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Diverse semianalytical constructions of wave functions, approximate or exact, are combined
through the introduction of novel concepts. These include representing wave functions by a mosaic
of analytic functions of a phase variable P, each of them adapted to the problem's features over a re-
stricted range of a coordinate x, and focusing the numerical effort on the metric relation between P
and x. This shift of attention from the wave function proper to metric relations is viewed as the
essence of the Milne approach and of its WKB approximation. Illustrative examples are worked out
and discussed.

I. INTRODUCTION

The initial Wentzel-Kramers-Brillouin (WKB) (Ref. 1)
approximation for solving one-dimensional wave equa-
tions is simple and transparent but subject to notorious
shortcomings. A number of variants have been intro-
duced since the early days of wave mechanics to compen-
sate these shortcomings .g., by using Airy functions
instead of sines often with overlapping elements. Each
variant appears to stem from a limited context, with
scarce illustration by specific examples. One aim of this
paper is to cast these variants in a single mold and to il-
lustrate their operation.

A second and more novel aim is to stress and exploit
the intimate connection between the WKB approximation
and Milne's exact method of solving wave equations in
terms of a sine function. ' Judicious combination of ex-
isting procedures will afford a transparent and economic
path to semianalytical representation of the exact solution,
at least in the examples to be presented here.

Various extensions of the WKB method will be
rederived in Sec. II by rescaling the independent and
dependent variables of a wave equation. Scaling —a unify-
ing feature of WKB and Milne approaches —replaces the
space coordinate x by a suitably defined phase of oscilla-
tion P(x) of an analytical function whose nodes lie, by
definition, at specified values of its phase variable. Phase
and amplitude functions are then related through the
wave equation, often in the form of dispersion relations.

Section III will show how a Milne treatment of a wave
equation selects at the outset an analytical representation
of its solution and then proceeds to calculate the metric of
the scaling transformation instead of calculating the wave
function itself. This procedure affords inherent economy
because the metric generally varies smoothly in space, in
contrast to the oscillations of the wave function. A suit-
able ansatz may even represent the metric in terms of a
few parameters. guidelines for selecting sensible repre-
sentations will stress the use of different analytical repre-
sentations in different ranges of the space coordinate, as

d ik
d(x/X)

d ln(k ) « ik i, dA, /dx «1 .

(3)

When derivatives of k(x) are disregarded altogether, the
solution of (1) is represented by a trigonometric function

y (x) cc sinS(x), S(x)=f k(x')dx', (4a)

for k (x) )0, and by

y (x) ~ exp+ f ~

k(x')
~

dx' (4b)

for k (x) &0. Integration constants omitted in (4) are
determined by boundary or phase-matching conditions.
The first-order correction to the solutions (4) yields the
familiar expressions

y(x)=[k(x)] ' 'sinf k(» )dx'+O(

ldll,

/dx

(sa)

in the quantum-defect treatment of atomic wave func-
tions. '

This paper amounts, in essence, to setting a policy for
the better use of previously known analytical tools. [This
policy has emerged in the course of implementing an adia-
batic (i.e., WKB) approach to nonseparable multidimen-
sional wave equations, " a subject of special interest to
quantum chemistry. ' The policy appears well suited for
calculating Schrodinger eigenfunctions in two or more di-
mensions in terms of suitably curved phase coordinates,
but its application remains to be developed fully. ]

Here we deal with the one-dimensional wave equation

d y/dx +k (x)y(x)=0 .

The WKB approximation to y(x) presupposes slow varia-
tion of k (x) over distances of the order of the wave-
length

A, = 1/k(x),

a condition represented by the equivalent relations'
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y(x) =
J

k (x)
J

' exp[+ f J

k(x')
~

dx']

+0(
J

dkldx
J

') . (5b)
6f dP —&'(P) Y'(Q)

dP
(10)

The factors
J

k(x)
J

' in (5) normalize the function
(4) to reflect a focusing effect of variations of k (x),
namely, the concentration of wave intensity where k (x)
is lower. (In wave mechanics a particle is found with
higher probability where its speed is lower. ) The solutions
(5) clearly fail at "classical turning points" where

J

k (x)
J

vanishes and their amplitude diverges. "Connection for-
mulas" were introduced early in wave mechanics to
bridge the gap between ranges of x where (5a) or (5b)
holds, respectively. Soon thereafter more general pro-
cedures were developed that bypass the difficulties gen-
erated by nodes or poles of k (x).

"Extended WKB" procedures, partially codified by
Miller and Good, replace the sine or exponential in (4)
and (5) by alternative analytical functions which solve a
model wave equation exactly. (Note that singular points
of physical problems, such as the nodes and poles of
k (x), generally call for an analytic solution. ) Sec. II will
show how WKB procedures amount to mapping Eq. (1)
onto analytically solvable models. Section III will then
discuss how to bypass the WKB approximation altogether
in the one-dimensional setting by shifting emphasis from
direct construction of y(x) to the more benign problem of
constructing the metric of a phase coordinate. Section IV
will present illustrations.

6f 'dPh —k y =0.

(b) The renormalization (8) serves to change the dimen-
sions [x] of the squared wave number k (x) to the di-
mensions [P] of h k .

(c) Derivatives of the metric function h,

dh /dx =h 'dh /dP=d lnh /dP, (12)

appear when the expression (8) of y is entered in (11),
yielding

1 dy
h dP

2
dY l dlnh
d(h 2 dP

2

dY d lnh YdY 1 d lnh

dP dP dP 2 dP

2

dY 1 d
dP 2 dP

dlnh
Y

dP

The following stepping stones in the derivation of (8)
are noted:

(a) The single transformation (7) changes (6) into
r 2

II. SCALING TRANSFORMATION
AND WKB APPROXIMATION

1 d2lnh 1 dlnh
2 d 2 2 dP

Y2 (13)

dy
dx

—k (x)y (x) =0,
(6)

y(xo) =y(xi ) =0 .

The value and the structure of this integral remain in-
variant under the following set of joint transformations:

x~P(x), dx =h(x)dg, dg=h 'dx,

y~ Y y h 1/2Y Y=h —1/2y

2
2

k2( ) h 2 ~2(~) 1 d lnh 1 dlnh
2 dy2 2 dP

(8)

2 2
1 d lnh 1 d lnh

2 d~ 2 dx

(9a)

(9b)

which yield

We study here the transformation of the wave equation
(1) induced by replacing the space coordinate x by a gen-
eric phase function P(x) [which coincides with S(x) of
(4a) in a special case]. This transformation may be per-
formed directly by differential procedures but emerges
more coherently when (1) is viewed as the Euler equation
of the variational integral'

2

The middle term of the last expression in (13)—a total
derivative does not contribute to the variational integral
(10), thus eliminating from (10) any first derivative of Y.
The derivatives of lnh in (13) are incorporated in (9a) and
(9b).

The immediate result of the transformations (7)—(9) is
to replace the wave equation (1)—the Euler equation of
the variational expression (6)—with the wave equation
pertaining to (10), namely,

d Y/dP+K (P)Y(P)=0 . (14)

Our goal is to exploit the flexibility built into (14) by the
latitude in selecting the phase function P(x). Specific at-
tention will center on the metric function h =dx/dP,
rather than on P(x) itself, and still more pointedly on the
transformation formulas (9) that interconnect k (x),
K (P) and the metric h. Since k (x) is fixed by our ini-
tial equation (1), we should optimize the selection of
K (p) and h(x) subject to the constraint of (9).

The logarithmic derivative terms of (9) are an impor-
tant element of this constraint. Being of second order in
the rate of variation of the metric h, they will be disre-
garded within the WKB approximation of this section,
just as the second derivatives of k (x) are disregarded in
the traditional WKB treatment. The relations (9), howev-
er, suggest a more specific condition for their derivative
terms to remain small, namely, that the K (P)/k (x) vary
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slowly. This condition will prove critical to the applica-
tion of Milne's method in Sec. III.

K (P) =h (x)k (x)= k(x)dx
(15)

Within this scope the original WKB solutions (5) amount
to setting

P(x) =S(x)= J k(x')dx',

h (x)= 1/k(x),

K ($)=1 .

Replacing the constraint (9) by its abbreviated form (15)
is viewed here as appropriate to a WKB approximation, in
accordance with the earlier discussion. We shall hold to
this approximation in the present Sec. II A and in the fol-
lowing Sec. II B, which discuss the solution of (14) under
the constraint (15) for various examples of wave-number
functions k (x), that is, of refractive index or potential.
The derivative terms of (9) will be considered again in Sec.
IIC and especially in Sec. III which exceed the scope of
WKB approximations.

The intent as well as the actual construction of the
mapping P(x) emerge from the alternative form of (15),

dx K(P) (17)
dP k(x)

Insofar as the zeros and singularities of k (x) are cancelled
by corresponding features of K(P) in their ratio (17), the
metric function h (x) subsumes the remaining smoothly
varying features of k (x). Our procedure should then en-
sure that the metric h =dx /dP be real, smooth and amen-
able to easy numerical treatment, consistent with analytic
solution of (14). The explicit construction of the mapping
P(x) is generally achieved through the integral form of
(17)

E 'd '= k x'dx'=Sx (18)

Setting the lower limits of integration (Po,xo) amounts to
selecting an integration constant that anchors the scale of
P to that of x. The functions K and k in (18) are often
singular but the effects of their singularities cancel in the
ratio (17).

Zeros of k (x) at positions x =x; are removed from the
metric ratio (17) by adopting the polynomial form of
K (P),

K ($)=II;[P(x)—P(x;)] . (19)

When a single zero occurs in a range of interest, (14) is
solved by an Airy function, as detailed in Sec. IVA. A
pair of zeros leads to parabolic cylinder functions (Sec.

A. Extended WKB approximation

The diverse earlier extensions of WKB (Refs. 3—7) are
viewed here in terms of a single common element: We
solve (14) analytically, with the constraint (9) on
IK (P),h(x), k (x)I shorn of its logarithmic derivatives,
that is, cast in its approximate form of wave-number scal-
ing,

IVB), which may be represented as Coulomb field wave
functions of P . A pair of zeros outside the real axis may
be usefully included in (19) to represent variations of
k (x) near a minimum or maximum,

k (x) o:(x —Rex;) +(Imx;) (20)

which are sharp for small values of Imx;. Three or four
zeros lead to representing Y(P) as a function of elliptic in-
tegrals, but may be handled more effectively by joining
piecewise solutions in alternative regions, each region with
one or two zeros only (see Sec. II B below).

The main singularities of k (x) encountered in physical
problems arise from centrifugal potentials, ' with
k cc (x —x ) . These are treated by setting
K (P)=1+b/(P Pi—), whereby Y(P) is a Bessel-type
function (Sec. IV C). Coulomb field singularities,
k (x) cc 1/x, are instead removed by setting P ~ v x (Sec.
IV D).

K (P) =a bg (x), (a, b ) )0— (21)

in which case Y(P) is an oscillator wave function, i.e., one
of the main types of parabolic cylinder functions. The

8. Mosaics of locally adapted Y(P )

The task has been formulated of selecting a scaled
wave-number function K(P) that embodies salient
features of the initial k (x) and yet affords analytical solu-
tion of (14). The task is generally subject to the difficulty
of building into a single K(P) all the features of k(x)—
nodes, poles, etc.—that occur in different ranges of x. To
bypass this difficulty one may select two or more different
analytical representations of K(P), and hence different
phase functions P(x) and metrics h, to be utilized in dif-
ferent ranges of the independent variable x. The corre-
sponding alternative representations of the solution
y(x)=v'h Y(p) appropriate to the several ranges of x
have then to be matched in amplitude and phase at each
boundary between such ranges. This additional operation
is often the price to be paid to secure a realistic represen-
tation of y(x). This price is modest in terms of comput-
ing effort. On the other hand the transparency of WKB
solutions represented by one or a few analytical functions
Vh Y(P) would be nullified by using too many piecewise
representations.

This essential aspect of extended WKB procedures, an-
ticipated in Sec. I, does not seem to have been stressed
adequately in the past even though it was clearly implied
by the use of connection formulas that join (5a) with (5b).
Of course, the construction of an eigenfunction y (x) over
an extended range of x as a mosaic of different "locally
adapted" solutions does not hinge on the use of the WKB
approximation, even though it is introduced here in a
WKB context. In fact the mosaic procedure may well
prove itself mainly in the broader context of Sec. III.

Comparing the WKB treatment of the wave equations
for a particle confined to a single-or to a double-potential
well illustrates the need to represent a wave function dif-
ferently in different regions of space. On the one hand,
the single-well problem lends itself to representation by a
single parabola
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value P =0 corresponds here to the bottom of the well and

P = + (a /b)'~ to the turning points of the classical
motion. Any asymmetry of the well represented by the
actual function k (x) is then built into the metric func-
tion h (x) =dx/dP and so is any lesser departure of k (x)
from a parabolic shape. Replacement of k (x) by (20)
and representation of the solution of (1) in terms of an os-
cillator function, y(x) =v h Y(P), will prove adequate in-
sofar as the resulting values of the last two terms of (9)
are negligible.

The double-well potential, on the other hand, presents a
more varied challenge, in that the barrier between the
wells has generally a finite height and a profile quite dif-
ferent from the barriers on either side of the double well.
Different types of analytical E (P) are then required for a
realistic representation of the two barriers, even though
both may be locally parabolic. Correspondingly different
types of parabolic cylinder functions Y(P) are then ap-
propriate to represent y (x) in the central and outer parts
of the double well. A single matching of such different
representations of y(x) will be sufficient if k (x) is sym-
metric under reflection through the center of the double
well. Otherwise y(x) would need to be constructed as a
mosaic of three or four sections. Generally each locally
adapted analytic representation of y(x) should embody
the influence of a major feature of K (x).

The procedure for matching the amplitude and slope of
wave functions at the boundary x=x~ of two sections,
namely, y&(x) for x (x~ and yi(x) for x &x~ is
equivalent to that in use for joining segments of radia1
wave functions identified by initial conditions at r =0 and
~, respectively. ' Recall here that the construction of
wave functions for a particle bound in a single or multiple
well also involves the determination of an eigenvalue such
as the one represented by the parameter a in (21). The
standard matching procedure at a boundary x =xz or at
a sequence of boundaries —reduces to a linear homogene-
ous system thereby determining the relevant eigenvalue.
Examples of this procedure will be described in Sec. IV.

By determining the eigenvalue, the matching procedure
also controls the occurrence of standing wave solutions,
y(x) or Y(P), that meet the boundary conditions at both
ends of the full range of x. The traditional WKB pro-
cedure met the same goal speedily and transparently
through the evaluation of the phase integral S(x), Eq.
(4a), between the turning points —zeros of k (x) on the
farthest potential barriers. The present matching pro-
cedure attains the same goal by a substantially equivalent
evaluation of the total range of P(x) consisting of a se-
quence of sections separated by matching points xz.
Note, however, that the total range of S(x) in the tradi-
tional WKB procedure equals a half integer multiple of m.,
(n+ —,

'
)m. , since each of the exponential tails under the

outer barrier contributes a phase ~/4. In the present pro-
cedure the entire range of P(x) amounts to a whole num
her of half-wavelengths.

C. Higher accuracy by WKB iteration

WKB procedures have generally disregarded the last
two terms of (9) [or (9a)] which are of second order in the

gradient of lnh. However, the combination of (8), (9), and
(14) is exactly equivalent to the initial equation (1). An
exact solution of (1) becomes accessible by iterating the
procedure of Sec. II A, i.e., by taking into account the last
two terms of (9) in successive orders of approximation.

This approach has been articulated in detail by Hecht
and Mayer. On the other hand the Milne approach to be
described in Sec. III leads to a convenient universal calcu-
lation of the metric function h (x) as the solution of the
single equation (9a) with a preselected K (P), without
resorting to a cumbersome iteration of uncertain conver-
gence.

III. EXACT SOLUTION BY THE MILNE
APPROACH

—h =E (P) —h k (x)+—1 dh 2 22 1 dh

dx 4 dx

or of its reciprocal, g =h ' =dP/dx,
2

'2
dg 2 2 2 3 1dg=2g k (x)—g K (P)+-
dx 4 gdx

(22)

(23)

A single example will be presented in this section, a wider
set in Sec. IV.

Numerical solution of these (nonlinear) equations use
Milne's predictor-corrector method (Ref. 17, Eq.
25.5.13ffl. This process becomes almost trivial to the ex-
tent that proper selection of K(P) permits the ratio K/k
and hence g(x) to remain nearly constant and smoothly
varying over a sizable range of x. The metric functions h
or g thus obtained can be parametrized conveniently, e.g. ,
by expansion into a few powers of x. The mosaic pro-
cedure of Sec. II B will then combine locally adapted solu-
tions (8) into a complete solution of (1) over the whole
range of x.

The flexibility afforded by the constraint (9) has been
utilized in part by Milne and his followers ' within the
limited context of a sinusoidally varying Y(P), in which
case

K (P)=1 . (24)

This selection implies that Y(P) —sing(x) according to
(14), with P(x) = f g(x')dx' according to (7). Substitut-
ing (24) into (23) and setting h =a for convenience yields
the analog of (9),

d a/dx +k (x)a(x)=1/a (x), (25)

which is the main equation of Milne. A general solution
of this equation involves two integration constants.
References 8 and 9 discussed how to select these constants
to obtain a generally useful solution over the whole range
of x.

In our more general context the solution of (23) may in-

We proceed here beyond the WKB approximation by
utilizing the relationship among K(P), k(x), and h (x) in
its exact form (9) rather than in its WKB form (15) which
disregards derivatives of the metric h =dx /d P. The
structure of (9) becomes more transparent when expressed
in terms of the derivatives of h(x),

2



35 GENERALIZED WKB AND MILNE SOLUTIONS TO ONE-. . . 3623

stead by viewed as follows. At an jpitial point x=xo
[e.g., at a zero or pole of k (x)], K [I dx'g(x')] and g (x)
are so selected that

(d g/dx )„„,=0 . (23")

See note added in proof.
The extended Milne approach described above and the

mosaic construction of Sec. II B will now be applied joint-
ly to the double-well problem of Ref. 9, namely, to solve
Eq. (1) with

k (x)=2E—18e " —x (26)

Figure 1 shows one half plot of the symmetric "potential"
2E —k . Symmetry requires each eigenfunction y(x) to
have an antinode or a node at x =0; this condition will
determine the eigenvalues of E.

Three major features of 2E —k in (26) stand out,
namely, the central hump represented very approximately
by 18exp( —x ), a pair of valleys were 18exp( —x ) and
x are comparable, and a pair of outer parabolic barriers
x where 18 exp( —x ) is negligible. We adopt the follow-
ing three-piece mosaic representation for each half of the
potential (26):

(a) 0( Ix I
(0.7, where k is very nearly parabolic

with vertex at x =0;
(b) 0.7( Ix

I
(5, where k is also nearly parabolic,

with opposite curvature and lesser symmetry;
(c) 5( Ix I

( oo, where k =2E x to wit—hin 10
The existence of an exact analytic solution at

I
x

I
) 5

reduces the numerical work far below the amount re-
quired in Ref. 9.

In each of these ranges the analytical expression (26) is
approximated within —10% by a three-term Taylor ex-
pansion

k (x)=A+B(x —xo)+C(x —xo) (27)

30

25

20

l5
LaJ

[k (x)—g (x)K ]„„,=0, [dg/dx]„„=0. (23')

The equation (23) then determines the derivatives of g as
k departs from g IC at finite values of x —xo, begin-
ning with

with the following respective value of I A,B,C,xo I:
(a) A =2E 1—8, B =0, C = 17, xo ——0;
(b) A =2E —9.002, B =5.99, C = —1.038, xo ——3;
(c) A =2E—25, B = —10, C = —1, xo ——5.
A smooth metric g (x) is accordingly obtained by start-

ing the solution of (23) at x=xo in each range. To this
end we set in (23)

E (P)=A+BP+CP, g(xo)=1, (28)

I.OO

0.75

0.50

0.25

-0.25
—0.50
—0.75
—

I 00
n=8

I 0

which implies P=x —xp+O(
~

x —xp I
) and satisfies the

boundary conditions (23'). The numerical solution g(x)
of (23) is plotted in the lower part of Fig. 2 through the
ranges (a) and (b). The metric thus constructed separately
for each region is generally discontinuous at the region
boundaries; the wave function is matched at the boundary,
but the metric is not. No appreciable departure of g(x)
from unit occurred in range (c) where k (x) is a parabola
as noted above.

Equation (14) with K (P) of the form (28) is solved by
parabolic cylinder functions to be described in Sec. IVB.
A base pair of degenerate solutions, even and odd in P, ex-
ists whose superposition is dictated by boundary condi-
tions. The relevant condition in range (c), namely, that
Y(P) vanish at P~co, identifies Y(P) as the convergent
Whittaker's function which is a specific superposition of
even and odd solutions. Matching logarithmic derivatives
of y(x) at the successive boundaries x =5 and 0.7 deter-
mines in turn the superpositions in the ranges (b) and (a).
Lastly, as noted earlier, the solution y(x) must have a
node or antinode at x =0, a condition that can now be
met only by adjusting the value of E in (26).

Comparison with the results of Ref. 9 is shown by the
listing of eigenvalues in Table I. The agreement of eigen-
values contrasts with the modest accuracy of the represen-
tation of k (x) by (27). The semianalytic treatment uti-
lized here has made it possible to use a mesh of M =0.1
whereas M =0.01 was required in Ref. 9 to avoid insta-
bilities in the analog of (23) for Y=sing over the whole
range of x. Figure 2 shows a sample of eigenfunctions

IO
0.2

'0 I i I i I i I i I

1 2 5 4 5
X

FIG. 1. Potential Function 2E —k (x) for Eq. (26) and x )0.

FIG. 2. Wave functions y(x), with 5,6,7,8 nodes, and metrics
g (x) calculated by the extended Milne method for the k (x) of
Eq. (26). The metric functions g(x) is discontinuous at the sec-
tion boundaries. The magnitude and slope of the wave func-
tions are instead matched at the boundaries.
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TABLE I. Eigenvalues for the double well, Eq. (24).

Nodes Ref. 9 Extended Milne

Ax =0.01
3.075 395
3.078 507
5.138 300
5.164 373
6.971 396
7.098 398
8 ~ 576210
8.967 876

10.122 34

Ax =0. 1

3.075 414
3.078 525
5.138 315
5.164 383
6.971 422
7.098 423
8.576 236
8.967 902

10.122 33

Ax =0.05

7.098 3985
8.576 2095
8.967 8749

10.122 324

y(x) with different degrees of penetration through the
barrier between the wells.

IV. ILLUSTRATIONS

Physical and mathematical aspects of familiar wave
equations will be illustrated in this section by combining
the devices introduced above to represent qualitative and
quantitative features of one-dimensional wave functions,
namely, the following.

(1) Choice of analytic functions Y(P) whose squared
wave number K (P) embodies characteristic nodes and/or
poles of k (x).

(2) Scaling adaptation of the phase P and the amplitude
of Y to fit the actual wave function y(x) of a specific
equation over a significant range of x. [An approximate
fit is provided by the simple equation (17) or (18), an exact
fit by numerical solution of the Milne equations (22) or
(23) for a smooth metric function. ]

(3} Construction of a desired function y (x) as a mosaic
of analytic functions Y(P) appropriate to represent its
main features in different ranges of x.

S(x)= f k(x')dx'= J P'~ dP'= —,P ~ . (31)

It is assumed here that k (x) &0 for x &xo, S(x) and P
being then real and positive in this range. For x &x0, on
the other hand we have k (x) &0 and /&0, and hence
Imk(x') & 0 and ImS(x) & 0 as well as Rek(x') =ReS =0.

This mapping is accurate insofar as k (x) remains pro-
portional to x —xo implying that h(x) =P'~ /k(x)
=constant. In this event the asymptotic expressions of
Y(P) at P~ca (Ref. 17, Eq. 10.4.62) coincide with the
WKB expressions (4a) and (4b). For purposes of compar-
ison the mapping of P on x —xo has been calculated for
k (x) =x —xo+(x —xo) /10, using alternatively the
WKB Eq. (17) or a solution of the exact Eq. (22) for the
metric h (x},with the results shown in Fig. 3.

Equation (27) has a second standard solution indepen-
dent of Ai( —P), which is called Bi(—P) and diverges at

This solution should generally be superposed to
Ai( —P) not only when k (x) becomes again positive in
the range x & xo, but also when the metric h (x) calculated
from (22) or (23) departs from its WKB approximation
(17).

B. Minima and maxima of k (x)—parabolic cylinder
functions

The analytic significance of extrema of the wave num-
ber has been indicated at the end of Sec. IIA. In the
proximity of this type of singularity a wave equation may
be cast in the standard form (Ref. 7, Chap. 19),

d Y/dP +K (P)Y=d Y/dP +(+P /4 a)Y(P)=0—.

(32)
The parameter —a represents the value of K (0), which is
positive when Y(P) oscillates in the range

~ P ~

-0, nega-

0.6

A. Transition from oscillation to tunneling —Airy
functions

The oscillatory and tunneling ranges of a WKB solu-
tion, Eqs. (5a) and (Sb), are separated by a node of k (x).
Formulas that connect these WKB solutions assumed
that k (x) varies linearly over a sufficient range of x as-
tride its node. This procedure is implemented in our con-
text by utilizing a single solution of (14) across the node of
k (x), setting K (P) linear in P and anchoring P at zero at
the node of k . The resulting form of (14}, with
K (P)=P, coincides with the model equation (Ref. 17,
Eq. 10.4, with z = —P),

0.4

0.2
C)

I

0

—0.2

—0.4

-0.6 2.0

d Y/dP +K ($)Y=d Y/dg2+PY(P)=0,

which is obeyed by the Airy function

Y(P) =Ai( —P)

(29)

(30)

and is plotted in Fig. 3.
The mapping (7) of the phase function P(x) on the

coordinate x anchors the value /=0 to the node of k (x)
at x =x0. The WKB approximation sets, more specifical-
ly,

FIG. 3. Wave functions y (x) and metric g (x) for
k (x)= (x —xo ) + (x —xo) /10 calculated by the extended Milne
and extended WKB methods. Also shown, for comparison, is
the Airy function Ai(xo —x).
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tive when it is tunneling through a barrier in this range.
A negative sign of P /4 in (32) implies negative values

of X (P) for large
I P I, in which case oscillations of Y

are confined to a range about /=0 and the eigenvalue
spectrum of (32) is discrete (Fig. 4). A positive sign of
P /4 implies instead large positive value of K (P) and in-
creasingly short-wave oscillations of Y(P) at large
in which case the eigenvalue spectrum is continuous with
degenerate eigenfunctions of even and odd parity about
/=0. Two quite different types of wave phenomena are
thus represented by solutions of (32), which we will call
"valley" and "barrier" solutions and correspond to mini-
ma and maxima of k (x), respectively.

Both types of solutions are known as parabolic cylinder
functions and are represented analytically as Coulomb
field wave functions of P, that is, in terms of confluent
hypergeometric functions M (p, q;x ) = 1+px /q
+p(p+1)x /q(q+1)2!+ . Valley and barrier solu-
tions of (32) with alternative parity are

2.0

1.5—

I.O—

05—

0

—05—

—1.0—

-l5—

-2.0 2.0

MILNE

l.5
CO

&C

—I.O

—0.5

I i I i ! i 0-2 0 2 4 6
2

Y„'(P)=e ~ M( —,'a+ —,', —,';2/ ),
2

Y„'(P)=Pe ~ M( —,a+ —,, —,;2/ ),
1"f,(P)=e '~ M( —, ia+——,, —,;2ig ),

2
Yf(P)=Pe '~ M( —, ia+ ——,, , ;2ig —),

(33a)

(33b)

(34a)

(34b)

X —
X 0

FIG. 5. Same as Fig. 3 for k (x)=2+(x —xo) /4
+(x —xo) /10 using the appropriate parabolic cylinder func-
tion. Note the asymmetry introduced by the cubic term.

all of which are real. The valley solutions Y„are
oscillator-type wave functions; they coincide with oscilla-
tor eigenfunctions when —,'a+ —,

' or —,'a+ —,
'

is a nonposi-
tive integer and M(p, q;2P ) reduces to a polynomial.
The barrier solutions Yb tunnel between nodal points at
P=+(4a)'~ for a &0, but oscillate everywhere when the
minimum of k (x) is non-negative.

Departures of k (x) from a parabola skew, or otherwise
distort, the mapping of P on x. Examples of the mapping
have been worked out for k (x)=a+(x —xo) /4
+(x —xo) /b, again both in the WKB approximation (17)
and by solving (22) (Fig. 5). These mappings reflect the
asymmetry of k (x) under reflection through xo. Recall

l.5

I.O

0.5

0

-0.5

here that the mapping through the WKB approximate Eq.
(17) implies cancellation of the singularities of K and k in
their ratio.

Symmetry of a barrier about its peak —a minimum of
k (x)—serves, on the other hand, to evaluate the reflec-
tion coefficient of the barrier for an incident wave. Su-
perposition of the degenerate functions Yb of opposite
parity generates traveling waves which are partly reflect-
ed. The Landau-Zener-Stuckelberg formula, ' which
governs the nonadiabatic transitions in atomic collisions
at avoided level crossings, rests in fact on this procedure
for the case of k (x) symmetric about its minimum. Its
applications could be extended considerably by flexible
mapping of x on P(x).

Asymptotic expressions of the wave functions (33) and
(34), or of the corresponding (dx/dP)' Y„reduce to the
WKB forms (4) or (5), as can be verified, e.g. , from Ref.
17, Eqs. 19.8 and 19.21. For large values of the parameter

I
a I, in which case the nodes of k (x) are widely separat-

ed, the solutions y(x) of (1) could also be approximated
by Airy functions near each node. Indeed expansions of
the solutions Y„and Yb directly into Airy functions are
available (Ref. 17, Eqs. 19.7 and 19.20).

An example of analytical mosaic solution of the wave
equation (1) is afforded by a functional form of k (x) that
consists of two parabolic sections with one maximum and
one minimum, respectively,

—I.O

—l.5 I i I i I i I

2 3 4

k (x)= —(x+b) /4+b /4+c, x &0

k (x)=(x b) /4 b /—4+c, —x &0 .

The mapping of P on x is then

(35)

FIG. 4. Valley and barrier parabolic cylinder functions with
a= —

z and P&0.

P= —(x+b) for x &0, P=x b for x &0—
(36)
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TABLE II. Calculated eigenvalues for P&, Eq. (42). I +0l i & i
I

i i $

I
i I $

I
I I I

I
I

L=3
Meshpoint no.

4
10

5

5

10
10

5

5

5

10

(I+ ~)

2.250 02
2.250 0001
6.25008

12.250 4
20.2504
30.249 97
2.25001
6.25005

12.250 1

20.250 007

' 1/2

J.oo

0.99—

0.98—

0.97—

09$ i I I I I I I I I I I I I I I

0 20 40 60 80
8 (deg. )

FIG. 8. Metrics g (0) for various P~ &(0), as in Fig. 7.

h(8) = d0
dP

1 —(m ——, )/P

(l + —,
'

) —(m ——,
' )/sin 8

(45)

K (P)=E—(m ——, )(1/P ——, ), (46)

which matches the first two terms of the power expansion
of k (8), yielding /=8+0(8 ). Equation (23) is now en-
tered at 8=0 with P(0) =0, g (0)= 1, g'(0) =0, and is pro-
pagated to 8=m/2 by Mil.ne's predictor-corrector method
(Ref. 17, 25.5.13ff). We determine the value of E by re-
quiring that either

y(8)=[g(8)sin8] ' J I [E—(m —
~ )/3]'~ P(8)I (47)

or dy/d8 vanishes at 8=m/2 Table I.I sh. ows eigenvalues
determined by this method and the number of mesh
points used in propagating (23) from 0 to n/2. Figures 7
and 8 show values of y(8) and g(8). Representative
values of the ratios y (8)/P&~ (8) depart from a constant in

Operation of the Milne technique is demonstrated here
by calculating the eigenvalues and eigenfunctions of (42)
and (43) and comparing them with their familiar expres-
sions, (1+—,

'
) and Pi (8). To this end we rewrite (43) as

k (8)=E—(m ——,
' )/sin 8, where E is the eigenvalue to

be determined. We also minimize the variation of the ra-
tio P/8 by setting

sin 0
2m 4

sin 0
(48)

the main additional feature being the insertion of a barrier
centered at 0=~/2. This insertion leads us to separate
the range 0& 0& ~/2 into two sections of a mosaic repre-
sentation: (a) The representation (47) will again apply for
small values of 0, say 0& 0 & m. /6, where the centrifugal
term of (48) predominates over c sin 8; (b) a representa-
tion h'~ (8)Yi, (P) with parabolic cylinder functions (34)
will instead apply to the range of larger 0 where the bar-
rier term of (48) predominates.

The relationship between P and 8 in range (b) is
smoothed out by utilizing a quadratic form of K (P)
which matches a three-term expansion of (48) into powers

the fifth or sixth digit. Note how g (8) becoines smoother
as l increases, in contrast to the increasing curvature of
y (8).

Combination of Milne and mosaic procedures is docu-
mented by generating the oblate spheroidal functions indi-
cated by S „(c,cos8) in Ref. 17, Eq. 21.6.4. The equation
for S „(c,cos8)=(sin8)'~ S „(c,cos8) has the form (42)
with k~ replaced by

0.8

0.4
10

0.8

0.4

I I I
'

I

0.2

—0.2

5xl0

-5 xjo

—0.4

-0.8
n= 3

1.2

—04— —3—-10

I a II i I—0.6
20 40 60 80

g (deg. j

FIG. 7. Associated Legendre function P~ (0) and the corre-
sponding metric g(0) calculated by the extended Milne method.

20
I

0 40 60
9 (deq. j

FIG. 9. Oblate spheroidal functions S „and their metrics
g(0) calculated from Eq. (48) by the extended Milne method
with a two-section mosaic.
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0.8 values of the eigenfunctions y (8).

0.4

CD

~ -0.4—

D. Coulomb-type pole: Bessel functions again

The radial factor of the Schrodinger equation for a hy-
drogenic atom with orbital quantum number I has the
form (1) with the squared wave number

-0.8

n=5

l.2
ki (r) =P +——

r
l (1+1)

r2
(50)

c=0

c —8.5
I I I I I I I

20 40 60
8(deg. }

80

FIG. 10. Same as Fig. 9 for different values of c.

of (8—80) with 80 in the middle of this range. The solu-
tion of (23) starts then at 8=80 with g(80) =1, g'(80) =0
and propagates thence in both directions. The zero of P is
anchored at t90 by defining

To assess the specific influence of the Coulomb pole, con-
sider the phase integral

S,(r) = f dr'ko(r') =2f d~r'(p'r'+a)'i2

for 1=0 and note that it remains finite in spite of the
singularity of ko. This integration procedure suggests re-
placing the coordinate r at the outset by its square root,
through the transformation (7)—(9), which reads in this
case

r~P=v r, h =dr/dg=2v r, Y(P)=(4r) 'iy(r),
(52)

P(8)= f g(8')dO' . (49)
Ki (P) =4r P + ——

r
1(I +1)

r 2

1 1
q+4r ] 6r

TABLE III. Calculated eigenvalues, A. „,for S „(c,cosO).

0
5.55
8.33

m=1, n=5
(Ref. 17)

30.25
47.0648
72.965

Extended Milne

30.2500
47.0652
72.973

c=5.555, m =1
(Ref. 17) Extended Milne

20.2987
32.323
37.265

20.2988
32.323
37.265

30'

SI 5(0,cos, O)
Calculated ratio ' (not normalized)

P~I (cosO)
45 60' 90

3.102 448 1.102 450 3 ~ 102 449 3.102 451

The occurrence of an antinode or a node of y(8) at
0=~/2 is enforced by constructing the appropriate super-
position of h'i Yb(P) and h'i YP(P) from (34). ' The
eigenvalue A, „+c in (48) is instead determined in this
case by matching d lny/dO at the boundary of the two-
section mosaic representation.

Results of the calculation are presented in Figs. 9 and
10, for fixed c =5.55 and variable n or for n = 5 and vari-
able c, respectively. Note the limited ranges of smooth
variation of g(8). Table III compares instead the eigen-
values calculated by the present and by standard pro-
cedures and gives sample ratios of the corresponding

(2l + 1)'—I /4=4 +a—
2

(53)

Note that (53) includes substantial contributions from the
derivatives in (9b).

Consider now the wave equation (14) for Y(P) with the
coefficient Ki (P) given by (53), initially for the special
case p =0 which corresponds to a zero-energy eigenvalue
of the Schrodinger equation. Comparison with the Bessel
equation (37) shows the zero-energy eigenfunction to be

Yi(y) =(v'4a y)' J2i+](v'4a (5), (54)

a long-known result. The important point in our con-
text is that the wave equation will remain smoothly
dependent on p even for a smoothly varying p (p )&0.
Accordingly the Schrodinger equation (1) with the wave
number ki (50) can be solved semianalytically in terms of
a Bessel function for nonzero energies, through a further
transformation of the variable P. The same procedure
applies to a radial equation with a potential that departs
from the Coulomb law by introducing in (50) a nonsingu-
lar 2Z(r) in place of the constant a. This implication of
Langer's original work does not seem to have attracted at-
tention.

We illustrate now the Bessel representation of a radial
wave function yi(r) for an atomic field by entering in (50)
P =0.2, corresponding to the electron energy of 0.1 atom-
ic units, 1 =0 and a =2Z(r) with Z(r) the Hartree-Slater
atomic parameter for the Ar atom. ' The representation
yi(r)=h' J2i+, (P) requires us to set Ki(P)=l —[(2l
+1) —

4 ]/P . The metric h that connects P to r is then
provided by (17) and (18) in the WKB approximation or
by solving (22) or (23) in the Milne approach. Figure 11
shows the result thus obtained by solving (23) as well as
the resulting wave function yi(r), which does not depart



35 GENERALIZED WKB AND MILNE SOLUTIONS TO ONE-. . . 3629

1.0

0.5

0

—0.5

significantly from the direct numerical solution of the
Schrodinger equation. The construction of yi(r) has uti-
lized here the expression h '~ Jz&+, (P) throughout the
range of r, but a mosaic utilizing an additional Airy func-
tion would be required to represent a bound state with
P (0.

As a final illustration we rederive results of Harmin on
the Stark effect of the H atom near its ionization thresh-
old. The relevant wave equation separates in parabolic
coordinates [g=r+z, g=r —z,PI. Here we consider the

g and 7l components of the equation which are represented
by (l) with

—1.0
0

I

0.5
I

1.0
I

1.5

r (a.u. j

I

2.0 2.5
and

Pi
k (g)= —E+

2

2
fPl 4

(55)

FIG. 11. Bessel function representation of the radial wave
function of an ionic state of argon with I =0 and energy 0. 1 a.u.
The Herman-Skillman potential was given numerically.

l l Pi-
k (g)= —e+

2 7l

1
m —

4

2 +4~'
7l

(56)

0.50

0.25

—0.25

—0.50

1.0

0.5

I
I

I

(a)

—1.0

—0.5
I I I

0 l5 50 45 60 75

t (a u. }

(b)n, =1

respectively. The electron energy c., in atomic units, has a
continuous spectrum in this problem, the magnetic quan-
tum number m is an integer, and F is the Stark field
strength whose value —10 corresponds to —10 V/m.
The separation parameter Pt is determined as an eigen-
value for the motion along g which is bounded by the
Stark field in the direction gazoo in contrast to the un-
bounded motion toward g~ oo.

The influence of the Coulomb and centrifugal singulari-
ties in both (55) and (56) is to be incorporated here into a
Bessel function J2 (P) representation, for both coordi-
nates g and rI, in contrast to Harmin's use of WKB phase
integrals supplemented by Langer corrections. The
bounded propagation at large g—limited by the rising po-
tential term —Fg/~ is to be represented here through an
Airy function whose matching into a mosaic determines
the eigenvalues P&. The mosaic consists of three sections,
including a central one, where the potential is nonsingular
but with substantial curvature. The wave function in the
central section is then represented by a parabolic cylinder
Y, ((()). The propagation along g in the region of the max-
imum of s/2 —k (g), at g-4(l —P, )/F, is to be treated
according to (20) as penetration through or above a para-
bolic barrier, represented by a wave function Yb(P), Eq.

—0.5
TABLE IV. Eigenvalue of Eq. (55) and phase shift of Eq.

(57).

—I.O

n)=O

1.5
Pi (F=0.001, e= —0.05)

nl ——0 nl ——1 nl =2

Ref. 22'
Extended Milne

0.1619
0.1615

0.5081
0.5033

0.8843
0.8696

0 40
I

80 120
r)( a.u. }

I

I60

—0.5
200 5 (F=0.001, ~= —0.05j

nl ——0 nl ——1 nl =2
FIG. 12. Stark effect wave functions of a hydrogen atom in

parabolic coordinates for a field F=0.001 a.u. —10 V/cm, en-
ergy c= —0.05 a.u. , and m =0 in Eqs. (55) and (56j. (a) Wave
functions y(g) with n, nodes and metrics g(g). (b) Wave func-
tions y(rI) and metrics g(rj) with P~ eigenvalues corresponding
to n l and given in Table IV.

Ref. 22
Extended Milne

6.65
6.65

3.86
3.85

0.37
0.35

'Data from Ref. 22 have been calculated as a small perturbation
from its F =0 Eq. 55. The Milne values may be more accurate
especially for n

&

——2.
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h '/~(g)[cos5 Ai( —tt )+sin6 Bi( —P)], (57)

(34). Its propagation at g-0 is represented again by a
Jz (P). Finally, the term Eg/4 of (56) predominates at
large 71 leading to a third local representation of y (rl ),

js

y(x)=C,'Y,'(x+b)+C„'Y,'(x+b), x &0

=Cb Yb (x b—) + Ct', Y„(x b)—, x )0 . (A2)

p being in this case exactly proportional to rl in the limit
The resulting wave functions and metrics g are

shown in Fig. 12, the comparison of parameters with
those of Ref. 22 in Table IV.

Note added in proof. This choice of boundary condi-
tions, called WKB boundary conditions by B. Yoo and C.
H. Greene, Phys. Rev. A 34, 1635 (1986), leads to the
small-amplitude oscillations of g (x) shown in Figs. 3 and
5. Yoo and greene describe a procedure for eliminating
these oscillations.
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APPENDIX

A general solution of the wave equation (1) with

C„'Y,'(b)+C„'Y„'(b)=Cb Yt', (b) Ct', —Yb(b),

C,'Y„'(b)+C„'Y„' (b) = —Cb Yb'(b)+ Cb Yb '(b),

which finally yields

C,'Y,'(b) +C,'Y,'(b)
Cb ——Yb'(b)

Yt, '(b) Yb(b) Yt", (b) Y—b(b)

C„'Y,"(b)+C,'Y,"(b)
+ Yt', (b)

Yb'(b) Yt', (b) —Yb'(b) Yb(b)

= Yb'(b)[C,'Y,'(b)+ C„'Y„'(b)]

(A3)

Its coefficients C are determined by the constraints (a)

y (x) must not diverge as x ~—ao, (b) y (x) must be con-
tinuous at x =0, (c) dy/dx must be continuous at x =0.
These constraints determine all of the coefficients to
within normalization. The first condition is satisfied
when y(x) coincides with Whittaker's convergent func-
tion (Ref. 17, 19.3.1), the coefficients being then
C„'=1/I ( —,

' c/2—b /—8), C,'=v 2/1 ( —, —c/2 b /—8)
The last two constraints give

k (x)= +b /4+c, x &0
4

—b /4+c, x)0(x b) z—

4
(A 1)

and

+ Yt', (b)[C,'Y„'(b)+ C,'Y,"(b)]

Cb = [C„'Y,'(b) +C,'Y,'(b)+ Cb Yt', (b)]/Y~ (b) .

(A4)
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