest is a recent study by Wang, de Vries,
and Weiner® in which the alignment of the angular
momentum vector of the product Na,™ ion was measured
and then used to estimate the relative reactivity of o2 and
w? configurations. All of this illustrates that the “proto-
typical” associative ionization reaction of two Na(3?P; )
atoms exhibits a surprisingly rich behavior. By elucidat-
ing its mechanism we shall have learned much that will be
transferrable to other systems.
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APPENDIX A: PROOF OF THE EXPANSION
THEOREM

The expansion theorem (3.24) is not difficult to prove
provided that one can make use of two preliminary results
which appear below as (A5) and (A7). Accordingly, we
first shall prove (A5) and (A7) and then proceed to (3.24).
The basic approach is that of Yutsis, Levinson, and Vara-
gas.

1. Two preliminary relationships

(A5) is an expression of the trivial observation that the
Clebsch-Gordon coefficient {(J,MJ,M,|JM) is a pure
number which has no dependence on the orientations of
coordinate systems. By means of the identity

(JiM\J,M, | IM ) =(J, M ,J,M, | RIQRT(Q) | J,J,JM)
(A1)

we can connect this CG coefficient to matrix elements of
the rotation operator
I_{(Q):e_la‘lze“ﬂjye—‘y‘lz (A2)
and to its inverse R ~1(Q)=RT(Q), both of which are
parametrized by the Euler angles (,f3,7)= defined in
the text. With the angular momentum J identified as the
sum of two commuting angular momenta, J; and J,, the
rotation operator can be decomposed into the product of
two operators, R ;(Q) and R ,(Q), one specific to each an-
gular momentum. (A1) then can be written in the form
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(M LM, | IM)= S
N|.Ny.N

D>

N.Ny.N

-M,

(=™

From this, the definition (3.5) of the 3j symbol, and the
relationship (28 5)=(—1)2+R+S(2X ), it follows that

Ji J> J( 1)M+M1+M2

-M, —-M, M|~

_ 2 ( 1)1\714-N2+N I I3 J
—Nl,Nz,N N Ny N
xR v -, (2 s Ny, ( Q)P Np (D) . (A4)

The phase factors appearing explicitly in this formula
J

N-—1 7
n
IT #, u

n=1

AQ)=(J M, ...

J
<J1N1J2N2 iJN>['@’\fI1M1(Q)

— J
(=M1 NN, | INDY R

v My 1 [R(Q) [ I M, ..
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1[0, ()] R hypa (Q)

(OB g (DR (Q) . (AD)

clearly can be discarded and so we arrive at the first of the
desired results, namely,

Ji I, J Ji L T,
= RN (D
My My M|T & N Ny N Nym, ()
J
X RN, (R hp (Q) . (A5)

To obtain the second we consider a set of commuting
angular moments { ﬂ,n-—l N —1}, together with
the composite J= En_l J;. The next step is insertion of
the expression R(2)= N- R ,(Q) into the formula

n=1

INMy ) . (A6)

Then, by introducing Eq. (3.9) from the text we obtain the desired formula

N—1
1%, Q= 3 (J..Jy_aM M-

n=1 a,J MM’

A. The expansion theorem
Let us now consider a ‘“‘standard” JM coefficient,

‘]1 JV

!

EMI...MN

>

the diagram of which has one arrow on each internal line
but no arrows on any of its external lines (cf. Sec. III). F
has an algebraic expression in terms of 3j symbols and
this expression includes internal angular momenta (those

associated with internal lines) which we label L, ...,Lg.
|
. Li IL—m. .« .. L
22| (05 L Ay
m; 4.9’ 9
° L,‘ , L
=22[. (—1fte f
m; 4.9 1
i L,—q i
= _1 !

My )R (D)

(M, My_,|(J;...dy_paJM) . (A7)

I

We replace each 3j symbol of F using the formula (AS5).
Now consider the portion of F containing L; (1<i <K).
Prior to the use of (A5) this portion was of the form

R # — L;
S| D o,
(A8)

to within a phase factor that was independent of m;.
After the application of (A5) this portion of Fis

L;
q'—m;

%Li ‘@Li *
qmi[ —q'm; ]

(A9)

Therefore, the parts of the algebraic expression for F which are associated with its internal lines are not altered by the

use of (AS5). This leaves us free to write
Ji o IN J1 In | %
Bl g =, 2 Floy gy [Fom (@)

AG () . (A10)
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We next act upon both sides of this equation with the identity operator (872)~! f dQ. The integral of the product of

representation coefficients appearing on the right-hand side of (A 10) is evaluated using (A7),
J J
(87! [ dOQRG 4 (Q) -+ R, (D)

=Bm) S [ QR i QBG a (QN(— 1M
aJMM

Xy In_DaIM | Q- Oy My My _y|(Jy - Iy_)aJM")

= 2[J~]~'<—1>‘Q”+“”<< Iy Dady—Qy | My My _ )My My _y [y Iy _ady —My) .

This can be written in a more symmetric form by observing that (— 1) N=(— 1) M

upon (A 10) with the integral identity operator is the separation formula

J J —
E A{llMA;V .—_:(—l)JN MN?R(G)(M] "'MN—II(JI "'JN—l)aJN_MN) ’
wherein
—1 Ji In In—CQn
R(a)=[Jy] > F 0, 0 ((Jy Iy _aly—Qn | Q1 Qn_1)(—1)
Qs Oy !
_ Ji In JIn
=[JN] 1 2 F (J "'JN—I)aJNQ{Ql'”QN-1> i
0.5 o0 Qi On | |QOn

To complete the story we now examine the special cases of N=3, 2, and 1. For N=3 the result is

Jl J2 J3 M}
E M1 M2 M3 :(_1 <M M2|J3_M3)R
with
R F J Jy J; T ' )J}_Q‘ 1
-—QI‘EQZ’— 0 9, 0Q; 3—03010:)(— 5
Qs
These two equations can be rewritten in the form
Jl JZ J3 Jl J2 J3
E :RI
M, M, M, M, M, M,
where
Ji Jy T3 [\ Ty s
R' = F
QI,EQZ,_ Ql Q2 Q3 Ql Q2 Q3
Qs

For the case of

Jy T,
F M, M|’
it is simplest to proceed directly from (A10). Integrating directly, we find
F /1 % 2 ( )2-‘Mz 1 F Ji J2 5 5 5
= _1 F B . y
=M M, 00, [J2] - (@1 Q |7Qr— QM —M500 T,
J J
o J,—M, 1 _ J,+0, 1 1
Jl 1 Jl F Jl Jl
:5]112 M, [J2] Q%l 0, Q110 ©

(A1)

. Consequently, the result of acting

(A12)

(A13)

(A14)

(A15)

(A14")

(A15%)

(A16)
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TABLE V. Density-matrix Legendre polynomial coefficients defined by (B6). The first column iden-
tifies the state (labeled as in Table I), its MO configuration, and its term symbol. The second-column la-
bels o, e, and ¢ indicate sums of p,,(.#.%") over odd (o), even (e), and all (¢) values of the nuclear spin
quantum number .#. These results are specific to the case of linear polarization. An entry such as
1.534[ —2] indicates a numerical value of 1.534 X 10~2. The triplet-state entries labeled c are specific to
circular polarization and refer to the single value of .# =3. The column headings T=0,2,4 indicate the
degrees of the Legendre polynomials. Finally, in the case of the *II, state labeled 4 there is an addition-
al row marked ¢’. The ¢’ entries in the columns headed T=0 and 2 are coefficients for T=1 and 3,
respectively. The upper signs are specific to the state (cf. Table I) involving the orbital 7} and the lower
signs to the state involving 7 '.

Triplet
states T=0 T=2 T=4
b 0 6.8780[ —2] 8.9976[ —2] 1.4618[ —2]
040, e 2.1958[ —2] 3.1720[ —2] 4.4300[ —3]
3z F t 9.0738[ —2] 1.2170[ —1] 1.9048[ —2]
c 1.3330[ —1] —1.9047[ —1] 5.7140[ —2]
d o 3.1582[ —2] —1.2188[ —2] 0
A e 2.9377[ —2] —1.2503[ —2] 0
33, t 6.0959[ —2] —2.4691[ 2] 0
c 0 0 0
f 0 5.4399[ —2] —3.1544] —2] 7.3088[ — 3]
Ty e 2.9377[ —2] —2.4894] —2] 2.2150[ —3]
e t 8.3776[ —2] —5.6438[ —2] 9.5240[ —3]
c 6.6660[ —2] —9.5238[ —2] 2.8572[ —2]
h o 8.3170[ —2] 2.9216[ —2] —1.4618[ —2]
Ty e 1.5135[ —2] 3.4127[—2] —4.4300[ —3]
i, t 9.8305[ —2] 3.2629[ —2] —1.9408] —2]
c 2.0000[ —2] —1.4286[ —1] —5.7143[ —2]
c’ +2.0000[ —2] F2.0000[ — 1]
j 0 3.1582[ —2] 6.0942[ —3] 0
T, e 2.9377[ —2] 6.2517[ —3] 0
M, t 6.0959[ —2] 1.2346[ —2] 0
c 0 0 0
Singlet
states T=0 T=2 T=4
a 0 1.534[ —2] 2.065[ —2] 3.125[ —3]
o; e 1.490[ —2] 1.991[ —2] 3.134[ —3]
D t 3.025[ —2] 4.056[ —2] 6.349] —3]
¢ 0 2.2719[ —2] —1.7831[ —2] 1.6076[ —3]
3 e 2.2490[ —2] —1.7440[ —2] 1.5671[ —3]
Dy t 4.5209[ —2] —3.5270[ —2] 3.1747[ —3]
e o 2.0010[ —2] —1.2189[ —2] 0
Ty e 1.7802[ —2] —1.2503[ —2] 0
D t 3.7812[ —2] —2.4692[ —2] 0
g o 2.0010[ —2] 6.0942[ —3] 0
Ty e 1.7802[ —2] 6.2517[ —3] 0
1, t 3.7812[ —2] 1.2326[ —3] 0
i o 7.9698[ —3] 1.4015[ —3] —3.2152[ —3]
o e 7.3084[ —3] 1.2350[ —3] —3.1341[ -3
g'g

I, t 1.5278[ —2] 2.6455[ —3] —6.3493[ — 3]
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Similarly for N=1, the result of integrating (A 10) is

Ji
M,

Ji
Q,

Diagrams corresponding to (A14’), (A16), and (A17) are
given in Eq. (3.28) of the text.

F

:E 6‘]"08Q1,0 . (A17)

APPENDIX B: COMPUTATION OF DENSITY
MATRIX

Summarized here is the procedure for computing
density-matrix elements, p,,(.#.%,@), connected with the
|

[;5Q,50,)=2"12|7Q0,)| Q) |nLQ;A) | n'L'Q;B)+(—1)" |n'L'Q;B) | nLQ;A4)] .

The convention used here and throughout this appendix is
that the first (left most) ket of the product |a)|b) is
specific to electron 1 and the second (right most) to elec-
tron 2. The atomic orbitals (AO’s) appearing here are
orthonormal eigenstates of one-electron energy operators
which include pseudopotentials representative of the “core
electrons.” The letters 4 and B identify the two identical
nuclei upon which these orbitals are centered.

The symbol | x; 7 Q ».#Q,) denotes a molecular-type,
two-electron ket defined in the asymptotic (R — oo ) limit.
It can be written in terms of the primitive molecular orbi-
tals (MO’s)

| MAwp)= | wp)= |w;4)+p | 0;B) . (B3)

Here p [equal either to 1 (gerade) or to —1 (ungerade)] is
the parity of this orbital and w is the projection quantum
number of electronic orbital angular momentum in the
direction k (which in the asymptotic region is opposite to
the direction of the internuclear axis). 7 and A are labels
that complete the identifications of the AO’s. The two-
electron ket now can be written in the form

J
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associative ionization of two Na((3p)?P) atoms. The nu-
clei are assumed to be identical and the system is treated
in the quasi-two-electron approximation.

The first task is to evaluate the integrals

(Fx | L)=(x; 7 Q,I50,|t;7Q,75Q,), (B1)

which occur in the density matrix formula (4.4). In the
quasi-two-electron approximation the unit normalized ket
| t;.7Q.,7Q,) has the form

(B2)

I
|x;7Q07Q,)=02N,)" 2| 7Q,)| Q)
x{zllep) P )= |0—p)|0'—p")]
+(=17 5[ |e'p") | wp)
—lo'=p")o—p)]},

(B4)

with @ and " so chosen that w+w'=A, and p and p’
such that their product equals the parity of the molecular
state. The quantity 5[ |wp) |w'p’)— |0 —p) |’ —p')] is
the “covalent part” of the MO product state | wp)|'p’),
that is, the part of this state which is devoid of ionic
(A*B~ or A~B%) character. Finally, the numerical fac-
tor N, =2[1+48(w |w')] insures that the two-electron ket
is unit normalized.

It is a direct consequence of these definitions that (with
nA=nL and n'A'=n'L’),

(Fx | LQ=N;""[p'8(w| Q)8 | Q)
+(=1)"pdw | 2;)8(0’ | Q)] . (BS)

Consequently, the density-matrix Legendre polynomial
coefficients defined by (5.5) may be written as

Pay(FF)=(NN,) "V pipy (@) | pT(IF) | 0y0)) +(— 1) pipyleyw) | pT (£ F) | 0)yw,)

+(-I)J)Pxp);(w;cwx |PT(ff) | @y @5)+pxpy (@ 0k |PT(fy) | wy,)],

wherein
(QQ’|pT(J.Y)lﬁﬁ')
= 2 a(TO,LL', Z .L",{Q})
LL
X 2 P(Mg,Mp)g(TO, I, L.L' ,MrMpg) .
Mg, M
(B7)

The quantities a and g appearing in the last of these for-

(B6)

[

mulas are given by (4.12) and (4.25), respectively. The
first of these is trivial to evaluate. The second involves
readily computable 6; and 9j symbols. The state popula-
tions P(Mp,Mp) which contribute to the quantities de-
fined by (B7) have been treated by Hertel and Stoll;'%!!
formulas appropriate to circularly and linearly polarized
light are given by their Egs. (52) and (58), respectively.
Numerical results for the the states of Table I are present-
ed in Table V.
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