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Nonlinear dynamics of a model for parallel pumping in ferromagnets
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The dynamics of a model, which has recently been proposed to simulate parallel pumping experi-
ments in ferromagnets, has been investigated. %'ith increasing pumping amplitude the system
displays periodic, quasiperiodic, and chaotic motion. In addition, the influence of noise at a particu-
lar transition point is discussed in connection with the experimental results.

I. INTRODUCTION

Early experiments' on spin-wave parametric pumping
in magnetically ordered samples have shown that tur-
bulent behavior of the response signals may occur if the rf
driving field exceeds a critical value. The theoretical ex-
planation of these phenomena by Suhl was based on the
nonlinear coupling between the uniform precession mode
of the magnetization and spin-wave modes.

The recent general interest in nonlinear phenomena has
led to several new experiments in ferromagnetic reso-
nance and to interpretations ' of the results in the context
of the theory of dynamical systems. The basic dynamical
variable is the precessing umform magnetization M(t) of
the ferromagnetic sample and the control parameter is the
strength of the pumping field. Gibson and Jeffries ob-
served chaotic dynamics in gallium-doped yttrium iron
garnet under transverse pumping whereas different
scenarios were found ' ' in longitudinal pumping experi-
ments. Various models were suggested ' which partial-
ly reproduce some of the observations.

To explain the irregular time sequences of spikes ob-
served in their parallel pumping experiments, Waldner et
aI. ' " have recently proposed a model which simulates
the behavior of the uniform magnetization with an addi-
tional interaction with the microwave cavity. The cavity
is described as a damped LC circuit. In the present con-
tribution, the results of a more detailed study of this
model are given and the modalities of the transitions to
chaos upon increasing the pumping strength are investi-
gated.

In Sec. II the model is described. The equations of
motion are then rescaled and a stability analysis is per-
formed. In Sec. III the solutions are investigated in terms
of properties of Poincare sections. The influence of noise,
which is crucial for a discussion of multistability and
which can explain the occurrence of relaxation oscilla-
tions, is discussed in Sec. IV.

II. MODEL

The starting point. of Waldner et al. ' is the Landau-
Lifshitz equation for the homogeneous magnetization M
of the ferromagnetic sample

hp ——(0,0,hp) and hg ——( —d~M„, O, O), (3)

with dz & 0 denoting the anisotropy constant. The paral-
lel pumping term with amplitude F and frequency co& can
be written as hz ——F sin(cozt )hp.

The essential modification to the Landau-Lifshitz
model is the introduction of an interaction with an LC
circuit, whose coil has the axis along the z direction. This
introduces two additional dynamical variables: the cavity
field h, =(0,0,h, ), and b, which is proportional to the
charge on the capacitor. The corresponding Kirchhoff
equations are given by

dh, dms dip= —y, h, —co,'b —a~ —apdt dt p dt

db
dt

= —ybb+h, ,
(4)

where y, and yb are damping parameters, 8~ and Bp
denote the couplings, and co, is the cavity frequency.

Since
~

M
~

= 1, the dynamics of M is conveniently
described in terms of the polar and azimuthal angles 8
and P, which are defined by

M=(sin8cos(P/2), sin8sin(P/2), cos8) .

It is also convenient to introduce the variables
a(r ) =h& (r ) /hp and p(r ) =b(r )dg /hp and rescale the time
t to t'=dzt, such that ~=cop/dz is the dimensionless
frequency. By considering the rescaled field

=Mxh —XMx(Mxh),
dt

where M is assumed to be normalized (
~

M
~

= 1), A, is the
Landau-Lifshitz damping constant, and h=yH, with y
being the gyrornagnetic ratio and 8 the magnetic field.
The contributions to the effective field h are given by

h=ho+h~ +hp+h, ,

where hp denotes the static external field directed along
the z axis, h~ stands for the anisotropy field, hz is the
pumping field, and h, is the cavity field. For an anisotro-
py energy with hard x axis and easy y-z plane, the com-
ponents of hp and hz are
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d8 ) . 2 . dp
dt

= ——, sin8 (1+k ) sing —2,
dt

8cx dt9

dt
@~a—gp/3 —Bc@—F cos(cot )+B sin8

(5)

where we have indicated again the rescaled time t' with t.
The dynamics of this five-dimensional system (four

variables plus a forcing term) exhibits a variety of dif-
ferent behaviors as will be discussed in Sec. III where the
dependence on the pumping amplitude F is investigated.
The values of the other parameters, which have been kept
fixed, were chosen according to Ref. 10 and are given in
Table I.

In the absence of the pumping term the fixed points of
the model are determined by a=/3=0 and MXH=O.
This latter condition can be satisfied either by
M=(+(1 Ho)'~, 0,——Ho) or by

M=(0,0, +1) .

In accordance with Ref. 10 only the case Ho ~ 1 will be
considered. Then only the two fixed points given by Eq.
(6) exist. It is easy to show that the upper one (north pole,
8 0) is stable.

Three frequencies characterize the time behavior of the
system: (i) the Larmor precession frequency coL which for
small polar angles 8 is coL ——[ho(ho+de)]' or in re-
scaled form coL ——[Ho(HO+1)]'; (ii) the pump frequen-

cy co& which is kept fixed near the value 2coL, and (iii) the
resonance frequency co, of the cavity which is incom-
mensurate with respect to ~1 and cuz. Therefore one ex-

pects in general the system to exhibit either periodic or
quasiperiodic solutions with at most two incommensurate
frequencies (two tori).

H= —M„e +Ho[
I+basin(cot')+a]e,

and the parameters Hp=ho/dg p =p /dg, pp=pbldg,
gp ——(co, /dz ), and Bq B~——/ho, the equations of motion
are finally transformed into

d = —(1+ cosP) cos8+A, sing —2HO[1+F sin(cot)+a),
dt

(a) (b)

the four-dimensional Poincare section either onto the
M„-M~ plane or onto the 8-P plane. Sections were taken
at intervals of a period of the forcing term r=2m/co .and
the integration steps were chosen around T/50. As an ex-
ample, we show in Fig. 1 the M„-M~ representation of the
trajectories for various values of I'. A schematic overview
of the behavior of the solutions as a function of F is
displayed in Fig. 2.

For small pumping amplitude (F &Fo), the stable fixed
point of the unperturbed system [i.e., the north pole
M=(0,0, 1)] becomes a limit cycle of period 1, where the
magnetization precesses with the same period as the forc-
ing term. This corresponds in Fig. 2 to the segment
marked with LC. In the projection of Fig. 1(a), one ob-
tains a single dot at the origin. At F=Fo, this limit cycle
becomes unstable and the system undergoes a Hopf bifur-
cation yielding a torus, which is indicated by To in Fig. 2.
If the motion is on a torus, it appears as a closed curve in
the Poincare map [see Fig. 1(a)]. One of the two frequen-
cies characterizing the torus is co, the other one being the
frequency of circulation along the path in the Poincare
map. The diameter of To becomes larger as I' is in-
creased, until the torus collides with the unstable limit cy-
cle [Fig. 1(b)] for F=F, . At this point, To transforms
into a new torus (labeled by T~ in Fig. 2) which encloses
the north pole 0=0. The corresponding motion in the
projection is displayed in Fig. 1(c). A further increase in
the control parameter F yields morphological changes in
the structure of T~ which evolves through an alternation
of periodic and quasiperiodic motions until chaos is first
reached at a value F=F,=1.45. For still higher F values,
the chaotic attractor (shaded in Fig. 2) enlarges until it
covers the whole unit sphere. As an example the chaotic
solution at F= 1.5 is shown in Fig. 1(d).

III. ANALYSIS OF THE SOLUTIONS

The system equations (5) have been integrated numeri-

cally and the solutions have been analyzed by projecting

TABLE I. Values of the dimensionless parameters used in

Eq. (5).

Hp ——8.5

2p—
3

A, =0.01
y = 1.909 859 317&& 10
y p

——100@

gp ——3.61
Bp ——0.288
Bq ——2.340 513 868

(c)

1 -t
Mx

FIG. 1 Projection of the second iterate of the Poincare sec-
tion onto the M -M~ plane. The figures show the solutions cor-
responding to different pumping amplitudes F. (a) limit cycle
LC (small cross} for F=1.1 displayed together with torus 1 p

(closed curve), plotted for F=1.2; (b) torus Tp at the collision
with the unstable limit cycle LC (F=1.315); (c) torus T& at
F=1.4; (d) chaotic solution after the disappearance of torus T~

(F=1.5).
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shown in Fig. 4 as an example of a fractal torus. Such
quasiperiodic solutions are obtained in our system due to
the presence of the characteristic frequencies coL and co„
at variance with the models discussed in Refs. 6—8 where
period doublings have been found. The reconstruction of
these structures from experimental data by utilizing
embedding techniques allows the measurement of dynami-
cal invariants like Lyapunov exponents, metric entropies,
and fractal dimensions.

As is well known (see, e.g., Refs. 9 or 12), the transition
from quasiperiodicity to chaos can occur in several dif-
ferent ways. In our system, we essentially observe ampli-
tude instabilities (fractal tori) and phase instabilities. In
Sec. IV we make a connection between the experimental
observations and the numerical simulations in the vicinity
of the transition from To to T&.

FIG. 2. Schematic representation of the regions of existence
of solutions vs the pumping parameter F. The straight line
marked with LC represents the small-amplitude limit cycle.
Each of the cylinders shows the region of existence of a torus.
In the case in which different solutions exist simultaneously ar-
rows indicate the observed transient evolutions. Shaded areas
represent ihe main chaotic regions.

Sy changing the initial conditions it has been found
that three other tori (T2, T3, and T4) coexist with To or
T~ for some F values (see Fig. 2). They appear after a
tangent bifurcation (i.e., they disappear by intermittency if
F is decreased). Their evolution is very similar to that of
T~ with the exception of T2 on which no chaotic
behavior has been found. Notice that on tori T3 and T4
chao's occurs for smaller F values than on T&. This seems
to be a peculiarity. of the model, since usually one expects
chaos to originate from a structure evolving continuously
from zero amplitude. In Fig. 2, the regions of existence of
the five tori are shown, together with the observed transi-
tions indicated by arrows.

Figure 3 depicts the torus T3 at F=1.456, i.e., in the
chaotic region. The projection of torus T4 for F=1.33 is

I I I I 4;— t't'ai&& I &
I

~
I

~ I '
I ~

I

IV. INFLUENCE QF NOISE

In Ref. 10 the authors reported the observation of "re-
laxation oscillations" and transitions to chaos character-
ized by spikes irregularly spaced in time but with nearly
constant amplitude. This is a typical intermittent
behavior which cannot be straightforwardly interpreted
within the framework of quasiperiodic transitions. Since
a descriptiori of this phenomenon could not be obtained
using deterministic equations only, we took into account
the presence of noise. Fluctuations probably also inhibit
the experimental observation of the multistability found
in the numerical solutions. Indeed, experimentally only
the route to chaos foHowing the LC-To-T~ sequence has
so far been detected. —

To simulate the influence of fluctuations a numerical
integration of Eqs. (5) has been performed by including
an additive Gaussian white noise with amplitude q in the
resonator equation'for the variable a. As an example of
the solutions the time evolution of the longitudinal mag-
netization M, for F=1.35148 (i.e., F slightly larger than
F, ) and q=10 is shown in Fig. 5. The simulations ex-
hibit a good qualitative agreement with the experimental
observations. The appearance of spikes separated by
quiescent phases is mainly due to the slowing down occur-
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FKr. 3. Projection of the Poincare section onto the 0-P plane

which displays torus T3 (see Fig. 2) at F=1.456 (chaotic re-
gion).

FIG. 4. Same as in Fig. 3 for torus T4 at F=1.33 showing
the occurrence of a fractal structure.
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FIG. 5. Time evolution of longitudinal magnetization M, or

wide plateaus separating spikes of nearly constant amplitu e.
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FIG. 6. Average duration T(q) of the quiescent phases vs the
F=1.35148.logarithm of the noise amplitude q, calculated or

ring in the neig or oo o
'

hb h od of the unstable limit cycle LC,
where the presence of noise can sensitively a ect t e
length of t e p a caus.f h 1 t To characterize this phenomenon

time T( ) spent within a small distancethe average time q
( -10 ) from the north pole was calculated as a unc ion
of the noise amplitude q. In Fig. 6 T(q)

'

pT~ ~ is lotted versus
h 1 'thm of the fluctuation amplitude q. It is seen

that the dwelling time in the vicinity of the nort p
T( ) —lo (1/q). The same behavior is ob-

T is anomalousserved for a finite range of F values. This anoma ous
behavior which is causeh' h

'
d by the combination of slowe-

fdown deterministic motion and noise, resembles t at o
bistable systems close to threshold, anand in fact differs
from the usua aw q—11 T( )-1/&q occurring in ordinary in-

dIn connection with these theoretica pre ic-
tions a careful experimental investigation o e co
influence of noise on ef '

th dynamic behavior of the systein
would be of value and interest.

tion, a very ric ynaich dynamical behavior. An overview of the
phenomena w ic ehich the system displays has been given in

h the various solutions are represented as aFig. 2, w ere eva'

a e or the time evolutionthat the influence of noise is crucia or e
of the system in t e neigth 'ghborhood of the unstable limit
c cle.

f h d 1 to account for perpendicularExtensions o t e mo e
~ ~

pumping or o invet vestigate the interaction of several spin-
wave modes' are feasible.

In conclusion, it seems. that the turbulent behavior ob-
serve d in spin-wave parametric-pumping experiments in

11 ordered samples offers new possibilitie'stomagnetica y or ere
11 a variet ofstudy, both experimentally and theoretica y„a va y

quasiperiodic transitions to chaos.
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