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Euclidean quantum mechanics is not limited to an analytical continuation in time from the
Schrodinger equation to the heat equation. It is a new classical statistical theory founded on a new
probabilistic interpretation of the heat equation and constitutes the closest classical analogy of quan-
tum mechanics.

I. INTRODUCTION

(1.2)

The Euclidean approach of quantum field theory has its
origin in the works of Schwinger, ' Nakano, Symanzik,
and Nelson. Initially, it was proposed as a technical tool,
namely, a way to introduce the well-defined probabilistic
methods of statistical mechanics in the Feynman formal
(but physically "true") approach of field theory, yet,
gradually, from the seventies, it has been presented as a
complete basis for the rigorous (but still physically incon-
clusive) study of this theory. '

In nonrelativistic quantum mechanics, the Euclidean
theory is attributed to Kac. ' It is summarized in the
Feynman-Kac formula for the integral kernel of the semi-
group T, =e ™,namely, the analytic continuation which
replaces ~ by —it in the quantum unitary group of evolu-
tion used by Feynman, U, =e ",for the Hamiltonian
H = ——,5+ V.

In spite of the power of this Euclidean approach, due to
the extensive use of the integral representation of the
semigroup T„ the physical meaning of such an analytical
continuation is quite obscure. This explains the tradition-
al resistance of theoretical physicists to any interpretation
of quantum phenomena involving the classical diffusion
processes usually associated with the heat equation (or
Schrodinger equation "in imaginary time")

=HO* . (1.1)
at

This resistance is quite justified, because the kind of phys-
ical phenomena described by the heat (or diffusion) equa-
tion (1.1) is as different as possible from the quantum-
type phenomena. In fact, all the qualitative features of
any known classical statistical theory founded on Eq. (1.1)
are absent from quantum theory. And the first one is that
Eq. (1.1) is supposed to describe only irreversible phenom-
ena.

So, from the point of view of theoretical physics, the
Feynman-Kac formula is a formula looking for a theory.
Nothing structurally analogous to quantum theory is asso-
ciated with it. In this puzzling context, the method advo-
cated by Fenyes and Nelson" ' for associating classical
diffusion processes (in real time) to the solutions of the
Schrodinger equation itself,

'& =Hq'a~

has a singular position. Its mathematical consistency did
not wear down, in general, the above-mentioned resistance
of the physicists. The resulting stochastic processes are
apparently too different from the ones usually investigat-
ed in statistical mechanics. And first of all they are, of
course, time symmetric (or reversible). Nevertheless, too
many physicists still do not realize that the basic (formal)
Feynman path-integral formulation of quantum mechan-
ics has been profoundly inspired, indeed, by the analogy
with classical diffusion processes and cannot be appreciat-
ed without having this reference in mind.

In any case, the discussion about the respective advan-
tages of the imaginary-time or the real-time probabilistic
approaches of nonrelativistic quantum mechanics may
have important consequences for the rigorous construc-
tion of physical quantum fields, because the frame found-
ed on the Feynman-Kac formula, in spite of its evident
physical obscurities, is often considered as the only possi-
ble Euclidean version of quantum mechanics, and there-
fore the only possible starting point for a Euclidean pro-
gram. The aim of the present work is to prove that this
last assertion is basically incorrect. The genuine Euclide-
an quantum mechanics is far from being limited to an
analytical continuation in time from the Schrodinger
equation (1.2) to the heat equation (1.1). It is associated
with a radically new probabilistic interpretation of the dif-
fusion equation, whose dynamical structure is much closer
to quantum theory than any other "classical" analogy. I
say new, but its key kinematical idea has been discovered
by Schrodinger in 1931 (Refs. 14 and 15) and forgotten by
the theoretical physicists since then. It has been presented
elsewhere, under the name of (Schrodinger's) "stochastic
variational dynamics. "' ' Here, it will be shown in par-
ticular that all the basic concepts introduced by Feynman
for his path-integral formulation of quantum mechanics
have their Euclidean analogs involving real, and well-
defined, "average. "

The interest of Euclidean quantum mechanics is two-
fold. First it may be a useful conceptual laboratory for
constructive quantum field theory, suggesting in the most
elementary case the nature of the difficulties one meets
when constructing the involved stochastic process. Also,
as the closest classical analogy of quantum mechanics it
may help to clarify the physical foundations of this theory
in an experimental context much easier, in principle, to
control. The organization of this paper is the following.
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Section II introduces Euclidean quantum mechanics
(EQM) in its different aspects. First the experimental
context, namely, the original Schrodinger Gedankenexper-
iment. Then a brief summary of the properties of the new
class of diffusion processes involved in this construction
(the Bernstein processes). Section II 8 refers to results re-
cently published' ' and contains the necessary tools for
the path-integral approach of EQM. Section IIC intro-
duces the Hilbert space v' which is the Euclidean analo-
gue of the usual quantum I, space. Section II D is devot-
ed to the detailed presentation of the path-integral formu-
lation of EQM, starting from a regularized version of
classical (Euclidean) action. The laws of motion of the
Bernstein diffusion process are found and a new path-
integral representation for the involved solutions of the
heat equation (1.1) is discussed. At the end of Sec. IID
the correspondence between the key concepts introduced
by Feynman in his path-integral approach and the con-
cepts of EQM is indicated. Section IIE describes the
Hilbert-space formulation of EQM starting from the clas-
sical Euclidean version of the Poisson bracket and show-
ing how to define the basic operators of the theory. The
relation between the Hilbert-space expectations and their
probabilistic interpretations is also given.

Section III investigates the interpretation of the theory,
first through the role of probability (Sec. IIIA), and then
discussing its physical content. It is argued that a naively
realistic interpretation of the results of EQM is hardly
tenable.

Section IV justifies the title of the present paper. One
shows that it is possible to realize some processes of EQM
starting from solutions of the Schrodinger equations (1.2)
and, reciprocally, that from such Bernstein processes one
gets other Markovian diffusions, in real time, which are
nothing but the processes associated by Nelson to the
Schrodinger equation.

We conclude, in Sec. V, with some perspectives on the
generalization of EQM in field theory.

This paper is mainly focused on the physical structure
of EQM. The mathematically inclined reader should con-
sult Ref. 18 for a really precise description.

II. EUCLIDEAN QUANTUM MECHANICS

A. Schrodinger's Gedankenexperiment

Let us consider some Gedankenexperiment involving a
system of classical particles of unit mass diffusing in a
medium with (positive) diffusion constant k, under the ef-
fect of a force field F =V'V. No deterministic theory is
able to describe the outcome of such an experiment.
However, ample experimental evidences suggest that these
classical phenomena are related to an initial-value prob-
lem for the diffusion equation

different theoretical status since the first one can be made,
in principle, arbitrarily small, in contrast to A regarded as
the lower bound for the inevitable perturbation due to a
quantum measurement. Nevertheless, the structure of
EQM will be independent of the value of X. So, for
greater convenience we set, from now on, k—=R. This
means that we interpret Eq. (2. 1) according to the (terri-
ble) Euclidean terminology, as a "Schrodinger equation in
imaginary time. " It is well known that, for a nonzero
force field F, 9,* cannot be interpreted as the probability
that a diffusive particle is found in the volume element
d x about x at the time t. Mathematically, this is reflect-
ed in the fact that the evolution equation (2.1) on
I = [ —T/2, T/2] is described by a contraction semi-

group, formally

(2.2)

under some technical assumptions on the Hamiltonian
operator H. If we consider Eq. (2.2) on L ( I ), for ex-
ample, with an (essentially) self-adjoint H, the word "con-
traction" means that the norm of 0,* is less than one. So,
in probabilistic terms, we "lose" some probability during
the evolution, therefore this one is not reversible in time
(the semigroup has no inverse). One of the key points of
EQM is to prove that positive 8* are nothing but the Eu-
clidean version of the quantum probability amplitude.
From the point of view of the physical experiment of clas-
sical diffusion, in EQM, we change nothing. What is
changed is the way to use the statistical data resulting
from the experiment. Our Gedankenexperiment takes
place during the time interval I = [—T/2, T/2], between
a controllable source of classical diffusive particles and a
screen on which a final probability of presence is ob-
served. The experimental arrangement itself (for example,
a screen with two holes somewhere in between the source
S and the screen 0) may be considered as a black box.
The only known information about what is going on in
the box is the given force field F (for example, a free evo-
lution between S and the holes and another free evolution
between the holes and the screen 0). Cf. Fig. 1. We con-
sider the following theoretical problem. Given the initial
density of probability, p T~2(x)dx, and any final proba-
bility pT&2(y)dy, is it possible to describe a unique proba-
bilistic evolution in between?

Of course, for an arbitrary pT&2(y), most of the dif-
fusive particles will follow another probabilistic evolution.
We do not mind this. Our aim is to describe the relatively

/ ~ediQ wr~---
/l

Fozcf2 I

60*+VO*—:HO',aI9*

at 2
(2.1)

where 0*=0, is a real scalar field on~XI = IR X [—T/2, T/2] (for example) and V:I~I is the scalar potential of the force field F. The dif-
fusion constant A, and the Planck constant A have a very FIG. 1. Schrodinger's Gedankenexperiment.
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B. A new class of diffusion processes

It is indeed always possible to construct stochastic pro-
cesses Z„ t HI, with value in ~, the configuration (or
state) space, compatible with our data. But, as it may be
guessed, the resulting processes are neither unique nor
Markovian. They belong to a strictly larger class of
time-symmetric processes, discovered by Bernstein in
1932.' A Bernstein process Z, satisfies, by definition,

E [g (Z, )
~
H, L}M „]=E [g (Z, )

~
Z„Z„] (2.3)

for any —T/2&s &t &u & T/2 and Borel measurable g.
H, and ~ „are, respectively, the sigma algebra contain-
ing the information on the process Z, before the time s
and after the time u. E [ ~

cr] denotes the conditional ex-
pectation given o. Notice that, in modern terms, (2.3) is a
one-dimensional version of the "local Markov property"
used, for example, in constructive field theory, but
Bernstein has, of course, to be credited for the introduc-
tion of this concept long before modern needs. In contrast
to a Markovian process, a Bernstein process Z„ t&I, is
constructed from the data of a three-point analog of the
concept of transition probability. This Bernstein transi-

unprobable events compatible with our pair of data. This
is clearly always possible if we repeat the random experi-
ment long enough. EQM will be the dynamical theory of
this particular class of classical diffusions. This very
unorthodox way to approach some probabilistic evolutions
is due to Schrodinger'4' (1931). It has been developed
into a physical theory in Refs. 16 and 17, under the name
of (Schrodinger's) stochastic variational dynamics.

tion, and its density, are denoted by

H (s,x;t, A; u, y)

T T= f h (sx;t g;uy)dg, ——&s & t &u &— (2.4)

(b) For any —T/2 & s ( t & u (T/2 and Borel set B

P (Z, EB
i
Z„Z„)=H(s,Z, ;t,B;u,Z„) . (2.6)

In addition, the finite-dimensional distribution density of
Z„t&I, is given by (for —T/2&t& &tz « . . t„
& T/2)

for a Borel set A. By definition, this transition is a proba-
bility on the Borel sets of rn. with respect to the inter-
mediate position g'. Also the Markovian data of an initial
probability is replaced here by the data of a joint probabil-
ity, with density m, for the initial and final positions on I,
Z z&z, and Z~&2. Let us recall that a probability space is
a triple (Q, crt, P) where Q is the sample space of the pos-
sible events, in our case the space of all paths I~~ for
Z, . o-z is the sigma algebra of the observable events, in
our case the one generated by Z, for t EI, i.e., which con-
tains the history of this process from time —T/2 to T/2.
Finally, P is a probability measure on o.r.

The following crucial result is due to Jamison: There
is a unique probability measure Pm such that with respect
to the probability space (A, ,ot, P ), Z. „ for t&I, is a
Bernstein process and

(a) for Bs and BF the starting and ending Borel sets

P (Z T/2+Bs, ZT/2&BF)= m(x, y)dx dy .sx
(2.5)

pm(x1)tl)x2)t2) )xn)tn )

T . -T . T . T
m (x,y)h ——,x;t, ,x &, —,y h t~, x &, tz, xz, —,y . h t„&,x„,;t„,x„;—,y dx dy . (2.7)

nzxrn 2 2

h ( , stx, g)h (t, g, u, z)
s,x, t, , u)z —

)s,x, u, z

T T
2

——&s&t&u &—
2

(2.8)

has the properties required to be the density of a Bernstein
transition.

So, a Bernstein process Z, is specified, according to
(2.7), by the Bernstein transition (2.8) and an arbitrary
density ~ of joint probability. But our experimental data
are the initial and final probabilities p 2-/2(x)dx and

Let us come back to the starting diffusion equation (2.1).
Under suitable restrictions on the potential V= V(x), for
example, V bounded below, the fundamental solution of
Eq. (2.1), denoted by h (s,x, t,y) =h (x, t —s,y), is strictly
positive. We consider exclusively this situation after-
wards. In these conditions, it is easy to see that

pz/2(y)dy, and many joint densities (therefore many Bern-
stein processes) are compatible with them. However,
there is a distinguished choice of joint density, denoted by
M=M(x, y). For this choice, and only this one, the
Bernstein process Z, is also Markovian. It is shown in
Ref. 17 that this Markovian joint density is

f M(x,y)dx dy

~ —T/2(x)h (x, T,y )BT/2(y )dx dy, (2.9)~s x&~

where 8*
T/2 and HT/2 are two (yet unspecified) real func-

tions. Clearly, in order to preserve the positivity of this
joint probability, they have to be of the same signs on rrz.
The confusion of our notation for 0*

z-&z and the initial
condition of the heat equation (2.1) is not fortuitous, as we
shall see. The substitution of (2.8) and (2.9) in the general
finite-dimensional distribution for a Bernstein process on
I reduces this one to
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T T
pM(x i, t~, x2, t2, . . . , x„,t„)= dx dyO* T/2(x)h x, t~ +—,xi h x„' —t„,y OT/2(y) .

a-z )& m 2' "2 (2.10)

VOQ= —ih' (y s)
0+

(2.11')

[here S,(y) denotes the sphere of center y and radius e]
and the diffusion matrix, for rrz =I, I =N XN identity
matrix,

Although this is not immediately evident, (2.10) is indeed
nothing but the finite-dimensional distribution of a Mar-
kovian diffusion, also denoted by Z, . It is shown in Ref.
17 that its backward transition probability density is given
by

q„(s,x, t,y) = '
h (x, t —s,y)

0*(x,s)
(2.1 1)

6*(y, t)

for —T/2&s &t (T/2 and 0,*=8*(x,t) the solution of
the initial value problem (2.1). This yields for the back-
ward drift

18„(y,s) = lim (y —x)q„(s —bs, x,s,y)dx
wgo hs

tion is completely symmetric in 0,* and 0„ t EI. To each
0,* solution of the heat equation (2.1) with initial condi-
tion 0*

&&& corresponds a unique 0, solution of
ih'(BO/Bt)=HO with final condition OT/2. This relation
for each pair 0,' and 0, associated with a solution of the
Schrodinger system (2.14) is the Euclidean version of
complex conjugation. It plays a fundamental role after-
wards. From the dynamical point of view, it is crucial
that (2.10) defines a time-symmetric measure for the
Bernstein diffusion. Nevertheless it also is useful, some-
times, to regard Z„sHI, only as a Markovian diffusion.
For example, if we need to impose a condition in the fu-
ture, say Z(t) =z, t HI and t & s, the natural point of view
is to consider the process as a Markovian backward dif-
fusion, denoted by Z'(s), —T/2&s (t, and to use the
backward transition (2.11) in which this future condition-
ing is implicit,

q, (s, A, t,z)=q, (Z, EA ~Z, =z),
for 2 a Borel set.

C, (y,s) = lim (y —x) q„(s —As, x,s,y)dx
1 2

0 Qs s(y)

(2.11")

Symmetrically, the forward transition probability of Z, is

q (s,x, t,y) =h (x, t —s,y)
8(y, t)
Ox, s

(2.12)

=Pi (x,s)
VO

0
(2.12')

for the same diffusion matrix. After normalization, the
probability density of Z, reduces to

p (x, t)dx =6*(x,t)6(x, t)dx, t EI . (2.13)

for —T/2(s &t & T/2 and 0, —:0(x,s) the solution of
the final value problem A(B)0/dt)=HO. The associated
forward drift is

8 (x,s) = lim (y —x)q (s,x,s +M,y)dy
1

0 +S S~(x)

C. A physical Hilbert space

p (x, t)dx =8"(x, t)8(x, t)dx, t eI . (2.15)

(Here, ~ = R for example, so dx =d x; afterwards, if
this is not specified, ~= R '"= R ~, dx:—d x.)

The relation between 0* and 0, analogous here to the
quantum complex conjugation, is called Euclidean conju-
gation. If 0 solves an initial value problem

a0*
=HO*, teI, xE~

at
(2.16)

the relation (2.12) involves the associated solution 8 of a
final value problem

Let I = [—T/2, T/2] be the fixed (closed but arbitrary)
time interval of the Schrodinger Gedankenexperiment. A
positive function 8*(x,t) for xE~, tEI, will be the
analogue, in EQM, of the quantum wave function P(x, t).
According to Eq. (2.13), the density of the probability of
presence for a diffusive particle is given by

Finally, it is clear from (2.10) that the positive measure of
this Markovian Bernstein process is not known before we
specify a pair 0*

&&2 and Orz2. The marginals of the Mar-
kovian joint probability (2.9) give the following con-
straints:

=HO, tEI, x E~~ .a0
at

We define the Euclidean conjugation k by

kO*(x, t) =0(x, t)

(2.17)

0—T/2(x) f h (x T y')OT/2(y)dy p —T/2(x)
(2.14)

OT/2(y) f 0—T/2(x)h (x Ty)dx pT/2(y)

This system of equations for 0*
z&z and Oz-&2, in the case

V=0, is due to Schrodinger. " For p T/2(x) and pT/2(y)
without zeros, the proof of existence and uniqueness of its
positive solutions is known and therefore a unique
Markovian Bernstein process is specified. This construc-

or by the shortest notation' such that

(8*)*(x,t) =0(x, t) . (2. 18)

For Eq. (2.15) to make sense we have, of course, to con-
sider exclusively the set of 0 such that

0& f kO*O*dx = f 88*dx ( co . (2.19)

We illustrate the meaning of this constraint, for simplici-
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ty, when the potential V of the Hamiltonian H is such
that the spectrum of H is purely discrete, [E„)„~~. Let
[y„(x)]„~~ be the corresponding orthonormal basis of a
real space L (m) (this is not a restriction). Then, if (, )
denotes the scalar product in this function space, and if
0 Tgp&L (~),

—F. (t + T/2, )0*(x,t)=gaje ' (pj(x)
J

with g aj & ~ and aj ——(0* Tiz, yl. ).
Under Euclidean conjugation k, 0* changes into

0(x, t)=pa;e ' y;(x) .

So, using the orthonormality of the basis,

Let us consider, for example, the time-reversal operator T.
It is easy to check that

(g'
~

0*)=(T(p*
~

Te*)=(Te*
~

Tlp*) (2.22)

so T is unitary in v*. Now let
~

y*) be A
~

0*) and con-
sider the expression ( Ty*

~

TA T 'Te*)=(Ty*
~
Ty*).

By (2.22) this is (y*
~

g*)=(0*
~

Acp"). An operator A in
v* is called even (respectively, odd) under time reversal
according to the following:

r

+A, even
TA T

If
~

g*) and
i
0*) are identical, that is, for an expectation

value, we therefore have, according to the parity of A,

f 00*(x,t)dx =g a; & oo . (2.19')
(0*

~

Ae*)=+(Te*
i
ATe*) . (2.23)

Since the set of 0*(x,t)=(e "+ i I p)(x) for arbitrary X
forms a real linear space, denoted by v*, we define a sca-
lar product in v' by

(q*
~

0*)=f kq*e*dx

cp0*dx . (2.20)

After competition, we obtain a Hilbert space, denoted by
u*(~) or simply v*. '

Let us emphasize that the integrand of (2.19') is, in gen-
eral, not positive for any t in I and so cannot be interpret-
ed as a probability density. We call physical states the col-
lection of 0* in v * compatible with the probabilistic inter-
pretation summarized in Sec. IIB. They are positive—A ~(x, t)
functions in v, represented by 0 (x, t) =e ' . Let us
denote by 7 the time-reversal operator defined by
TB*(x,t) =0(x, —t). Since any function A „can be
decomposed into even and odd parts under time reversal,
we write 0*(x,t)=e' ""'" where R and S denote,
respectively, the even and odd terms such that
TR(x, t)=R(x, t) and TS(x—, t)= —S(x, t). Then we-
have clearly ke*(x, t)—:0(x, t)=e' + ""'I. The constraint
(2.19) reduces, therefore, to f e '"'"dx & oo. A (real)
linear combination of physical states produces a physical
state only if the coefficients are all positive. So the physi-
cal states form a cone in v *.

Of course, as far as physics is concerned, we only use
some subspaces of v* with additional regularity condi-
tions (cf. Ref. 18, also Secs. IIE and IV). We shall also
use occasionally the following Euclidean version of Dirac
notation. Since (by Riesz theorem) any linear functional
on u* is a scalar product, a linear functional (y

~

(a bra)
is defined by its image (2.20) on the ket

i
0*). In the

EQM, the correspondence between ket and bra is linear
since the space is real.

If A denotes a linear operator on v*, its adjoint A is
such that (A y*

i
0*)=(y*

~

Ae*). [This is actually suffi-
cient only for A bounded, and in general for 0* in the
domain &z and y in & t. This will not be specified
afterwards (cf. Ref. 18).] The Dirac notation is defined by

(2.21)

D. Path-integral formulation of Euclidean dynamics

of the considered classical system. In the Feynman-Kac
approach, one has to do an analytical continuation in time
and therefore the relevant Lagrangian becomes propor-
tional to L(q,p)= —,'p + V(q). A common funny feature
of the two usual path-integral representations (sum over
all the paths) of U, = e " and T, =e ' is that they
both involve a kinetic energy term which is formally in-
finite on the trajectories which contribute essentially to
the path integrals. For example, it is well known that the
Wiener measure involved in the Feynman-Kac formula is
concentrated on continuous but nowhere differentiable
trajectories. Even though this is without consequence on
the validity of the path-integral formula itself, it strongly
suggests that the really natural starting action has to be
some regularized version of (2.24), or of its Euclidean ver-
S1OIl.

The right kind of regularization is suggested by the
kinematical hypothesis associated naturally with our
physical situation. Since we start from the diffusion Eq.
(2.1) (with A, =A') we may try to characterize dynamically
a process in the class of the diffusion processes Z' such
that (here ~ = R )

d„Z'(s) =8, (Z'(s), s)ds +A'i Id„ IV, (s),
T T——&s&t&—
2 2

(2.25)

where d~ denotes the backward differential defined by
d„f (s) =f(s) —f (s —ds) and IV„(s) is a backward
Brownian motion. When B,, the drift, is known explicit-
ly (this is not the case here) Eq. (2.25) is an Ito stochastic
differential equation with respect to the future sigma alge-

The starting object in Feynman s investigation of quan-
tum dynamics is the classical action functional

T/2
J[Z( )]=f L(Z(s), Z(s))ds

for the Lagrangian

L: )R X R ~ I((,L(q,p)= —,p —V(q)

, p; /2 —V(q)
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8'„(x,t) =— V'0

gQ
+EVg *(x,t)

According to Eq. (2.11'), for F.=O, this is the backward
Markovian Bernstein process of Sec. IIB. The drift has
clearly the units of a velocity. Actually, it also may be de-
fined as the mean backward velocity
D~Z'(s)=B', [Z'(s), s], a particular case of the mean
backward derivative

D„g [Z'(s), s]

—:lim E, g [Z'(s), s) —g [Z'(s —bs), s —M]
M&0

bra ~, =crIZ~, s &g(t & T/2I. We impose upon all
these processes the condition that Z '(t) =z, a given future
position. Since the diffusion matrix of these processes is
R I (1 stands for unit matrix) they all have the irregulari-
ties of the quantum "trajectories" described by Feynman
(but without the imaginary factor i responsible for the
mathematical trouble). So Eq. (2.25) is a natural kinemat-
ical hypothesis in our context. In order to be more specif-
ic, in Eq. (2.25), we consider the following class of dif-
fusion processes:

d„Z'(s) =8', [Z'(s), s]ds +h ' Ed„W, (s),
—T/2&s &t & T/2 (2.25')

with Z'(t) =z and the drift depending on the parameter e,

It solves the stochastic differential equation

d, A, [Z'(s), s]

=D, A„[Z'(s),s]ds +VA, [Z'(s),s]d, W„(s) .

Now it has been shown in Ref. 17 that, for any e&0,

D, A, [Z'(s),s] & —,
~

8',
~

[Z'(s),s]+ V[Z'(s)]

(2.30)

and that the equality holds only for e =0 and
t8, (x,s) =VA, (x,s). Applying E, ( )ds to the in-—T/2

equality (2.30), we obtain

A' [Z'(t), t] E,A [Z—'( —T/2) ]

(E, —, B', Z'ss +V Z's ds .

(2.30')

On the other hand, the variation of A„[Z'(t), t] solves

5 A [Z (t), t] —5 A, [Z ( —T/2), —T/2]
= —f B„Vg*[Z(s),s]ds

+f (B„V'8,+ V)[Z(s),s]5~Z(s)ds

+ f VB„[Z(s),s]5,Z(s)d~ W, (s) .

Therefore, after integration, and using Eq. (2.27),

5,A [Z(t), t] E,5 A [Z—( —T/2), —T/2]

+8'„V— bg [Z'(s),s],—h

Qs 2
(2.26) =E, f IB„D„5,Z+V'V5, ZIds . (2.31)

where E, denotes the conditional expectation knowing the
future position Z'(s). Let us define the backward varia-
tion 5,Z(s) by the derivative of Z'(s) at E=O,
5,Z(s) =BZ'/Be(s) ~, 0. From Eq. (2.25') we get

5,Z(s) = —f Vg*[Z(u), u]du

+ f V'B„[Z(u),u]5„Z(u)du .

In particular, this process is differentiable and

D, 5,Z (s) = 5,Z (s)
d
ds

= —Vg*[Z(s),s)+VB, [Z(s),s]5„Z(s) .

(2.27)

Since 5„Z(s) solves an ordinary differential equation of
the first order, it is uniquely determined by the final
boundary condition 5„Z ( t ) =0.

In term of this variation, any process in the class de-
fined by Eq. (2.25') is of the form

Z'(s) =Z(s)+e5„Z(s)+O(e), —T/2 &s & t (2.28)

where O(e) is infinitesimal compared to e The action.
function is defined, for any such Z', by

+E,[( 8, + VA )5,Z( ——T/2)] +0 (e)

(2.30")

with equality only for @=0. In other words, since
8, [Z(s),s]=D„Z(s), each solution of

D„D,Z(s)=V'V[Z(s)], —T/2(s &t (2.33)

Let us define the (Euclidean and finite) action functional
with initial condition by

J[Z( )]=E, f L[Z(s),D, Z(s)]ds+E, A„(Z T&2)

(2.32)

for L the classical (Euclidean) Lagrangian.
Now the inequality (2.30') means that

E, f [ —,
i

8',
i + V(Z')]ds

)E, —, B, +VZ ds
t

+eE, f (B„D 5„Z+V'V5 Z)ds+0(e) .

After an integration by parts in the second term of the rhs
and the use of 5,Z(t) =0, this reduces to

J(Z +e5„Z)—J(Z)

)~ E, f ( D, B, +VV)5„Z—(s)ds

A „[Z'(s),s]= —logO* [Z'(s), s) . (2.29) minimizes the action functional J on the class of varied
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processes (2.25'), with

DiZ( —T/2)=VA~(Z zi2), Z(t)=z . (2.33')

and

U(x, s) = —,
' [B(x,s) B—, (x,s) ] . (2.39)

[iZ' —Z/i= sup E[ i
Z'(s) —Z(s)

/

']
—T/2&s gt

(2.34)

This idea is basically due to Yasue. The term of Eq.
(2.30") in the large parentheses is the Gateau variation of
J in direction 5,Z, and can be denoted by 5J [Z( )](5,Z).
Notice that the boundary conditions (2.33 ) are sufficient
for the minimization. Reciprocally, we define a (local)
minimum for J as a diffusion Z such that J(Z') )J(Z)
for any neighboring diffusion Z' such that 0

V(x,s) =A'V ln
g»

1/2

(x,s)

In contrast to B and B„Vand U have well-defined sym-
metry under time reversal: Vis odd and U is even. They
are therefore more natural in our framework. By Eqs.
(2.13), (2.11'), and (2.12'), V and U may also be expressed
as the gradients

is smaller than a positive number r.
It is easy to show that the condition 5J[Z( )](5,Z) =0

for any admissible 5,Z(s), —T/2 &s & t, with 5,Z(t) =0,
is necessary for the minimality of J. This means that

E, f ( D, B„—+VV)5~Z(s)ds

and

=VS(x,s)

U(x, s) =fiV lnp' (x,s)

=V'R(x, s) .

(2.38')

(2.39')
+E,[( B„+V—A „)5„Z( —T/2)] =0 (2.35)

for any such 5,Z, and then that Eq. (2.33) and (2.33')
hold. In particular, the boundary conditions (2.33') are
therefore also necessary for the minimization of the action
functional (2.32). Let us observe that this is not the most
general variational derivation of Eq. (2.33). In Ref. 17 it
has been shown that the conclusion remains unchanged
even if we do not restrict, as here, the class of variations
to a Markovian one.

However, Eq. (2.33) cannot be a complete specification
of the dynamics of the Markovian Bernstein process Z(s)
since it is not time symmetric. Indeed, it can immediately
be checked that under time reversal, a backward deriva-
tive such as (2.26) changes into

D,g(Z (s),s )~ Dg (Z (s),s )—,
where the forward derivative D is defined by

ap
at

+div(p V) =0

or, equivalently,

aU = ——grad div V—grad V- U .
at 2

According to the definition (2.40) and (2.41),

B,(x,s) = ( V—U)(x, s) =V'(S —R )(x,s) .

(2.40)

(2.41)

(2.42)

Therefore, on the (unconditioned) Bernstein process Z„
Eq. (2.33) modifies to

On the other hand, knowing the form of the probability
density (2.13) and the equations of motion of 0 and 9'
[Eqs. (2.16) and (2.17)] it is easy to find the equation ex-
pressing the local conservation of probability,

g(Z(s+M), s +M) —g(Z(s), s)
Mto As

D» V—D» U=VV

or, using the definition (2.26) and Eq. (2.41),

(2.43)

a +B.V'+ —b g(Z (s),s ) .
fi

as 2
(2.36)

B(x,s) =A' (x,s) .VO

8

Now let us define

(2.37)

The time a symmetry of Eq. (2.33) is not surprising; our
variational principle uses only the Markovian (backward)
property of Z(s) and its (backward) transition probability
q». And such a description is essentially asymmetric. It
is possible to restore the natural symmetry of the (uncon-
ditioned) Bernstein process Z(s), s C I, in observing that a
completely analogous variational characterization is avail-
able with respect to the past sigma algebra H„ the for-
ward transition probability q, and a class of varied pro-
cesses with a common given position in the past ("for-
ward" variation 5). The shortest way is the following.
According to (2.12') the forward drift of Z(s) reduces to

av
at 2

= ——AU —UVU —VV V+ V V . (2.44)

Now a straightforward computation shows that Eq. (2.44)
reduces to

2 (DDZ+D„D„Z)(t) =VV(Z(t)), t EI . (2.45)

This is the time-symmetric (probabilistic) law of motion
we are looking for. We call (2.45) the Euclidean Newton
equation (notice the positive sign of the right-hand side).
Mathematically, it can b; interpreted as a "differential"
version of the Bernstein property (2.3). Equation (2.45) is
not new (cf. Ref. 29). However, it has never been associat-
ed with a probabilistic interpretation of the heat equation
(2.16). The initial gradient condition associated with
(2.33) is preserved during the evolution. So, the compar-
ison with Eq. (2.42) shows that we can identify (up to an
irrelevant additive time dependence) S—R and the action
function (2.29)

V(x,s) = —,
' [B(x,s) +B,(x,s)] (2.38) (S R)(z, t)=A (z, t), t&I .— (2.46)



3638 J. C. ZAMBRINI 35

0s( t) (R —S)(z, t)/h )/2 —S(z, t)/hz, tg —e p e (2.47)

On the other hand, Eqs. (2.41) together with (2.44) consti-
tute a coupled nonlinear partial differential system. This
one is linearized by the change of variables

where 0* is the solution of the heat equation (2.16) in-
volved in this construction. So, Eqs. (2.32), (2.46), and
(2.47) give us the following path-integral representation
for 0*:

t0"(z, t) =exp — E, — L (Z'(s ),D, Z'(s ) )ds — E,A,—(Z' T/2 )—T/2

=exp — E, f— I —,'D, Z'(s)
~

+ V(Z'(s)) Ids — E,A, (—Z' T/2) . (2.48)

This is the Euclidean version of Feynman's path-integral
representation for the solution of the Schrodinger equa-
tion (1.2). The basic difference is, of course, that the mea-
sure used in (2.48) is the well-defined probability measure
of the unique Markovian Bernstein process Z (s) described
in Sec. IIB. Also notice that we need a sum over history
(from time —T/2 to time t) to characterize 0*(z,t)

Before elaborating somewhat the claimed analogy with
Feynman's results, let us observe that a direct derivation
of the Euclidean-Newton equation (2.45) is also possible,
using a method discovered by Yasue. ' Starting from
the reasonable time-symmetric Euclidean concept of ac-
tion

meaning after Secs. IIC and III. Yasue's idea is at the
origin of the stochastic variational approaches of quan-
tum dynamics. In particular, he suggested that in this
context it is natural to construct a diffusion process from
the data of two boundary probabilities.

One of the key concepts of Feynman's path-integral
method in quantum mechanics is the concept of transition
elements. According to the (still partially unjustified) in-
terpretation of 0*(0) as the Euclidean analogue of the
quantum wave function P(ttt*), a transition amplitude in
EQM becomes (for convenience we adopt here Feynman's
backward-in-time convention)

T/2
J[Z( )]=—E f [ ,'DZD„Z+—V(Z)]dt (2.49) 0 y, —h x, T,y 0* x, ——dx dy

T )fc

where E is the absolute (that is unconditioned) expecta-
tion, Yasue defines a notion of criticality for the process
Z, which turn out to be equivalent to the validity of Eq.
(2.45) on I. Here, thanks to the use of the absolute expec-
tation, a time-symmetric concept for any Bernstein pro-
cess, there is no need for an a posteriori symmetrization.
Notice, however, that the Lagrangian of Eq. (2.49) is not
the one used before. It shall be easier to understand its

E [+Bs(Z—T/2 )+Be(ZT/2) ] (2.50)

where X„(x) is the characteristic function of the set A,
which is 1 if x HA and 0 otherwise. Equations (2.5) and
(2.9) show that this is nothing else than the joint probabil-
ity PM(Z T/2&Bs, ZT/2EBB). Similarly, an Euclidean
transition element involving a function of one time,
F(Z (t, ) ), for —T/2 & t, & T/2, reduces to

f T T T Q T0 y, —h y, —t&,x] F x&, t h x, t]+—,x& 0' x, ——dx dx&dy = 0 x],t] F x&, t& 0* x],t] dx&'2 '2 2' 2

=E[F(Z(t) ))], (2.51)

where Eq. (2.13), 0,* a solution of t)tp*/t)t) =Htp* and—
0, the associated time-reversed solution have been used.

1

The Euclidean version of transition elements involving
functions of the process at several separate times is found
similarly.

As observed by Feynman (Sec. 7 in Ref. 7) it is difficult
to understand intuitively quantum transition elements.
He proposes the help of a classical analogy using a small
particle in Brownian motion. It is comforting that EQM
specifies the nature of this analogy in a frame where all
the "averages" are well-defined real expectations.

In Feynman's theory, there also is a concept of func-

tional derivative convenient for the analysis of transition
elements. One shows easily, along the line used before,
that our variational approach is compatible with
Feynman's one. In particular, it follows rather directly
that

E, [ [Z ( t) Z(t —b t) ]2] =AI ht . — (2.52)

This is the Euclidean version of the well-known
Feynman's characterization [cf. (7.50) in Ref. 7] of the
"paths" for a quantum-mechanical particle (but without
the famous, and meaningless, imaginary factor i). So, we
do not have to postulate this kinematical characterization
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as in Eq. (2.25); it is a consequence of the variational ap-
proach.

Before concluding this section on the path-integral for-
mulation of EQM, let us summarize our results. Given
the (Euclidean) Lagrangian of a mechanical system, and
nothing else, we define in (2.32) the regularized version of
action, natural for the class of diffusion processes we con-
sider here. A variational principle gives us the law of
motion of the Markovian process, the Euclidean Newton
equation (2.45). The notion of classical limit is therefore
rather different here from Feynman's path-integral
method. At this limit R=O (i.e., A, =O) there is no longer
physical cause for the diffusion of the classical system.
So the (mean) forward and backward velocities coincide
with the classical velocity and Eq. (2.45) reduces to the
classical (Euclidean) Newton equation. And it is indeed
true that the state of such a classical mechanical system
can be determined by this Newton equation and the data
of two boundary points on I (a pair of 3n =X position
coordinates) which constitute the classical limit of our
data for the Schrodinger system. On the other hand, all
the Feynman's results specific of his approach have here
their Euclidean, and well-defined, analogues. The path-
integral representation of the probability amplitude [Eq.
(2.48)], the transition amplitude [Eq. (2.50)], the transition
element [Eq. (2.51)] are valid. The intuitive appeal of
Feynman's formulation of quantum mechanics is there-
fore completely preserved in this purely classical physical
context. Nevertheless, in order to justify the claim that
the resulting theory is the Euclidean version of quantum
mechanics, we have to describe now its Hilbert-space for-
mulation.

E. Hilbert-space formulation of EQM

We have to find the operators on the Hilbert space v*
(cf. Sec. II C) which are the Euclidean versions of
quantum-mechanical observables. The most natural way
to do it is to come back to the classical limit of EQM,
namely, according to Eq. (2.45) when A'=0,

dU —
I U, HI

BU
(2.56)

where

'" aU aH aU aH
Bzi Bpg Bp( Bzg

(2.57)

The observables form an algebra of functions on phase
space. The Poisson bracket (2.57) gives to this algebra a
structure of Lie algebra.

Since EQM has to contain this theory as a particular
limit, the symmetry under time reversal of the three
operators associated with the basic classical dynamical
variables z, p, and H will be preserved. So, if we denote
by capitals these operators, Z and H will be even and P
will be odd under time reversal. Now, by analogy with
quantum mechanics, it is easy to find these differential
operators on v, . Equations (2.16) and (2.17) show that
the Hamiltonian H is necessarily identical to the quantum
one,

2
b, + V(z) . (2.58)

It follows from the comparison of Eqs. (2.54) and (2.58)
that

P= —AV (2.59)

and the position operator is, as in quantum mechanics, the
multiplication operator

Z=z . (2.60)

The presence of partial differential operators in (2.58) and
(2.59) shows that H8* and P8* cannot be defined for all
vectors 0* in v'. So, we have to be prepared to deal only
with densely defined operators, i.e., operators with
domains dense in v'. Any other quantum-mechanical
operator is transferred in EQM along the same line.

In the (Euclidean) Schrodinger picture of the dynamics,
the (real) probability amplitude 8*=8,*(x), solution of an
initial value problem on ~ &I,

z(t) =V V(z (t) ), t HI . (2.53) ao* =HO*,
at

(2.61)

Since the Euclidean version of the Hamiltonian has to be

H(p, z)= ——,'p + V(z) . (2.54)

BH
z ——

Bp

aHp=
c}z

(2.55)

so the symplectic structure of classical mechanics is
preserved. In particular, the concept of the classical Pois-
son bracket is unaltered, and the equation of motion of a
classical observable U = U(z,p, t) on the phase spaceI "=I "X 1R ", with z;,p;, i =1, . . . , 3n is

(From now on, we do not distinguish anymore in the nota-
tions between the real-time and imaginary-time functions
or operators. It will be clear from the context. ) The
relevant Hamilton's equations take the form

P+= —P . (2.62)

Since v,
*' is a real Hilbert space, a theorem of von Neu-

mann tells us that H and Z have self-adjoint extensions.
P is not symmetric, but it is normal and closable. '

is considered as a vector in the time-dependent Hilbert
space v,*' of the 8* such that (2.19) is satisfied. The sca-
lar product of v,*' is defined by Eq. (2.20), and H, P, and
Z are three fixed (unbounded) operators on this space.

H and Z are symmetric operators, but P is skew sym-
metric. Indeed,

(8*
~

Py*)= —A' I 8Vy'dx

=+Pi J V8qr"dx

= —(P8
~

y*) .

So
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(8'
~

HB')= f BHO*dx

g2= f VOVB*+ VBB' dx
2

=E[ , BB—,—+V], (2.63)

Let us examine the relation between the expectation of
the dynamical characteristics of the Bernstein process in-
troduced in Sec. IIC and the operators H, P, and Z. For
the Hamiltonian, integrations by parts give

(t+ T/2H /~

= Tt+ T/2 l

0—T/2) .

Since H is self-adjoint and positive, a theorem of func-
tional analysis attests to the fact that this is well defined.
Notice that we have conservation of probability:

I I
Tt + T/20* T/2 I I

=—
I I

0*—T/2 I I
that is, Tt + T/2

preserving but not one to one (therefore not unitary) since
the heat equation is not time symmetric. If the index H
refers to the Heisenberg picture and S to Schrodinger pic-
ture, we set

where relations (2.13), (2.11') and (2.12') have been used.
Let us assume that this energy is positive, namely, for all
8, such that the expectation is meaningful,

I
0*(t))H=

I
0*(—T/'2))s, tEI .

This is a constant vector. For an operator, formally,

(t) =e(t+T/2)(H/ttA e —(t+T/2IH/fi t EH

(2.66)

(2.67)

(0*
~

HB') &0. (2.63')

=E[B„], (2.64)

In other words, H is a positive operator on v*. Notice
that Eq. (2.63) is consistent with the form of Yasue's La-
grangian in Eq. (2.46), namely, —, BB„——V. On the oth-
er hand,

(8'
~

PB")=—irt f BVB*dx

d ~~H—A'—AH =[AH, H] fi, t—HI .
dt

= ' at ' (2.68)

The comparison with the classical equation (2.56) yields,
therefore, that, as shown by Dirac for quantum mechan-
ics, EQM is founded on a very simple relation between the
concept of Poisson bracket and commutator,

The Euclidean version of the Heisenberg equation of
motion for operators follows formally from Eq. (2.67),

using the definition (2.11') and (2.13). In the same way,
we obtain

[A,B]=iriI A, B],p, (2.69)

(0*
~

ZO') =E [Z] . (2.65)
where [ A, BI,~ is the operator corresponding to the classi-
cal Poisson bracket defined in (2.57).

The symmetry of the operators H, P, and Z, as defined in
Sec. IIB using the time-reversal operator T, is built into
these relations. For example, P is odd because
(0 (x, t)

~

PO (x—, —t))= —(TB*(x,t)
~

PTB*(x,t)) but
this is obvious since E [B~]=E[V] and the velocity of
(2.38) is odd under time reversal.

In case we have to consider the product of two opera-
tors, for example ZP, we notice that this product has no
symmetry under time reversal. So we introduce the fol-
lowing Euclidean analogue of symmetrization procedure:

ZP = ,' (ZP PZ)+ ,—(ZP+—PZ)—
and we verify, using Eqs. (2.38)—(2.39), that

(8*
~

ZPB*)= E[ZU]+E [ZV]—
=E[ZB,] .

In the Euclidean Heisenberg picture of the dynamics, the
probability amplitude 0* is regarded as constant in the
space v* of the function 8*=0*(x,t) solution of Eq.
(2.61) and such that (2.19) is satisfied. The scalar product
of the two vector of v * is defined by

(tP'(x, t)
~

8'(x, t)) = f y(x, t)B'(x, t)dx,

which is indeed time independent, by Eqs. (2.16) and
(2.17). Our three basic operators, but now functions of
the initial time —T/2, are defined as before.

In order to describe the relation between these two pic-
tures, we introduce the dynamical semigroup T, + T~q by

III ~ PHYSICAL INTERPRETATION

A. Euclidean quantum mechanics and probability

In EQM, the knowledge of a single positive function
8' =8,*(x) in v *' enables us to solve completely the
theoretical problem associated to the classical
Schrodinger's Gedankenexperiment. In particular, the
dynamics of these diffusive particles, for t E-I, follows
from 0,* and can be described in a probabilistic way [Eq.
(2.45)], using the properties of the Bernstein processes, or
in an analytical way [Eq. (2.61)], by Hilbert-space
methods. Since 0* has all the qualitative properties of the
quantum wave function f, we call it the (pure) physical
state of Schrodinger diffusive particles. This is an opera-
tional definition; the knowledge of 0,' is necessary and
sufficient to solve our problem. This does not mean that
we get in this way a complete description of the elementa-
ry processes involved in Schrodinger s experiment. By na-
ture, a statistical description like ours is not relevant for
this purpose. In spite of this physical "incompleteness, " it
is highly unlikely that there is some hidden variable
theory able to complete EQM. Indeed, the data of EQM
are inherently probabilistic and, given these data and the
forces, the physical state 6P,*, t EI, is all the information
we need. Notice, however, that the present concept of
state is not at all the one used in conventional statistical
mechanics. But, according to our comment on the classi-
cal limit (end of Sec. IID), EQM concept of state can
indeed be understood as a probabilistic generalization of a
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classical (pure) state regarded from the variational point
of view. 8,* is also the exponential of a path integral, ac-
cording to Eq. (2.48), that is, the exponential of a sum
over history. But the distinctive feature of EQM is that
0,*, t EI, can be known, in principle, only from the data
of a pair of boundary probabilities and then after the solu-
tion of Schrodinger s system (2.14). This aspect has im-
portant consequences for the physical interpretation of the
theory (cf. Sec. III B).

Also notice that one of the lessons of EQM is that the
unitarity of the evolution is not a necessary requirement
for the conservation of probability [cf. Eq. (2.40)]. To
paraphrase Feynman, the concept of probability is not
modified in EQM. What is changed, and changed radi-
cally, is the method of calculating probabilities. As in
quantum mechanics, the specificity of the theory is con-
nected to the distinction between probability amplitude
8,', solution of the deterministic initial-value problem
(2.16), and probability p, =8,8,*, t EI. It is worth observ-
ing that the emergence of this probability, in EQM, does
not correspond to a more or less mysterious interpretation
but to a theoretical fact, due to the physical nature of
Schrodinger's Gedankenexperiment.

The key particularity of quantum probabilities is the
existence of interference. We consider now the Euclidean
version of this effect. Let 8*(x,t), with t EI, the (normal-
ized) state of a free Schrodinger particle, for example,

—1 /4

8*(x,t) =
b

—bx 2~2(b 2 t 2]+x2t /2(b —t 2)Xe

1 /2( t )
S(xt)— , (3.1)

for IC ] b, b [. From—Eq. (2.47), the probability of the
associated Bernstein process Z, is a Gaussian whose
width at t =0 is determined by b (Gaussian slit of width
b) Using Eq.s. (2.28), (2.39), and (2.39'), one checks that
Z, indeed solves the Newton equation (2.45) for V =0.

In Sec. IIIB it shall be shown that the expectation of
the position for a general free Schrodinger particle moves
with a constant velocity. This constant is zero here, so we
shall interpret (3.1) from a reference frame moving with
the particles.

Now we consider the two-slits state

87s(x t) =~8 (x L,t)+8*(x +L—,t)], (3.2)

where~= z (1+e ~
) and L is a constant. By lineari-

ty of the heat equation (2.16), 8Ts is also the physical state
of a free particle (superposition principle in the cone of
the physical states) through two Gaussian slits at +L.
With our choice of ~, OTs is normalized. Using the nota-
tion of (2.47) and Eq. (2.13) one gets

pTs(x, t) =~ [p (x L, t)+p (x +L,t)—
+ 2p

' (x L, t)p 'i (x +L,t)—
Xcosh[S(x L, t) S(x +L,t)] .— (3.—3)

This is the Euclidean version of the quantum interference

of probabilities. Although the effect of the last term of
Eq. (3.3) is less spectacular than in quantum theory (there
is no constructive and destructive pattern because the
quantum cosine is replaced by a hyperbolic cosine) it is
without analogue in conventional probabilistic models.
What is important is not the form of this interference
term but the fact that

K u, z;t,y K t,y;s, x dy =K u, z;s,x (3.5)

The point is, of course, that K is not a probability; only
the square of its absolute value can be interpreted as a
probability. So the classical intuition behind the very
similar looking formula (3.4) cannot be transposed to Eq.
(3.5). In Euclidean quantum mechanics, both aspects de-
picted by Eqs. (3.4) and (3.5) are simultaneously valid,
without contradiction or difficulties of interpretation.
The analogue of Eq. (3.5) is the semigroup property for
h =h (s,x, t,y), the integral kernel of T, , =e

f h (u, z;t,y)h (t,y;s, x)dy =h (u, z;s,x) . (3.5')

As soon as the potential V is not zero, h is not a probabil-
ity because, for any x in rrz, t in I,

h(s, x, t, rrz)= f h(s, x, t, dy) & 1 . (3.6)

The official interpretation of this is that 1 —h (s,x, t,~)
represents the chance that the particle, starting from x,
has vanished from the state space rrz before the time t.
Actually, there is no physics behind this interpretation; it
is just a verbalization that the dynamics of the particle is

pTs(x, t)~p(» L,t)+—p(x +L, t} .

The real-time version of this is generally presented as not
understandable at all from a classical point of view. It
has been shown in Ref. 16 that to Eq. (3.3) corresponds a
simple relation between the transition probabilities of the
two Bernstein processes associated with the right-hand
side of Eq. (3.1) and the transition probability of the su-
perposed process associated with OTs. As in quantum
theory, the superposition OTs contains information not
present in 8*(x L, t) a—nd 8'(x+L, t) taken separately,
namely, the relative phase of these two vectors [cf. Eq.
(2.47)], S(x L, t}—S—(x+L, t}. It is indeed one of the
surprising lessons of EQM that some classical particles
(Schrodinger particles) may have a phase. Also notice
that according to the definition of the state for a
Schrodinger particle, this state is a ray, i.e., it is actually
defined up to an arbitrary phase. Another specific aspect
of quantum probability is generally used to deny the ex-
istence of particle trajectories in this theory. In classical
theories of Markov processes, if P(b

~

a) denotes the prob-
ability of an event b, given that the event a occurred, then
we have the Chapman-Kolmogorov relation

f P(Z„EB
~
Z, =y)P(Z, Edy

~
Z, =x)

=P(Z„EB
i Z, =x) (3.4)

for any t in between s and u (cf. Fig. 2). Now, in conven-
tional quantum mechanics, a formula like (3.4) only exists
for the probability amplitude denoted by K, i.e., the in-
tegral kernel of the Schrodinger equation (1.2),
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q (s,x, t,y) =h (s,x, t,y)
6&(y, t)
Ox, s

(3.7)

poorly understood.
But, in EQM, the semi-group property for h implies the

Chapman-Kolmogorov equation for the (forward, for ex-
ample) transition probability of our process since, by Eq.
(2.12),

the expectation of the Newton law is reduced to Eq. (3.12)
if we associate the momentum P with D, Z. By the rela-
tion (2.64) we already know that this can be done. In oth-
er words, the Newton law of motion (2.45) can be inter-
preted as a stronger (Euclidean) version of the Ehrenfest
theorem.

By definition, a (Euclidean) constant of motion 3 is
such that

So, we have indeed the right here to use the intuition sug-
gested by Eq. (3.4). In particular, the distinction between
h and q cannot be used to deny the existence of trajec-
tories (but cf. Sec. III B).

[A,H]=0 and =0.aw

8t

It follows from (3.9) that for any physical state 0,*,

(3.13)

(e,'
~
~e,')= (~ )(t) . (3.8)

The evolution of (3 ) is described by the expectation of
the Heisenberg equation of motion (2.68),

(3.9)

This gives the connection between EQM and (Euclidean)
classical mechanics. Let us apply (3.9) to the interesting
case where [cf. Eq. (2.54)]

H= —2P + V(Z) .

Then, by Eq. (3.9),

d 1(Z) = ——([Z,H]),
dt

d 1(P) = ——([P,H]) .
dt

(3.10)

(3.1 1)

To compute these commutators, it is sufficient to know
their classical form and to use the relation (2.69). Since

Iz,HI = —p and [p,HI = —VV

we get

dt
(z) =(p),

dt
&p)=&vv(z)) .

(3.12)

This is the Euclidean version of the Ehrenfest theorem, to
compare with the classical Hamilton equation (2.55). Its
physical content is analogous to that of its quantum ver-
sion. It is interesting to compare also Eq. (3.12) with the
Newton law of motion (2.45) derived from the variational
principle. Taking the expectation of this Newton law and
permuting a time derivative with the expectation we find

dt
E [D„Z]=E[ , (DDZ+D„D~Z—)]=E [VV] .

Since, on the other hand,

d
dt

E [Z]=E [D„Z]

B. Physical content and questions of interpretation

Let 3 be a linear operator in v'. According to Sec.
II E the expectation value of 3 in the physical state 8,* is
given by

(3.14)

For example, the Hamiltonian H of a conservative system
is a constant of motion. Of course, it is also possible to
directly verify this via the relation (2.63) and the equa-
tions of motion (2.41) and (2.44). As another example, for
a free evolution ( V=O), we find (P) =const, as in quan-
tum mechanics, so the expectation of the position, (Z),
moves linearly in time. In this sense, the dynamical struc-
ture of EQM is really an analogue of the dynamical struc-
ture of quantum mechanics.

Now we come to some points of physical interpretation
in EQM. From the probabilistic point of view, in EQM,
we are dealing with a new class of diffusions, the Bern-
stein processes. Since, mathematically, any Markov pro-
cess is Bernstein and since the starting distribution (2. 10)
of our Bernstein process Z, can be understood in Marko-
vian terms (forward and backward) one could interpret
the Bernstein property as a minor aspect of the construc-
tion. It would result in a physical mistake. Bernstein
processes are intrinsically time symmetric, in contrast
with the description of a Markov process in terms of the
transition function, which is essentially asymmetric. It
may be technically useful to take into consideration this
partial information associated with the Markovian point
of view, and this is what we did in Sec. IID in order to
define the most natural concept of action. But after-
wards, we have to restore the time symmetry lost in using
this partial information. Let us emphasize that the equa-
tion of motion of EQM is the Newton law (2.45) and not
the heat equation. Of course, it is also possible to sym-
metrize a priori the diffusion processes in insisting on the
simultaneous validity of the forward and backward Mar-
kov descriptions. But no physical insight is gained by this
a priori requirement, of purely mathematical nature. If
we know (how?) before beginning the construction that
the resulting theory has to be time symmetric, this is suf-
ficient but, from the operational point of view, the really
natural question is, from what kind of experimental data
can we get time-symmetric diffusion processes?

The concept of Bernstein processes answers clearly this
question: these processes can be constructed only from
the data of two boundary probabilities p T&2(x)dx and

pT~2(y)dy. So we have to draw interpretative conse-
quences from this unusual requirement.

The first one is that the definition of the Bernstein pro-
cess Z„ for any —T/2 (t & T/2 requires knowing infor-
mation only available after the completion of the experi-
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ment. Indeed, since we use in a crucial way the final
probability density pz-&2(y) to solve the Schrodinger sys-
tem (2.14), already at t = —T/2+ e (for e arbitrarily
small) the probability (2.13) of the process and its back-
ward drift involve this future information. For example,
in the two slits experiment, przq(y) certainly depends on
the distance 2L between the slits so, at t = —T/2+a, the
process Z, shall depend on this parameter, even if T is
large and the screen with the two slits is set up far from
the source of diffusive particles. Therefore, the construc-
tion of the process Z, requires us to take into considera-
tion the whole experimental setup (the black box of Fig.
1).

A consequence of this first observation is that the con-
cept of trajectories naturally associated with the diffusion
process Z„ t&I, that is a continuous function t~Z, (to)
for a fixed to in the path space II, cannot be used in this
theory without any warning against a naively realistic in-
terpretation. Most of the questions about the localization
of the particle in the setup are indeed relevant only after
the experiment is concluded. And if the trajectories are
regarded as physically real, they are determined by some
future information regarding the setup. This strongly
suggests that in the physical context of Schrodinger exper-
iment, the random trajectories of the classical particles are
just a posteriori theoretical construction associated with
the solution of our theoretical problem.

The direct physical meaning of the superposition prin-
ciple for physical states (cf. two-slit experiment, Sec.
III A) may also be questioned. EQM is the statistical
theory of some relatively rare classical probabilistic
events. It is hardly credible that there is some kind of
physical "interaction" between them responsible for the
superposition effect [Eq. (3.3)). This effect certainly ap-
pears at the statistical level as a consequence of the linear-
ity of the heat equation (2.16) but not as the expression of
any kind of physical interference.

Also notice that the same kind of argument leads to a
strong limitation of any naive conception of measurement.
For example, given a couple of boundary probabilities it is
clearly out of question to do an extra measurement some-
where in between the source and the screen without dis-
turbing the final probability. This extra measurement
would correspond to a change in the content of the black
box (as the introduction of a new slit) and this was exclud-
ed by hypothesis.

Actually, a nontrivial question has been avoided until
now: What is really a measurement in EQM? In the
frame of conventional quantum mechanics, the problem
appears at the very beginning of the theory, namely, in the
interpretation of the uncertainty relations. So, before
describing the Euclidean version of the problem, we first
show the analogue of the famous Heisenberg result
(~= IR, for simplicity). As suggested by Eq. (2.63), we
define

Posi't i'on

FIG. 2. Chapman-Kolrnogorou equation.

Whereas (3.15) is positive by construction, this is a priori
not the case for (3.16). It is therefore natural to em-
phasize the hypothesis of positive and finite kinetic ener-

gy

0( VOVO*dz ( ~ . (3.17)

In the definitions (3.15) and (3.16) it has been implicitly
assumed that

z = zOO*dz (3.18)

and [cf. Eq. (2.64)]

p = — OVO*dz (3.19)

bz Ap= —(bp +M )

f2
VOVO + —z OO dx

2

=(0*
i
H„H*) (3.20)

where Eq. (2.63) has been used, for H„ the Hamiltonian
of the harmonic oscillator,

are both zero. If this is not the case, but (3.18) and (3.19)
are, respectively, zo and po, replace z by z —zo in (3.18)

and change the phase of 9* by O*e ' in (3.19). Then, the
new means will vanish. We also can assume that hz =Ap.
Indeed, if y is a positive constant, the substitution
8„", (z) =&y8'(yz) (which preserves the normalization of
the original state) produces hz„, =yAz and bp„,
=(I/y)bp. So, M„, bp„,„=M.bp and we can choose y
such that M =bp. When this is the case, [hz —bp]~=0
so

and

b, z = J z 88'dz

Ap =A VOVO*dz .

(3.15)

(3.16)

2

The positive [by (3.17)] functional (3.20) is minimized by
the analytically continued fundamental state of H„,
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8';„=q&p(x )e

(~)—I/4 —X /2R e
—(1/2)t (3.21)

The reason for this will be clear in Sec. IV. The corre-
sponding minimal value of the functional (3.20) is A'/2.

So, we obtain in the general case

bz Ap) —.
2

' (3.22)

In the quantum-mechanical context, Heisenberg interpret-
ed this relation as referring to mutually exclusive experi-
mental arrangements, in which position and momentum
cannot be simultaneously measured. This is not the only
possible interpretation. The relation (3.22) can also be re-
garded as a statistical result without reference to the mea-
surement of z and p. In the classical context of EQM,
this seems to be the only natural point of view since the
lower bound A'/2 (actually the classical diffusion constant
A, /2) can be made, in principle, arbitrarily small.

Nevertheless, let us come back to the case of a Gaussian
slit (Sec. IIIA) from a different point of view. Suppose
that free diffusion particles start at time —T/2 from the
position 0 and that it is known that, at time 0 these parti-
cle are within distance +&b/2 from the origin. How can
we be a priori sure of this localization property at time 0?
In knowing the existence in the setup of a slit of width re-
lated to the parameter b, and able to constrain the parti-
cles. So, after the slit (at positive time t) it is reasonable
to expect, from (3.5'), that the state of the free particles is
given (up to a normalization) by

8*(x,t)= ho ——,0,0,y ho(0, y, t,x)dy, (3.23)
2

1— b

T/2

with 0&b & T/2, 8*(x,t) is the one given in Eq. (3.1).
Since this 8'(x, t) is already decomposed in an even and
an odd term under time reversal, according to (2.44), then
we also know explicitly the associated 0(x, t).

The drifts of the corresponding Markovian Bernstein
process are given by Eqs. (2.11') and (2.12')

(3.24)

They solve the free Newton equation (2.45) for
i

t
~

&b
It follows from Eqs. (3.15) and (3.16) that

2

Qp2 ~2
2b

' 2 2b
(3.25)

where ho is the kernel of the heat equation for V =0 (the
free kernel) and g=g(b) is a constant ensuring the locali-
zation of the particles at time 0. The introduction of the
characteristic function X( ~ ~)(y) in between the two free
kernels enables us to replace the limits of integration on y
by —oo and + oo. One checks easily that, replacing

X( «g(y) by the more manageable localization function
e —~ i&'for

1/2

(since
i

t
i

& b, M )0). The point is that, according to
this Ap, if the slit is very narrow, Ap is indeed very large.
This could be interpreted as the effect of an "observation"
of the particle through the slit at time 0. Notice in partic-
ular that there is no contradiction between the validity of
the Newton law of motion and this a priori localization of
the position. So, one could argue that the equation of
motion of EQM can describe some "measurement" if we
content ourselves with this very indirect notion of mea-
surement.

It is also worth observing that, in the condition of va-
lidity of Eq. (3.3) for the two-slits case, we have no indica-
tion which slit the free particles go through, although
these classical particles certainly go through either the
first or the second slit. To have such an indication is
equivalent to modifying the content of the setup, intro-
ducing an extra physical device whose effect will be to
modify (at least) the final probability. A measurement
corresponds to an interaction between our system and the
setup in the black box. A free evolution with one slit be-
tween S and 0 (Fig. 1) is different from a free evolution
with two or three slits. In EQM, it is clear from the be-
ginning that we are describing the whole setup. Is it
necessary to develop a measurement theory for EQM as
counterintuitive as the quantum one (assuming that this
one deserves the appellation of "theory")? According to
von Neumann, only the observation process is at the ori-
gin of the probabilistic nature of quantum mechanics;
when the system is isolated, its behavior is deterministic.
But nothing is deterministic in EQM (for nonzero dif-
fusion constant) and the system is never isolated; it is in
interaction with a medium responsible for its diffusion.
So, whereas von Neumann concludes that the quantum-
mechanical equations of motion do not describe the mea-
surement process, it is not evident that the analogue is
true in EQM.

Is it necessary to postulate, in EQM, that only opera-
tors defined according to the rules of Sec. IIE can be
measured. But, if so, is it possible really to describe these
measurements? On the other hand, such a postulate
would strongly reduce the number of observable random
variables in EQM. What about the physical meaning of
random variables not associated with operators?

These are some of the interesting open problems in the
interpretation of EQM. Not accidentally, they are very
reminiscent of the difficulties we meet in quantum
mechanics. '

In summary, starting from the theoretical problem as-
sociated with the Schrodinger Gedankenexperiment, it has
been shown that this problem is well posed and that its
solution is Euclidean quantum mechanics, a statistical
theory of some diffusive particles. Although this theory
is perfectly classical, it reveals particularities without
equivalent in classical probabilistic models, suggesting
limitations in radically realistic interpretations of its re-
sults. In particular, the state I9* of Schrodinger's particle
appears to express more a kind of statistical relation be-
tween the system (the particles) and the black box (the ex-
perimental setup) than the exclusive properties of the sys-
tem. Such a limitation of the realistic interpretation of
this particular theory does not mean that we have to re-
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nounce realism (even in quantum mechanics this is not
necessary ) but that, at the level of description associated
with our starting hypotheses, some elementary phenomena
are not accessible.

IV. RELATIONS WITH QUANTUM MECHANICS

iR =HP
C}T

(4.1)

for H the Hamiltonian of Eq. (2.16). We also assume the
(weak) regularity condition that the expectation of its en-

ergy is positive and finite, i.e.,

$2
0& f I

Vf, + V
~

((it,
~

dx—:(Q, I
HQ, ) & oo,

(4.2)

where (
~

) is the inner product in the quantum-
mechanical space L (~). In analogy with Eq. (2.47) we
represent this solution g, by

,t(X ) e(R+iS)(x, ~)/i(x, 'T
g
—e (4.3)

Going further in the analogy, we define, as in (2.38') and
(2.39') two vector fields u and v on ~ X.I such that

u (x,r) =VR (x,r),
v(x, r)=VS(x, r) .

(4.4)

Now, the gradient of the quantum phase, VS, is the analo-
gue of the classical velocity. By assumption, we know in
particular the initial velocity,

A. From quantum mechanics to EQM

The main technical difficulty of EQM is that we cannot
determine the Bernstein diffusion process Z„ t EI, before
solving Schrodinger s system (2.14). Except for few sim-
ple cases (mainly when the two given boundary probabili-
ties are Gaussian) this is very hard. Of course, the theory
is consistent anyway since we have existence and unique-
ness of the solution for (2.14). But it would be interesting
to know how to produce systematically some dynamical
Bernstein processes without solving this complicated non-
linear integral system. We are going to describe such a
method; the result also will justify our appellation of "Eu-
clidean quantum mechanics" for the theory presented be-
fore. Nevertheless, let us emphasize that this is far from
being the only way to produce these processes. '

Suppose that we are given a (strict) solution 1it, of the
Schrodinger equation (1.2) on the same time interval I,

Knowing the dynamics of t)/, for TEI [i.e., the
Schrodinger equation (4.1)] one obtains the following
(real) equations of motion for R and S,

BR
at

as
at

= ——AS —VR.VS,
2

bR ———,(V'R) ——,(VS) +- V .
2

(4.7)

(4.7')

Taking gradients and using the notations introduced in
(2.38') and (2.39'), Eq. (4.7) reduces to Eq. (2.41) and Eq.
(4.7') to Eq. (2.44). This means that Eq. (4.6) is nothing
but indeed that a solution 8,* of the heat equation (2.16) in
terms of which a Bernstein process Z(t), t HI, is defined.
Since, under time reversal, R~R and S~—S, the rela-
tion (2.18) shows that we also get in this way the associat-
ed solution of the backward heat equation (2.17), namely,

8( t) (R(x, t)+S(x, t)]/rt (4.6')

and

p(y)2R(y, T/2)

(4.8)

as far as they fulfill the conditions of existence and
uniqueness for the solution of this system.

In summary, to each (regular enough) solution of the
Schrodinger equation (4.1) is associated, after analytical
continuation in time, a unique Markovian Bernstein pro-
cess Z„ t E.I. The point is that this process is explicitly
determined in this way without solving the associated
Schrodinger system. This gives us an easy and systernati-
cal way to produce Bernstein processes needed for EQM,
and then the solution of the Newton equation (2.45),
whose existence is already ensured by the results of Sec.
II B. The energy condition (4.2) for any square integrable
t)/ [with the self-adjointness of H in L (~)] is the condi-
tion under which the analytical continuation in time of
the quantum unitary group of evolution is indeed
mathematically licit. It is simple to verify that its Eu-
clidean version corresponds to the positive energy condi-
tion of Sec. IIE,

But, by construction of the Bernstein processes (cf. Sec.
II B), 8,* and 8„ t HI, also are, respectively,

g+ —(t + T/2)H/fig+
, =e T/2 an d 0 =kg*

for OT/2 and 0* T/2 the solutions of the Schrodinger sys-
tem (2.14) with our imposed (by hypothesis) boundary
densities of probability,

( )
2R(x, —T/2)

p T/2x =e

v, =VS(x,o) . (4.5)

So we regard the representation (4.3) of f as a function of
vo, denoted by g„(x,T) and define its analytical continua-

tion in time, t =i T, (T real) by

0& f V8(V8t*+ V8t8t* dx & oo
2

or, according to Eq. (2.63),

0&(8,'
~

H8,*)& ~ .

(4.9)

(4.9')

8'(x, t) =g;„(x, it)—
[R;„(x,—it)+iS,.„(x,—it))/5

=e

[R(x, t) —S(x,t)]/k (4.6)

Notice that, when V=0, this constraint is fulfilled, ac-
cording to our positive and finite kinetic energy condition
(3.17). So (4.9) is a condition on the potential V, satisfied,
for example, if Vis bounded below.

A crucial qualitative feature of the Bernstein process
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B. From EQM to quantum mechanics

Suppose that we know a Bernstein process Z„ t HI,
constructed from a solution of the Schrodinger equation
(4.1) according to the method of Sec. IVA. In other
words, we have existence and uniqueness of its measure
PM, consistent with the finite-dimensional distribution
(2.10).

Taking the analytical continuation backward in (4.6),
~= —it, we get the following equations of motion for R
and S associated to P by (4.3):

aR = ——AS —VR VS,
c}7 2

as =—AR + , (VR) ——,(V'S) ——V .
a~ 2

(4.11)

(4.11')

Notice the changes of sign in (4.11') with respect to (4.7').
Taking gradients as before and using the notations intro-
duced in (4.4}, one gets the real-time analogue of Eqs.
(2.41) and (2.41'), namely,

Bu i6= ——grad div v —grad v-u,
a~ 2

Bv =—Au +uVu —vVv —VV .
BT 2

(4. 12)

(4.12')

As Eq. (2.41') is shown to be equivalent to the Euclidean
Newton equation (2.45), Eq. (4.12') modifies to

follows from this property (it has already been shown in
Sec. III B that (9,*

~

H8t*), t HI, is a constant of motion).
By its very physical nature, EQM is a local theory in time.
According to the hypothesis of Schrodinger s Gedank-
enexpeiiment Sec. IIA, the experiment takes place in an
arbitrary, but finite, time interval I and our aim is to con-
struct a diffusion process Z, on I compatible with given
boundary probabilities. We do not care about what hap-
pens outside I, because our experimental data are ir-
relevant there. Nevertheless, suppose that we insist on ex-
tending the Bernstein process Z„solution of our problem
on I, outside this time interval. It follows from Eq. (2.63)
and the definitions (2.38) and (2.39) that the conserved en-

ergy (4.9) may also be written as

e =f ( —, U ——, V + V)(x, t)p(x, t)dx . (4.10)

Let us pick a value for e, necessarily positive and finite by
(4.9). As time develops outside I, U and V can get large
in such a way that their contribution to e cancel. There-
fore, the definitions (2.38) and (2.39) show that nothing
prevents the drifts of Z„B, and B, , from getting arbi-
trarily large in a finite time. In this case, the solution of
the underlying stochastic differential equation can reach
infinity in finite time with positive probability. This
violated the hypothesis under which the existence and
uniqueness of this solution is guaranteed. This
phenomenon of "explosion" shows that Z, is only a local
solution of the Euclidean Newton equation (2.45) in gen-
eral.

Now we consider independently the question of "back-
ward" analytical continuation in time, from EQM to
quantum mechanics.

,' (D—D„X+D„DX)(r)= —V V(X(r) ), (4.13)

where X is a Markovian diffusion process whose forward
and backward drifts, denoted by b and b, are related to u

and v by the same formula as in EQM [Eqs. (2.38) and
(2.39)],

v(x, r) = —,
' [b (x,r)+b„(x,r)],

u(x, r)= —,
' [b(x,r) b„(—xr)] .

(4.14}

(4.15)

0( —,u + —,v + V x)~ p x)~ dx ( oo (4.2')

for the quantum probability density p(x, r) =
~
P(x, r)

~

This way to associate a Markovian diffusion process X
with a solution of the Schrodinger equation (4.1) has its
origin in the works of Fenyes and Nelson. " ' A func-
tional analytical proof of existence and uniqueness of this
process under the finite kinetic energy condition (its posi-
tivity is trivial) and for a rather large class of potential V
has been given recently by Carlen. From the probabilis-
tic point of view, the main qualitative difference between
the processes Z, and X is the following. In the real-time
theory, the energy condition (4.2') involves only positive
signs under the integral. So, u and v are prevented from
getting arbitrarily large since neither can get large without
the (conserved) value of energy getting large. So the drifts
b and b, remain always bounded and the process X, can
be arbitrarily extended outside the starting time interval I.
This is, of course, what is expected in the quanturn-
mechanical context.

Both mathematical construction and physical interpre-
tation of Nelson's theory ("stochastic mechanics") and
EQM are very different. From the mathematical point of
view, Nelson's theory produces global (in time) solutions
of the Newton equation (4.13), itself derived from several
versions of variational principles involving stochastic gen-
eralizations of the given classical Lagrangian [in the real-
time analogues of the action (2.32), the Lagrangian is not
the classical one; cf. (14.5) and (14.25) in Ref. 13 and (4.3)
in Ref. 16]. From the physical point of view, the dif-
fusion process X, is interpreted as the result of an interac-
tion (presumably electromagnetic) of the starting classical
mechanical system with a hypothetical background field.
In other words, this is a remarkable attempt to describe
quantum effects in terms of a realistic classical field
theory, without any reference to the role of the observa-
tion.

The physical observables of the theory are random vari-
ables and the conventional quantum identification of ob-
servables with self-adjoint operators is regarded as ep-
istemologically unsatisfactory. ' In particular, any in-
trusion of noncommutativity in this probabilistic frame
would be unnatural.

Euclidean quantum mechanics is the statistical theory

The diffusion coefficient of X, is the same as the one of
Z, . Notice that the acceleration of the Newton equation
(4.13) is different from the one involved in EQM [Eq.
(2.45)] and that the classical force appears with the
correct sign for a real-time theory.

In terms of u and v, the energy condition (4.2) modifies
to
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of some (relatively improbable) classical diffusion process-
es. Its dynamics is contained in the local (in time) solu-
tions of the Euclidean Newton equation (2.45), derived
from a variational principle involving exclusively the clas-
sical (Euclidean) Lagrangian.

The existence of a Hilbert-space formulation of the
theory is very useful. In particular, the relation (2.69) be-
tween classical Poisson bracket and commutator, used in
conjunction with the Heisenberg equation (2.68), strongly
limits the freedom of choice for the operators correspond-
ing, in EQM, to classical dynamical variables and then for
the definition of the associated random variables (Sec.
IIE). Moreover, this relation (2.69) is the key to the com-
patibility between the Newtonian aspect of EQM and the
noncommutative aspect of its Hilbert-space formulation.

Experience has taught us that it is hard to understand
the probabilistic meaning of the real-time acceleration of
(4.13). In Ref. 17 the reason for this has been analyzed;
the result is that, for a fixed potential V, the real-time
analogue of the transition probability involves a kernel
which depends nontrivially (but without any physical con-
tradiction) on the starting solution of the Schrodinger
equation. This means that the class of real-time processes
associated to a given potential V contains diffusions very
different from each other. In EQM, this is not the case
since, according to Eq. (2.12), all the corresponding transi-
tion probabilities are perturbations of the same kernel
b (x, t —s,y).

From the physical point of view, EQM is a classical
statistical theory. The source of the fluctuations is the
same as the one in any classical diffusion experiment [al-
though, for convenience, the classical diffusion constant X

of Eq. (2.1) has been denoted here by R]. The relatively
exceptional nature of these diffusions appears in the fact
that they are time symmetric. Moreover, their statistical
theory shows qualitative properties without analogue in
regular statistical mechanics. Actually, it has been shown
that the construction of this theory requires the introduc-
tion of concepts generally considered as the exclusive
privilege of the quantum domain. In particular, this sug-
gests some limitations in a truly realistic interpretation of
the resulting diffusions, and also that a formulation of the
observation process in this frame may be indirect and
tricky.

In spite of the omnipresence of the mechanical refer-
ences in EQM (trajectories, velocity, acceleration, La-
grangian, action) there is no assertion that this theory is of
mechanical nature. For example, one shows in Ref. 16
that, due to the definition of the Bernstein process of
EQM in the configuration space ~, EQM is a nonlocal
theory, in complete analogy with quantum mechanics. [In
Ref. 16, rhs of Eq. (4.26), the gradients 7& and V'2 are ex-
terior to the summation symbols g.] It is worth notic-
ing, however, that this nonlocality is not surprising in our
context since the Schrodinger Gedankenexperiment takes
place in a medium responsible for the diffusion of the
classical system. Indeed this medium is in contact with
all the details of the experimental setup. From this point
of view, the existence of EQM, where the reality of this
underlying medium is obvious, lends weight to Nelson s
background field hypothesis in quantum mechanics. The

only mechanical aspect of EQM lies in the fact that noth-
ing but the classical information is used to develop it.
Nevertheless, it is more consistent, physically, to interpret
EQM as an extension not of classical mechanics but of
statistical mechanics.

In one class of physical situations, the results of
Nelson's theory and EQM almost coincide; this is in the
description of stationary states. Suppose that the poten-
tial V of our Hamiltonian [Eq. (2.16)] is such that Eq.
(2.16) admits a stationary solution

Bj*. (x, t) =rp)(x)e (4.16)

for a real p~ (this is not a restriction) and in the one-
dimensional case rrz = R. Equation (4.16) is clearly an
analytically continued quantum stationary state. Accord-
ing to the method of Sec. IVA the two associated boun-
dary densities of probability for the Schrodinger system
are

T= T=2
p~ x, — =p~ x, =rp&(x) (4.17)

E( —U2+ —u ) =(~b + (4.18)

where Eqs. (4.14) and (4.15) have been used. This corre-
sponds to a specific time discretization if we introduce the
definitions (2.26) and (2.38) for D„X(r)=b„( X( )r, )rand
DX(r)=b(X(r), r) The point is .that (4.18) is far from
being the only time-symmetric candidate for a kinetic en-

ergy. Consider

E ( —,
'

U ——,
'

u ) =E ( ,
' bb, ) . — (4.19)

This is also a reasonable (time-symmetric) candidate for

The problem is that, except for the ground state, this in-
variant probability has zeros (nodes), in contradiction to
the hypothesis under which the existence and uniqueness
of the solution of Schrodinger s system (2.14) is assured.
In Ref. 17 we show how to decompose the state space
~= IR into connected domains A between the nodes, in
order to construct a Bernstein process on each domain A.
It appears that the kernel h =hN is different in each
domain, due to the effect of the nodes at the boundaries of
the domain. Let us also underline that the specific contri-
bution of EQM, in all these stationary situations, is to
describe in a completely explicit way the resulting dif-
fusion processes. In any case, this partial coincidence of
some results of stochastic mechanics and EQM shows
that several outcomes of Nelson theory involving ex-
clusively stationary processes can be reinterpreted in the
context of Euclidean quantum mechanics.

Before concluding, it is interesting to compare the
Feynman path-integral method, Nelson's theory, and
EQM apropos of the question of time discretization of
physical quantities. It is notorious, at least since
Feynman's historical paper that we are often faced with
an excessive freedom when we are looking for the expecta-
tion of the time-discretized version of functions of opera-
tors. For example, let us consider the expectation of the
kinetic energy. According to Eq. (4.2'), in Nelson's theory
this energy is given by
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this energy in Nelson's theory [if we adhere to its point of
view that the operators formulation of such an expecta-
tion does not necessarily give the right choice; if we do
not, Yasue's kinetic energy (4.18) is the correct expres-
sion]. The form (4.19) is strongly reminiscent of the
choice advocated by Feynman. As a matter of fact, a ki-
netic term like (4.19) is only natural in EQM, according to
Yasue's action (2.49) [and the energy (2.63)j, namely, in
the theory founded on the heat equation and not on the
Schrodinger equation. This means that at least part of the
freedom in these time discretizations is due to the coex-
istence of two (well-defined) probabilistic theories rather
close in some aspects of their kinematical structure, name-
ly, Nelson's theory and EQM.

V. CONCLUSIONS

Fifty years ago Schrodinger concluded the paper which
is at the origin of the present one in pondering over the
possibility of describing quantum phenomena from the
data of two boundary probability densities. ' EQM
answers positively to this question. Euclidean quantum
mechanics is designed to be a tool, in the same sense as
the Feynman path-integral method. The principal aim of
the theory lies in its extension to Euclidean quantum
fields. In this context, what is the analogue of the dynam-
ical equation (2.45)? What is the analogue of the locality
in time of the processes solving this equation, and its
physical meaning? Since the action and the path-integral
representation for the solutions of the heat equation are
quite different here from the Feynman-Kac formula, is it
possible to have a better control of the divergences? These
are some of the first problems to investigate.

In any case, the existence of EQM shows that there is
indeed a physical point in analytical continuation in time,
but that the resulting Euclidean dynamical theory is
essentially without connection to the Feynman-Kac for-
mula.

Let us observe that the construction given here is ex-
tended without difficulty to the case where the starting
classical system is subject to an external electromagnetic
field. It is also virtually unchanged if the configuration
space ~ is a Riemannian manifold with invariant volume
d „x=Vcdx, for c =(c;~) the Riemannian metric tensor
and for the starting heat equation

V'V;0*+ VO'

considered in U *(rrt, d x).
On the other hand, EQM is the closest classical analogy

of quantum mechanics and may also be very useful at this
level ~ Most of the counterintuitive particularities of quan-
tum mechanics are already present in this classical statist-
ical theory. The point is that the physical context of
Schrodinger's Gedankenexperiment is far from being as
trivial as the one of regular diffusion experiments.
Nevertheless, it would be surprising not to be able to use
EQM for purifying the foundations of quantum mechan-
ics of some pseudoparadoxes already present in its classi-
cal analogue.

To what extent can the interpretations of Sec. IIIB be
directly transposed in conventional quantum mechanics?
Is it, or is it not, possible to avoid in EQM the elaboration
of a measurement-theory analogue to the quantum one?
In any case, EQM seems to be compatible with several in-
terpretative approaches.

The most intriguing point of EQM may be that it con-
stitutes a call for (subtle) experiments. In spite of the
message of the Copenhagen school, is it not possible to set
up some of the classical diffusion experiments suggested
here and whose qualitative results are as puzzling as the
ones of quantum theory? In a recent paper concerned, in
parts, with the real meaning of quantum mechanics,
Feynman considered the possibility "of things being af-
fected not just by the past, but also by the future, and
therefore that our probabilities are in some sense 'illusory. '

We only have the information from the past, and we try
to predict the next step, but in reality it depends upon the
near future which we can't get at, or something like that.
A very interesting question is the origin of the probabili-
ties in quantum mechanics. "

Maybe EQM may help to reconsider this kind of ques-
tion and, at the very least, the relations between quantum
mechanics and classical probabilities.
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