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Field-theoretical approach to a relativistic Thomas-Fermi-Dirac-Weizsacker model
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We outline a systematic scheme for the derivation of relativistic energy density functionals on the
basis of the Hartree-Fock limit of quantum electrodynamics. In particular, a relativistic analog of
the nonrelativistic Thomas-Fermi-Dirac-Weizsacker model is presented.

I. INTRODUCTION

Density-functional theory has been used with consider-
able success for the discussion of nonrelativistic many-
particle systems. ' The foundations of a relativistic
density-functional theory were established by Rajagopal '

and Vosko and MacDonald, who demonstrated that the
basic theorem of Hohenberg and Kohn could be extended
to the relativistic domain. Several attempts " followed
to construct explicitly relativistic local density schemes, in
particular, the form of the local relativistic exchange ener-

gy density being a point of interest and discussion since
the seminal contributions of Salpeter' as well as Jancovi-
ci.13

The question of gradient corrections to a local scheme
has been discussed previously' within the frame of a rela-
tivistic extension of the Thomas-Fermi-Dirac-Weizsacker
(TFDW) model on the basis of the Dirac equation. A
number of problems, due to questions of renormalization
and due to the discussion of vacuum contributions, have
been pinpointed in turn. '

In the present contribution we shall discuss a systematic
construction of the relativistic analog of the TFDW
model on the basis of field theory (QED). ' ' We define
the starting point in Sec. II, review some basic relations
for the four-current in Sec. III and describe the equivalent
of the Hartree-Fock (HF) limit in QED in Sec. IV. The
renormalization problem encountered is summarized in
Sec. V. The details of the gradient expansion technique in
the present situation and explicit final functionals are
given in Sec. VI. The basic approximation involved is, in
analogy and extension of the nonrelativistic limit, a repre-
sentation of the full electron propagator by a Green's
function of an effective field theory. We conclude the
presentation by some remarks on the practical evaluation
of the TFDW variational scheme in the relativistic case.
We use the relativistic convention A=c = 1 throughout.

II. THE GROUND STATE
OF AN N-ELECTRON SYSTEM

IN AN EXTERNAL POTENTIAL

Our starting point is the QED Lagrangian density aug-
mented by external potential terms

2

,F „Ft —+ A,A"——(t}Q ) —, F,„,p„—F~X,
2 2

+ —, t [it', ( i e) —m —eI,„,)it' ]

+ [g( i e) m——e—pr, „,),p] I

, ([4,A—0—]+[PA, 0]),

using the Feynman dagger notation,

(2.l)

while the vector bars indicate in which direction the par-
tial derivatives have to be taken. We work in the Cxupta-
Bleuler formalism' and use the convention e =

~

e
~

. The
commutator representation of the Lagrangian ensures that
the corresponding Hamiltonian is Hermitian and invari-
ant under charge conjugation. ' The photon mass p is in-
troduced to avoid infrared divergencies at intermediate
steps and will have to be removed by taking the limit
p~o at the final stage. The importance of including the
external field Lagrangian

wp
4 ext, pv ext

will become apparent when renormalization is discussed
in Sec. V. The external potential V,„, , which is assumed
to be time independent, is treated classically. For the sake
of simplicity, we eventually restrict ourselves to the case
of a scalar (electrostatic) external potential,

I;„,(x')~y V(x), (2.2)

H =J d'x e (x) (2.3)

in the form

as we are primarily interested in atomic or molecular sys-
tems.

The Hamiltonian of the system under consideration is
obtained via
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H= f d x —,
'

t[itt, ( i—y V +m+eF, „',)P]+[/(iy V+m+eF, „',),P]J+ (—[P,Ag]+[PA, P])

(VV',„,)'+g(VV,'„,)' + ,' [-~"(ao)'~„—(a'~. )(ao~")]
k

(2.4)

If we denote the (nondegenerate) ground state of the
¹ lectron system, i.e., the state of lowest energy of the
Fock-space sector with

(Q)= —¹,
by

I g ) and the vacuum state of the problem, the state of
lowest energy with

by
I

u ), we can write for the binding energy of the system

l

The definition applies for both the ground state
I g) and

the vacuum state
I
u). As a large number of manipula-

tions that follow are identical for the two states, we
suppress the index except where needed for additional
clarity. Using the fully reducible vacuum polarization in-
sertion II"",which is related to the full photon propagator
D~ by

D„„(x,y) =D„'„'(x —y)+ fd z d u D„'q(x —z)

XII+(z,u)Dp„'(u —y), (3.2)

Eb =(g
I

H
I g) —&u IH

I
u)

=Eg —E, . (2.5)

one can rewrite Eq. (3.1) as

j"(x)=i f d y II "(x,y)V,„,„(y) . (3.3)

G (x,y)=(g
I
Tg (x)g (y) lg),

G, (x,y)=(u
I Tf„(x)g,(y)

I
u),

and the reducible three-point functions

Gg'p(x, y I
z) = &g I TPg(xWg(y)~g, p(z) I g)

G,' p(x,y I
z) = (u

I
Tg„(x)g„(y)A„p(z)

I
u ),

(2.6a)

(2.6b)

(2.6c)

(2.6d)

as

Eb —— d x lim, tr iy V„—m —e ext x
y~x

X [Gg (x,y ) —G, (x,y )] )

This construction leads to a finite energy value even if no
normal-ordered representation of H is used, as all contri-
butions to Es and E, from the "Fermi sea" cancel. The
energy can be expressed in terms of the full interacting
ground-state and vacuum electron propagators

Now, as usual, one expresses the reducible function II"
by the irreducible vacuum polarization c/'". Working in
momentum space,

d4 d4k
IIP~(x y) f & e

—iPx+ikylIPv( k)
(2m. ) (2n. )

this implies

II""(p,k ) =cP"(p,k)

d4q+ f 4 cP (p, q)DPp'(q)IIP (q, k) .

(3.4)

(3.5)

In the presence of an external potential co" (p, k) separates
into two parts, the first containing all contributions to co""
without any connection to the external potential, the
second containing the remainder. As a consequence of
momentum conservation the first part has to vanish for
p~k,

co"'(p, k) =(2ir) 5 (p —k)co", (p)+co", (p, k) . (3.6)

f d x lim, lim, tr[ [Gs p(x,y I
z)

2 z —+x y~z

—G,' p (x,y I

z )]yPI . (2.7)

The diagrammatic representation of carpi "(p) and cop2"(p, k)
is indicated in Fig. 1.

If one separates II""(p,k) into a momentum-conserving
part and a remainder similar as for oP (p, k),

lim, = —,'( lim + lim )
I i

y —x y~x, y &x y x,y &x
(2.8)

This structure is a consequence of the commutator form
of the Lagrangian.

III. THE FOUR-CURRENT DENSITY

The four-current density of QED is defined as

j"(x)=—elim, tr[y G(x,y)] .
y~x

The zero-point energy of the photon fields does not occur
in view of the definition (2.5).' The limits indicated in
Eq. (2.7) are defined as

&" (p, k) =(2m. ) 5 (p —k)II","(p)+II" (p, k), (3.7)

the connection of IPi "(p) with carpi (p) is simply established
by inserting Eq. (3.6) into Eq. (3.5),

IIVI (p) =~pi "(p)+nip(p)DP(ok)(p)~1 (p)+. . . (3.8)

COi "(p)= i (p g"" p"p "k—ui(p ), —
the series in Eq. (3.8) can easily be summed to

(3.9)

This is exactly the reducible vacuum polarization of QED
without external potential terms. Using current conserva-
tion,
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v2 (p) =

er the irreducible three-point function I' ' (further denot-
ed by I )

I z(x,y ~
z) = I z '(x,y ~

z)

+( — )'(
~
Tg( )y,g( )

X A(x)p(x)g(y)A(y)
~

s ), ;„,~,
(4.1a)

FIG. 1. Low-order contributions to the irreducible vacuum
polarization.

where the reference state
~

s ) represents either
~ g ) or

~

v ) and the subscripts indicate that only connected, one-
particle irreducible graphs contribute to I. The lowest-
order (in a) term is a simple vertex.

I z '(x,y ~

z) = ie—y&5' '(x —y)5' '(y —z) . (4.1b)

The relation between I and G' ' reads

G~ '(x y ~

z) =G,'z(x, y
~

z)

+ie f d u Dq '(z —u)G(x, y)

Xlim, tr[y G(u, v)], (4.2a)

11""(p)=i(p'g""—p"p )
1

1+~i(p')

where Landau gauge has been used.
We thus finally obtain the equation

(3.10)

Xr"(u„u,
~
u, )G(u3,y) . (4.2b)

where the connected part G,' ' of G' ' is given by

G,' '(x,y ~

z) = fd u id u2d u3D„(u &,z)G(x, u2)

J"(p») = (p'g"" p—"p")—1 —1 V,„,„(p)
1+~i(p )

4
+i II& pq V,„, q

(2m. )
(3.11)

for the exact electron current.

IV. THE HARTREE-FOCK APPROXIMATION

In order to extract an approximation similar to the HF
limit of nonrelativistic many-particle physics, we consid-

I

If we approximate I by its lowest order and if we use
the free photon propagator D,'z' instead of D z in Eq.
(4.2b), we obtain, as shown in Ref. 21, a set of equations
for the electron propagator, which is analogous to the
Hartree-Fock limit of the nonrelativistic theory.

This approximation corresponds to the summation of
selected subdiagrams in all orders of a and can be shown
to amount to the standard factorization of the two-
particle density matrix in terms of one-particle density
matrices.

With the approximation indicated the energy E of ei-
ther

~ g ) or
~

v ) can be written as

E= f d'x s(x)

d x lim, tr [iy V„—m eF()x]G H(
—Fxy') +—[VV,„,(x)] ++[VV,„&(x)]

~ ~
~

g —+X
X

k

2

i f d x f d zD' '(x——z)Ilim, tr[y"GHF(z, u)] lim, tr[y~GHF(x, y)] —tr[y~GHF(x, z)y"„GHF(z,x)]I,
2 Q~Z y —+r

(4.3)

with GHF being either Gz HF or G, HF. One readily identifies the kinetic energy, external potential energy, and external
field energy as well as the direct and exchange energy densities

ekiil(x)+sext(x) +Erield(x)+ Edir(x)+ sex(x) .

We shall use (4.3) as the starting point for the discussion of our relativistic energy density functional.

V. RENORMALIZATION

A look at the four-current or the exchange energy, represented by the diagram shown in Fig. 2, indicates that renor-
malization is necessary. %'e thus should have started with the renormalized Lagrangian
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2

WR =Z3 —
4 FR Rv g + AR v R — (BQR ) —, F—,„,R PvFe„t R

Z2+ I[OR «& —mR+&m —eRI - R)eR j+[eR( i&——mR+&m eR—I'-t, R»IR ]I

Z1
eR ( [tt R ~ A R |i'R ]+ [tt R A R ~ 0R ] ) (5.1)

rather than (2.1). The quantities Zt ——Z2, Z3, and 5m are
the standard renormalization constants.

The renormalization procedure directly modifies the
momentum-conserving parts of the vacuum polarization,
the electron self-energy, and the irreducible three-point
function. All diagrams with more than three external
lines are overall convergent only divergent subgraphs are
renormalized due to the modification of the three func-
tions above. Thus, for example, the Lagrangian (5.1) leads
to the renormalized form of Ii~t R (p),

II", "R (p) =i (p g"" p "p—") „2 —1, (5.2)
Z3+~t (P )

one obtains finite expressions for II~t R (p),

and the current

jg(p)= (p g"—pp ) — —1 V, (p)
1+cot R(P )

4

(2m. )
(5.6)

In the lowest order of a one finds

II i,"R(p») =t(p'g"" p"p —) —1 , (5.5)
I+~t,R(p')

with

Z3 ——1 —coP(p =0), (5.3)

JR"'"(P)=(P 'g"' —P "P")~I',R (P ') V„,.(p)

d4Gf q ( )

(2m. )
(5.7)

R(p )=egg (p ) coP (p =0)—, (5.4)

where the constant Z3 is expressed in terms of the renor-
malized (or physical) parameters eR and mR. We will,
however, not display the index R for these parameters as
well as for the renormalized fields AR, QR, and V,„,R
with the understanding that only renormalized quantities
occur in the following discussion. With the usual defini-
tion

which is indicated by the series of Fig. 3. Here
co2 '""(p,q) is not changed by renormalization and
copR(p ) is given by

2

if dimensional regularization is used. Finally, jz ' is
given in x space by

jR"'"(x)= —f ~'y ~'t', R(x —y )(g""~,,&—~;&)V,.t,„(y)
2

=j'...'"(x)+ I 2 ——(g""a„ tY —a„"P„')V,„,„( ) .
12 2

(5.8)

Concerning the exchange energy, it is sufficient (for our purpose) to consider the lowest-order contribution s,'„', ob-
tained by replacing GHF in Fig. 2 by G' '. This diagram is modified by three counterterrns corresponding to the diver-
gent subgraphs shown in Fig. 4. The term resulting from the last diagram vanishes. The remaining two insertions into
the free-electron propagator represent (as indicated in the figure) exactly the counterterms for the lowest-order self-
energy X' '. If we express the exchange energy in terms of divergent, unrenormalized self-energy,

E,'„'„s(x)=——, f ti y tr[X,',s(x,y)G' '(y,x)], (5.9)
4

it is obvious, in which fashion the renormalization of X,

XR '(x,y )=X,',s(x,y) —5m B (x —y) —i(1—Zz ' )[G„' '(x,y ) j (5.10)

changes e,„(0). In the context of Eq. (5.10), 5m and Z2 are understood to represent the lowest-order contributions of
these quantities, which again can be made explicit by the dimensional regularization technique. Of course the ground
state and the vacuum self-energy have to be renormalized by the same counterterms leading to the use of the inverse vac-
uum Green's function when renormalizing the ground-state self-energy. The resulting renormalized exchange energy
density is (compare Ref. 24)

E,'„'R(x)= ——,
' f d y[ —ie Dz„'(x y)tr[yt'G' '(x,y)y—G' '(y, x)]

—2tr(t5m5 (x y)+i(1 ——Z2 ')[G,' '(x,y)] 'IG' '(y, x))] . (5.11)
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(o),W

j '(p)

FIG. 2. The exchange energy graph in the HF approxima-
tion.

FIG. 3. The four-current density in lowest order of a.

+ [P(i y V+ m —5m +eF',„,),P] j

(5.12)

Note that the energy of the external field contains a term

2 r

co'P(O) (VV,„,)'+g(V&,„t)' (5.13)

which will compensate a divergence in the kinetic energy
of the electrons as will be demonstrated in Sec. VI.

VI. THE GRADIENT EXPANSION

The main idea, which we use in order to make the tran-
sition to a density-functional representation, is the ap-
proximation of the full interacting propagators Gg as well
as G, by Green's functions of effective field theories,
where the external potential and the interaction of the
electrons via photons are represented in terms of an effec-
tive classical potential. As the ground state and the vacu-
um differ essentially, one can not expect to compute both
Gg and G„ from one effective potential. So again the fol-
lowing discussion has to be carried through separately for
the two cases.

The Lagrangian of an effective system,

Finally we write down the renormalized Hamiltonian
computed from Wz, Eq. (5.1),

=Z'
I [g, ( iy. V +—m 5m—+eP,„,)P]

ff—p(i Q m——eJ,ff)g ——,F",ff ff /l„

as well as the corresponding field (Dirac) equation,

(6.1)

can be specified directly. The energy value S in Eq. (6.3)
divides the one-particle spectrum of Eq. (6.2) irito occu-
pied electron states (or unoccupied positron states) with
E„&Sand unoccupied electron states with E„&S. With
respect to the ground state of the system, S equals the
Fermi energy EF, for the vacuum state S is chosen to be
—m.

It is obvious that the Careen's function of the effective
(local) theory cannot reproduce all properties of the full
propagator. Nonetheless, we expect, in analogy to the
nonrelativistic case, that the approximation suggested will
yield a reasonable energy density functional.

In order to express the energy density as a functional of
the charge density

p, (x) =j, (x),
we need a representation of the electron propagator in
terms of the charge density. This connection can be es-
tablished by the gradient expansion technique. Using
the definition (6.3) of G, and the Dirac-equation (6.2) one
can write

[ ia —V+pm +epF', r(rx)]@„( x)=E„@„(x), (6.2)

and the Green's function,

—iE (x — )
G, (x,y) =e(x —y ) g N„(x)@„(y)e

E„)S
—iE (x — )—e(y —x ) g C&„(x)@„(y)e

E„(S

(6.3)

—iE (x' —') —iE (x —y )
G, (x,y) =e(x y)e(H„—S)g—@„(x)4„(y)e " —e(y —x )e(S H„)g 4„(x)4„—(y)e

—i(x — )0=[6(x —y )e(H„—S)—e(y —x )e(S H„)]e g4—„(x)4„(y)

—i(x — )H=[e(x —y ) —e(S—H„)]e "g@„(x)C&„(y). (6.4)

The index of H indicates that the Hamiltonian

H„= i cz V+ Pm +e—V,rr(.x)
= r~ +veff(x), (6.5) E,(x) =S—U,rr(x) (6.6)

on the coordinate x. Introducing the effective local Fermi
energy

where the effective potential is assumed to be purely elec-
trostatic (thus neglecting all magnetic field effects), acts

and using the completeness of the solutions N„of the
Dirac equation (6.2), one finds
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The answer can be given (for details see Ref. 14) in the
form of a gradient expansion

f(a+b)
~

a ) = g f'"'(a+b)O„~ a ) .
n=0

(6.10)

f'"' is the nth derivative of the function f with respect to
the complete argument and the operators O„are deter-
mined by the multiple commutators of a an b, as, e.g.,

[E,(x),t„)=ia Vv, tt(x),

[[E,(x), t„],t„]= —2[ia.Vv, rr(x)](a V —Pm )

—2[Vveff(x)) V —b, v,ff(x)

FIG. 4. Counterterms for the exchange graph.

Neglecting all contributions with derivatives of v,rt(x)
beyond second order (and hence referring to a smooth po-
tential), the result is a functional

G, [E,(x),a, E,(x),a, a, E,(x)] . (6.1 1)

We note that this approximation of G, is not perturbative
in the coupling constant, all orders of the nuclear charge
Za are included. From the functional (6.11) one readily
obtains a four current

G, (x,y)=e"" y ' [B(x —y ) —B[E,(x) t„]I—j,'(x)=g 'p, [E,(x), [VE,(x)],b,E,(x)],
i(xo —y )[E,(x)—t ] ~3~ O (6.7) which can be inverted order by order in the gradient ex-

pansion to yield

The Green's function of Eq. (6.7) can be represented in
terms of Dirac plane waves, constituting a complete set of
eigenfunctions of the kinetic energy operator t,

g'3'(x —y) = g J eip. (x —")[Q r(p)Q r(p)
d3

(2')

E, =E,[p„(VP,),bp, ]

and therefore the desired functionals

G.[p. (Vp. )' ~p. ]

—v'(p)v "(p)], (6.8) and

where u ' (p), v' (p) are the standard spinors (in the defi-
nition of Ref. 16).

The technical problem indicated in Eqs. (6.7) and (6.8)
is the evaluation of the action of a function of two non-
commutating operators (explicitly stressed by using the
operator sign ) on eigenfunctions of one of the operators,

e [p (Vp ) ~p ].
The details of the program outlined are discussed in Secs.
VI A —VI E.

A. The electronic propagator in gradient expansion

f(a+b)
~

a ) =?

with

(6.9) Following the arguments starting from Eq. (6.7) one ob-
tains, after some manipulations, an effective Green's func-
tion that separates into a "free" part and a "bound" part

a a =a a G, (x,y) =Gf(x,y)+ G, b(x,y ) (6.12)

and

[a,b]~0 .

The free part does not depend on S [note that
E,(x)—S= —v,ff(x) and BkE, (x)= —Bkv,rr(x)] and is
given to second order in the derivatives of E, (x) as
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Gp(x, y)=ie ' f p e 'j"" «'[1+K, (p, x)+Kz(p, x)]
(2m) P —vl +lC

K, (p, x)=i[BjE,(x)][y yj(p m—)+4p pj 2—y pj(p —m)] z
(p —m +is)

K (p, x)= I[8 B„E,(x)]Kj",(p, x)+[8 E,(x)][8„E,(x)]KJ"(p, x)]
(p —m +iE)

0 j k 0 j k

Kjz((P, x) = —2P~gj" +2Piyoy" +8 +y gi "(P—m ) —4 (P —m
P —Pl +lC P —P1l + I E

0)2 jk 0 j 0 k j k
Kjk(p x) gjk+8 p g 12 p p y 'Y +8 pp

22 P» — g 2 2 ~ 2 2 2 2
p —m +lF p —I +lc p —m +lF

0)2 j k 0 0 jk j k
—48

z z
—4 y (p —m) —4 (p —m)+24

(p —m +is) p —m +is p —m +is

0 0 j kyppp (p )
(p —m +is)

(6.13)

We denote the order of the gradient expansion by [n] in contrast to (n) for the order of a. Gf can be viewed as the con-
tribution of the Fermi sea. The lowest-order term of Gf in the gradient expansion GJ differs from the standard free
propagator only by a phase due to the presence of the potential.

The bound part represents the contribution of all discrete states with an energy smaller than cz. It has the form

](z( ] —s] d e
G,(b)(x,y) =e ' I p g 0'(p, x)[cI(p+m ) 2Ey c(]-

(2m )'
(6.14)

E=(p'+m')'"
Explicit expressions for the factors 0 (p, x), c~, and cq are given in the Appendix. Looking at the lowest-order contribu-
tions to G, b (in the gradient expansion),

d 4 —iP(,x —y)
G(bl(x, y) = —e ' f P 6(p —E)B[E,(x)—E](p+m ),

(2vr )
(6.15)

we note directly that it describes the density of free electrons filling all levels up to E,(x), again with a phase modulation
due to the effective potential.

B. The four-current density in gradient expansion

Using dimensional regularization and Eqs. (3.1), (6.13), and (6.14) as a starting point we can calculate the four current

P D 2 (Dg2 2] e

ov ' p, (x)
+ g ' EE,(x) 2 arcsinh

l2n M

E,(x) 2 3+ [PE,(x)]z
p, x) 2ps x

E,(x)

2p, (x)
(6.16)

p, (x)=[E,(x) —m ]'~ where E, (x) )m

=0 elsewhere .

As expected the space components of j„,g, vanish for the specific choice (6.5). We recognize the divergent constant (as
D is the dimension of our Minkowski space) times the Laplacian of the potential. Following the renormalization pro-
cedure of Sec. III for the special case of an effective Lagrangian, which means that the four current is given by the series
of Fig. 3 and thus jz, has to be computed via Eq. (5.8), we extract the renormalized four current [note that
AE, (x)= —eA V(x)]

,(x)j„",(x)= g 4p, (x) +DE, (x) 2arcsinh
12m Vl

E,(x)
+ + [VE,(x)]

p, (x) '
2p, (x

E,(x)

2p, (x)
(6.17)
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C. The energy densities in gradient expansion

With the effective approximation to the Green s function given in (6.13) and (6.14) we are able to calculate the depen-
dence of the energy densities on the local Fermi energy E,(x) and its derivatives. For the kinetic energy density we ob-
tain

Eq;„,(x) =lim, tr[(iy V„—m )G, (x,y)]
y~x

, I 2 ——— +,1 2 ——[VE,(x)]'
mD D 2 3 —D 1 D
4~2 2 D 2 —D 24~2 2

r

1 3 m z p, (x)
+ z 'p, (x)E,(x) — p, (x)E,(x)+m arcsinh

4~ m

+ 2 [VE,(x)]
12m

E,(x) E,(x) p, (x)
3+ —arcslnh

2p, (x)' p, (x)
E,(x)

+EE,(x) +p, (x)
p~ x

(6.18)

We discover exactly the predicted divergent part proportional to

z
cups(0)

e [VV(x)]
2

which compensates the divergence in the external field energy. The second divergent term

m D 2 3 —D
4~2 2 D 2 —D

is due to the Fermi sea. This contribution which is independent of E,(x) cancels when the vacuum energy is subtracted
from the ground-state energy.

The renormalized kinetic energy density thus reads

Eq;„,R,,(x) =
2 'p, (x)E,(x) — p, (x)E,(x)+m arcsinh

4m 2 m

E,(x)' E,(x) p, (x)
+ 2

' [VE,(x)] —
3 + —arcsinh

12m. 2p, (x)3 p, (x)
E,(x)

+~E,(x) +p, (x)
p~ x

(6.19)

The direct and external potential-energy densities are given in terms of the charge densities as

E,„,R, (x)= V(x),„JR,(x),

Ed;, R, (x)= ——f d yDQQ'(x —y)jR, (x)jR, (y)

(6.20)

1 3 1 .Q .Qd y JR,, (x)JR,.(y) .
8n x —y

(6.21)

The most involved energy density term is the exchange contribution. We shall restrict the consideration in analogy to
the nonrelativistic TFDW model to the local density limit, neglecting gradient corrections. It is obvious that we have to
invoke renormalization in the same fashion as in the case of the exchange energy e,'„', Eq. (5.9), in standard QED. From
Eq. (5.11) we derive

e,„R,(x)= ——,
' f d y[ ie De„'(x —y)tr[y—eGP(x,y)y"GP(y, x)]

—2tr({5m 5' '(x —y)+i(1 —Z ')[G„(x,y)] 'IGf (y,x))]

4 r 0
7 t Sr)

01
7

I e
2

4
P
(

0 v

)
2

d y tr[Xf $(x,y)G, & (y,x)]+i f d y D' '(x —y)tr[yRG, s (x,y)y"G, b (y,x)], (6.22)

where separation of G, into Gf and G, b, Eq. (6.12), has been used. Xf $(x,y) is defined as

Xf($(x,y)= —ie Dp '(x —y)y~GP(x, y)y" —5m5' '(x —y) i(1—Z~ ')[G—( l(x,y)] (6.23)
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In order to use Eq. (6.22) we need both [G, (x,y)] ' and XI II(x,y). [G„(x,y)] ' can readily be given in momentum
space

[G„(p,k)] '=(2~) 5( '(p —k)( i )(p —m)+ieP', ri(p —k) .

Fourier transformation yields

(6.24)

[G„(x,y)] ' = i—f e '"'" «'[k —m e—F, r'(ix)]
(2m )

. —(e)'e(((*)(xe —«. ) d p rp—(x y)—
( )

U a4
= —ie „e p —m

(2~)"

reducing to

(6.25)

[G„(x,y)] '= ie —" ' ' f e '«(" «'(p —m)
(2n. )

in our case of a scalar potential. As no gradient terms occur, [G„(x,y)] ' equals [G( )(x,y)]

[G,(x,y)] '=[G( )(x,y)] (6.26)

Xi $(x,y) is, up to a phase factor, identical with the standard self-energy expression. The explicit form, Eq. (6.23), leads
to the lowest-order renormalized self-energy of QED without external potential contributions modified by the phase fac-
tor

a4
X[0] ( )

'"eff * o yo) / d p —ip(x —y)X(0) (
(2m)

(6.27)

2 2 2 2

X~z(p)= 2m —+ ln 1—e 5 m —p p
8~2 8 p2 m

with

+(p —m) —, +ln p
m

2 2

XIR(p =m )= (p —m) 1 —ln
8~ m

The first term of Eq. (6.22), the Fermi sea contribution, cancels when the vacuum energy is subtracted from the ground-
state energy. Considering

[P]~ ~ lv~f f( x)(xO —
yO )

g b (g,x)= —e

lU ff( X)(XO —
PO )= —e

d 5( E)—e'y'" ' (p+m )B[E,(x)—E](2' ) 2E

dp i(x —)e'y'" '5(p m)B—(p )(p+m )B[E,(x) E], —
(2m )

(6.28)

one shows directly that the self-energy contribution to e,„R,(x) vanishes:

d4 2

f d y tr[XI II(x,y)G, b(y, x)]=— J 5(p —m )B(p )B[E,(x) —E](p2 —m2) 1 —ln
8m (2') m

=0.

The remaining part can be computed with the aid of Eq. (6.15),

2 2 2 2 2 p, (x)
c,,„~,(x)= 4

'2m p, (x) +E,(x) p, (x) —6m p, (x)E,(x)arcsinh +3m arcsinh
32m.4 m m

(6.29)

This expression represents the fully "retarded" exchange energy density: It has been derived with the time-dependent
(free) photon propagator as a kernel rather than the static Coulomb interaction. It is identical with the result obtained by
Jancovici' who used the Coulomb gauge rather than the Lorentz gauge employed here.

D. The relativistic TFDW energy density functional

The energy densities given in Sec. VI C are sufficient to establish the relativistic analogue of the nonrelativistic TFDW
model. They are, however, not in the final form desired. It remains to invert the functional jz, [E,(x)], Eq. (6.17), in or-
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der to exhibit the explicit dependence of the energy densities on the charge density itself.
The first step (writing p, instead of jz, for brevity) is simply accomplished order by order in the gradient terms.

Separating p, as

p, (x) =p( )(x)+p( )(x),

where the index indicates the order of the gradient terms, we have directly

p"'(x) = p, (x)',
3~2 '

p, (x)
p( )(x)= KE, (x) 6 arcsinh

~2 Vl

E,(x) 1 E,(x)
+ + [VE,(x)]

12p, (x) '
Sp, (x) 24', (x)i

(6.30)

as well as

p, (x)=
1/3

t

[p, (x) —p( (x)]
e

(6.31a)

E,(x)= m

2/3 1/2

[p, (x) —p( l(x)]
e

(6.31b)

32
[VE,(x)] = m + p, (x)

e e
[Vp, (x)]

' —1/32/3 —1/2
37T2

p, (x)
3~'

b, E,(x)= m + p, (x) bp, (x)
e

2/3 —1/2 —4/3
3772

p, (x) [Vp, (x)]
e

7T' 3''m'+ p, (x)
e2 e

Taking account the fact that p (x) itself is of second order, one obtains
2/3 —1 —2/3

3~2
p, (x)

e
(6.32a)

m +e2
3772

p, (x)
e

2/3 —3/2
37T2

p, (x) [Vp, (x)]' . (6.32b)

Reinsertion of Eqs. (6.32a) and (6.32b) into a consistent expansion of (6.3 la) and (6.31b) to second order in gradient terms
thus leads to the statements

y, (x)
E,(x) =f3,(x)—

a, x, x

y, (x)
p, (x) =a, (x)—

a, (x)

where the abbreviations

(6.33a)

(6.33b)

a, (x)= 37T2
p, (x)

e

1/3

(6.33c)

P,(x)=[I +a, (x)]'i (6.33d)

1 a, (x)
y, (x)= &p, (x) arcsinh I 1+

12a, (x)

~4
[Vp, (x)]2

a, (x)+P, (x) a, (x)
arcsinh

6a, (x)P, (x) 77k

1 1

ga, (x) 24a, (x)P,(x)
(6.33e)

have been used. These results again apply for both the ground state and the vacuum state. Insertion of the functionals
E, [p, (x)] and p, [p, (x)] into the expressions for the energy functionals, Eqs. (6.19) and (6.29), yields the final form of the
energy density
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c~,(x)= a, (x)P, (x)+a, (x)P, (x)—m arcsinh
8m

a, (x)

1 a, (x)
+ 2 [Vp, (x)] 3 + 2 2

arcsinh
24e a, (x)P, (x) a, (x)P, (x) m

, p, (x)p, (y)+ V(x),„,p, (x)+ d y
8vr x —y

+ . 2m a, (x)+a, (x)p, (x) 6—m a, (x)p, (x)arcsinh2 2 2 2 2 a, (x)
32m-4 m

a, (x)
+ 3m arcsinh

m

2

(6.34)

once again valid for the ground state and the vacuum
state.

In the nonrelativistic limit the functional goes over into
the standard TFDW functional given in the literature.

E. The calculation of the electronic binding energy

The total binding energy is defined as a difference of
two expressions, Eq. (2.5), such that all infinite Fermi sea
contributions cancel. After renormalization the remain-
ing parts are finite and satisfy a minimum principle:

like relativistic Kohn-Sham scheme. We have not ad-
dressed the question of the correlation energy, although
this is, at least in principle and in low order of a, possible.
In addition, the structure of a fully gauge-invariant densi-
ty functional, if an effective four potential rather than its
scalar part is used, and the problem of gradient correc-
tions to the exchange-correlation energy density remain
open questions and will have to be tackled in the future.
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APPENDIX
(where EFs represents the Fermi sea contributions).

This suggests a straightforward variational procedure
for the determination of the binding energy: Minimize
both Eg and E, (under suitable constraints for total
charge, etc.) and subtract them afterwards.

The existence of vacuum contributions to the energy
(and the necessity to evaluate them) thus does not lead to
a definite complication of the density-functional scheme
in comparison to the nonrelativistic case. They constitute,
however, an integral part of a consistent relativistic
density-functional theory not fully covered by a theory on
the basis of the Dirac equation.

VII. FINAL REMARKS

The relativistic density-functional formalism developed
above on the basis of a field theoretical background is the
equivalent of the TFDW formalism in nonrelativistic
physics. In contrast to previous attempts on the basis of
the Dirac equation' it is free of conceptual problems en-
countered in the former case. It can be considered as a
sequel to first attempts to recognize and to deal with the
renormalization problem and the vacuum contribution. '

The not insubstantial, numerical work involved in carry-
ing through the scheme indicated in Sec. VIE for atomic
systems, together with an attempt to isolate dominant
terms in the rather lengthy expressions, will be published
separately.

The TFDW model can be viewed as an approximation
to the Hartree-Fock limit, in particular the "retarded" ex-
change energy density ought to be relevant for a Slater-

0 =1,
0' =i a.VE, (x),
0 = —2ip VE, (x),
0 = —b,E,(x),
0 = —[VE,(x)]

0 =2[(p V)[a VE, (x)]I,
0 = —4I(p V)[p.VE, (x)]I,
0 =[[a.VE, (x)][p.VE,(x)]I,
0 = —2[p VE, (x)]

Defining

dd=—
dE '

one has for CI and cI.

c,= —e(E,(x)—E)gpo —E),

C) =— 1 1

2E2 2E+ d cp,

C2 C3
1

d
1

4~2 4Q

In this Appendix we collect explicit expressions for the
abbreviations used in Sec. VI A
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c4= 1 1 1 p 1

8E 8E 8E 6E+ d — d — d cp,
cp=O

C) = 1
cp ~

4E

c5= 3 3 1

gE gE gE
+ d+ d cp, C2 =C3 = 1

Cp,
8E

c6 —— d+ d + d cp,
1 1 p 1

8E4 8E 24E

c4=

C5=

1 1
d cp

16E4 8E3

3 1

16E4 8E3+ d cp,

C7=
3 3

4E4 4E3 4E2
d+ d + d cp,

C6=
1

8E
1

d cp,16E4

C8= 5 + 5d+ d
16E6 16E 16E4

C7=
3 1

8E5 8E3+ d cp,

+ d+ d cp,
5 3 1

24E 16E2
5 1 1
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