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The positronium negative ion is studied using an adiabatic treatment in hyperspherical coordi-
nates. The potential curves of five different symmetries, 'S', 'P', P', P', and 'D', are discussed
along with the corresponding resonant states. A new method for calculating the body-frame proba-
bility density is used to study the different symmetries and to distinguish between. them.

I. INTRODUCTION

The recent advances in experimenta1 techniques for
studying systems containing positrons have brought much
interest to their theoretical study. Among these, there is
particular interest in the positronium negative ion (Ps
throughout this paper), a three-particle system (one posi-
tron and two electrons) whose existence was first predict-
ed by %'heeler' and recently confirmed experimentally by
Mills, who also measured its lifetime. Ps is a simple
system which can bring much information about the
dependence of the dynamics of three-bound-particle sys-
tems on the relative masses of the particles. It is well
known that there is a simple relationship between the
Ps and H ground-state total energy, between the
ground-state binding energies, and between the binding
energies of the lowest 'S' doubly excited resonances. In
each case the Ps values are approximately one-half of
the corresponding energies in H . It has also been
predicted that the photodetachment cross section of Ps
parallels that of H . The dominant resonance features in
H, a single + shape resonance and an infinite series of
—Feshbach resonances, have also been predicted in Ps
'P'. A question then arises: does this scaling factor hold
for all different symmetries? Or, more generally, is there
a resemblance throughout the whole spectrum of these
two systems' In an attempt to answer this question I
present here the results of a study of five different sym-
metries of Ps, namely 'S', 'P', P', P', and 'D', using
an adiabatic treatment in hyperspherical coordinates. A
prediagonalized basis of hyperspherical harmonics is
used as basis for the expansion of the adiabatic function.
In order to study the characteristic properties of the dif-
ferent symmetries and to distinguish among them, I
present a method for calculating the body-frame probabil-
ity density. This will also corroborate the diabatic inter-
polation of the + and —potential curves made in Ref. 7
(hereafter called BG).

Section II of this paper presents the problem and the
coordinate system to be used. Section III reviews briefly
the hyperspherical coordinates and the adiabatic treat-
ment. Section IV describes the solution of the adiabatic
eigenvalue equation for arbitrary total angular momentum
using hyperspherical harmonics as basis functions. Sec-
tion V discusses the results and Sec. VI consists of some
concluding remarks. The computation of the matrix ele-

ments U I I '1'I' s d rib d App dix A d th al

culation of the body-frame probability density is presented
in Appendix B.

II. THE COORDINATE SYSTEM
AND THE SCHRODINGER EQUATION

r1 ——rm —r
2 1

x= ——,
' (r +r )+r
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where r, r, and r are the position vectors of parti-
1 2 m2

cles 1, 2, and 3, respectively (see Fig. 1), relative to the
center of mass of the system.

The Hamiltonian in these coordinates is

H=T+V,
where

2m1 ™2mz 2 2ppg3

1 z 1

2p12 2p12, 3

(4)

Different coordinate systems have been used to describe
three-particle systems depending mainly on the relative
masses of the particles. For two-electron atoms,
independent-particle-type coordinates (rl, r2) are usually
used, where ri represents the position vector of electron 1

relative to the nucleus, and rz represents that of electron
2. The full Hamiltonian in these coordinates is

1 z 1 z P7z Z Z 1
Vi — V2 — Vi V'2 — — +, (1)

2p 2p M r1 rz r]z

where p is ihe reduced mass of the electron-nucleus pair,
m is the mass of the electron, M is the mass of the nu-
cleus, and Z is the nuclear charge. In the usual case of a
heavy nucleus mlM is small, and this term may be
neglected or treated in perturbation theory.

When the three particles are of comparable masses, as is
the case in Ps, the cross term V'1 Vz is as important as
the other two terms of the kinetic energy operator and
cannot be treated perturbatively. In order to avoid the
complications involved with this term, I describe the
three-particle configuration space in terms of symmetric
Jacobi coordinates (r„x) defined as follows:
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FIG. 1. Coordinate systems used to describe three-particle
systems in their center-of-mass frame. (a} shows the
independent-particle coordinates and (b) shows the Jacobi coor-
dinates (r~, x) and (r~, x') used in the present study.

and

that the expansion of the ground-state wave function near
R=O, the Fock expansion, contains terms which are
powers of lnR; this has been discussed more recently by
Feagin. and Macek. " Wannier' also used these coordi-
nates in his study of electron-impact ionization of atoms
near threshold. Starting with Macek's' adiabatic treat-
ment of helium, hyperspherical coordinates have been
used extensively and successfully for describing electron
correlation and doubly excited states of atoms. ' '

%%en the three particles are of equal mass the hy er-
spherical coordinates R and a are defined as follows: ' '

(r2+r2)1/2

a =tan '(r2/r, ),
1V=

/

—,'ri+x
/

where

12=CX, (10)

are the kinetic and potential energy operators in the
center-of-mass frame. Here pi2 is defined as the reduced
mass of particles 1 and 2, and pi2 3 as the reduced mass of
particle 3 relative to particles 1 and 2:

m)mg

m1+m2
912=

(mi+m2)m3
Pi2, 3=

m)+m2+m3

ri and x are the Jacobi coordinates defined in the previous
section, and the constant c is introduced so that the
squared hyperspherical radius is proportional to the trace
of the moment-of-inertia tensor of the system; this is a
necessary condition for the kinetic energy to be separable
in these coordinates' '

c =(PI2,3/PI2)' '=(
3

)' ' .

The kinetic and potential energy operators are then

In the latter equations, and hereafter, the two particles
with equal charge (e e ) are particles 1 and 2 while the
opposite charged particle (positron) is particle number 3.

This choice of coordinates has two main advantages.

(1) The kinetic energy operator is simple, and can be
separated in hyperspherical coordinates.

(2) When two of the three particles are identical, as is
the case in Ps, ri is chosen as the separation between the
identical particles, so that the effect of the exchange
operator is simple:

1V=
R cosa

R T(cosa)1 i+ (slna)r21 1

R —,(cosa)ri ——(sina)r21 1

C

(V'„, +V„,) =—1 2 2 1 d 5 d+-
2PI2 2PI2 dR R dR

A

R
(12)

PI2f (r„x)=f ( —r, ,x) . A.
where A is the Casimir operator for the group 06, usual-
ly called the "grand angular momentum operator:"

The angular variables are chosen as the spherical angles
(8IQI) and (82/2) of the unit vectors ri and x.

III. HYPERSPHERICAI. COORDINATES
AND THE ADIABATIC TREATMENT

1 d . 2 d
sin a cos a

sin a cos a da
I

l, l2+
cos a sin a

(13)

Hyperspherical coordinates (R,a) were first used in
atomic physics to study the wave function of the helium
atom in the limiting regime rI~O and r2~0 (Whe«ri
and r2 are independent-electron coordinates). They are
defined by

( 2+ 2)i/2

a=tan '(r2/ri) .

The only radial coordinate, R, represents the "size" of
the system, while the mock angle a characterizes the radi-
al correlation of the two electrons. Fock' showed later

The Schrodinger equation is then
r

I2

, + ~

'
~4R 2 R 2cos2a
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2P I2
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+
R sina + V(R, Q) —E Q(R, Q) =0 . (14)

f( R,Q) =4(R,Q)R sina cosa

Here the usual wave function %(R,Q) has been renormal-
ized' by setting
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in order to remove first derivative terms in the kinetic en-

ergy operator both in R and in a. 0 stands for the angu-
lar variables

Q—:(a, ri, rz) . (16)

The R dependence of the potential energy in these coor-
dinates factors out, so that C(Q) is independent of R,

C(Q) =R V(R, Q) .

This fact will prove to be very important as the calcula-
tion of the matrix C can be done once and then used at all

R. values to calculate V, if an R-independent basis set is
used.

Adiabatic expansion. In the hyperspherical approach, '

the adiabatic treatment consists of solving the
Schrodinger equation at fixed hyperspherical radius R in
order to obtain the so-called adiabatic wave functions
4&(R,Q) and the adiabatic potential curves U&(R) as fol-
lows:

(22)

Previous studies' ' have shown that the off-diagonal
elements of the coupling matrix Pz (P» ——0) are small
everywhere in R except in the regions where two adiabatic
curves try to cross, the so-called avoided-crossing regions.
In this region the coupling term P„becomes a leading
term in the radial equation. Consequently, I have neglect-
ed the coupling between different channels 'everywhere ex-

cept in the avoided-crossing regions. In these regions I
have either forced the curves to cross diabatically when it
is known (based on symmetry considerations) that the
curves should cross, or else I have neglected the effects
produced by this "avoided-crossing" and interpolate the
curves adiabatically when it is known that the curves
should not cross. The validity of this procedure will also
be confirmed by the probability density plots.

The radial equation in this approximation is then

UC&q(R, Q) = Up(R)N„(R, Q),

where the fixed-R Hamiltonian U is

(17)
1

2P &2

82
+ W»(R) + Up(R) EFp(R—)=0 .

BR

(23)
A' (Q) C(Q)
2P (2R

(18)

and where A' is the grand angular momentum operator
with the first derivative terms removed by rescaling the
wave function in Eq. (15). The wave function is then ex-
panded as

g(R, Q)= QFp(R)@p(R, Q) . (19)

When this expansion is entered into the Schrodinger equa-
tion, and is projected onto each of the N„(R,Q), one gets a
system of equations for the radial functions F&(R):

2P 12

a2
F,(R)

BR

+[U (R)—E]F (R)=0. (20)

where ( I & implies integration over all angular variables.
This is a system of n equations ( n ~ oo if the complete set
is retained) coupled through the terms

@p(R Q)= X gPi, (R a)~i, i,LM(ri r2)
1), l2

(24)

This equation can be integrated in order to obtain either
resonance energy positions or scattering phase shifts, de-
pending on the energy range of interest. Here the
Numerov method has been used.

IV. SOLUTION OF THE ADIABATIC
EIGENVALUE EQUATION

One of the most important intermediate results of the
adiabatic hyperspherical treatment is the set of potential
curves. They are analogous to the Born-Oppenheimer po-
tential curves obtained in the study of diatomic molecules,
except that the internuclear separation is replaced by the
hyperspherical radius. These potential curves have per-
mitted previous studies of three-particle systems to gain a
deeper understanding of the dynamics. '

Different approaches have been presented in the litera-
ture for the solution of the adiabatic eigenvalue equation
[Eq. (17)]. A method introduced by Macek' in his study
of doubly excited states of helium (pi& ——1), and used later
in several studies, ' ' consists of expanding the adiabatic
wave functions @&(R,Q) as

and

dR
(21)

where the Y~ i L,M(ri, r2) are standard coupled spherical

harmonics. Substituting this equation into the adiabatic
eigenvalue equation leads to a system of differential equa-
tions for gP'i (R,a)

1 d~ 1 li(ii+1) l2(l2+1)
2

——+ 2 +
2p]2R de 4 cos n sin cx

—U~(R) g/', i, (R,a)= g Vi i i, i, gi", i, (R,a),
l ),l2

(25)

where

Vi, i, i', , i' (+&,& LM(ri rz) I
V

I ~,;i;, (ri r»& (26)

I

is an integral only over r] and r2. When many partial
waves have to be included, 'this method becomes ineffi-
cient, for one has to solve a large system of coupled dif-
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ferential equations. A different approach, used first by
Lin, consists of. expanding the adiabatic function in a
basis of eigenfunctions of the grand angular momentum
operator A ' . These are, in this coordinate system, hyper-
spherical harmonics, ' which form a complete set in
(a, r~, rz):

l)+1 . /2+1
y ~, ~,(Q)=N ~, ~,(cosa) ' (sina)

XF( —m, m +I, +Iz+2, lz+ —,';stn a)

X &g, (,L~(r), rz)Xs~~,

and correspond to eigenvalues of A '

(A, +2)z ——,
' =(2m +l, +1,+2)' ——,',

where m =0,1,2, . . . is the number of nodes of (27) in a.
In Eq. (27) N & ~ is a normalization constant, I" is a

1 2

hypergeometric polynomial, Y is a standard coupled
spherical harmonic, and g is a two-electron spinor. Some
properties of these functions in this coordinate system are
as follows: under interchange of particles 1 and 2,

+lzy l l (a r1 rz) y I I (a rl rz)

2
X-s

2
X-7

2 0

selects linear combinations of hyperspherical harmonics
that are relevant to the physical configuration. This is ac-
complished by a "prediagonalization" of the matrix of the
potential C in fixed-A, subspaces.

Prediagonalization. In this section I describe in detail a
method introduced by BG for the variational solution of
the adiabatic eigenvalue equation using a truncated basis
of hyperspherical harmonics. As. mentioned above, the
main problem of this basis set is its extremely slow con-
vergence, which means that large values of A, must be in-
cluded. The problem is compounded by the fact that the
dimensionality of the space increases rapidly as A, in-
creases. For odd parity (with X=1), each successive
eigenvalue contains one additional degenerate state
(rn, l&, lz=—g), the actual degeneracy being (A, +1)/2 [see
Fig. 2(a)]; for even parity (with 1.=1), every two sueces-

y I I (a r rz) (28)

and under the parity operator,

&y ~ I (a, r&, rz)=( —1) ' 'y
~,~,(a, r~, rz), (29)

so that antisymmetry of the wave function under electron.
exchange is enfored by

4,3

The method introduced by I.in diagonalizes U in a
basis set consisting of these eigenfunctions of A' . This
basis set has two advantageous properties: (i) U is almost
diagonal in the limit R —+0, where C/R is negligible com-
pared to [(A,+2) —~]/R; and (ii) the basis functions
y~I, ~, (Q), like C(Q), are independent of R, so that C
must be calculated only once and can then be used to cal-
culate matrix elements of U at all R values. Since the cal-
culation of C is the most difficult and time-consuming
part of the calculation, this is a very important property.
This set also has g well-known disadvantage: its conver-
gence at large R is extremely slow. The reasons for this
slow convergence is the fact that the adiabatic wave func-
tion 4& becomes confined into a very small portion of the
(a, 8~z) plane, where it describes an atomic bound-state
wave function. This is illustrated in Fig. 12 where I plot
the probability density corresponding to Ps in the 'P'
+ state at R =42 a.u. Similar plots are obtained for dif-

ferent symmetries. The wave function is confined in the
region a=a/6, H~z—O, m. These regions correspond to ei-
ther electron being close to the positron and far from the
other electron [(e —e+)—e ]. This slow convergence
implies that a large number of harmonics are needed; ac-
tually, as R —+oo an infinite number of harmonics would
be required to reach convergence. In order to speed up
this slow convergence, BCz introduced a method which

X-2
2

X-o
2

X-6
2

X-8
2

X-ao
1 0 ~ 0 0

X-I2
0 ~ 0 ~ ~ O

IO

0

2

Xg 3,3 5,5 (
Ill

)

FIG. 2. (a) Degeneracy of the eigenvalues of A ' for an odd-
parity singlet state with L= l. Each successive eigenvalue con-
tains one additional degenerate state. (b) Degeneracy of the
eigenvalues of A'~ for an even-parity triplet state with L=l.
Every two successive eigenvalues contain one additional degen-
erate state.
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FIG. 3. Absolute values of the expansion coefficients of the
lowest 'I" adiabatic eigenstate of Ps at R=20. Each dot cor-
responds to the coefficient of a single hyperspherical harmonic.
In (a), the representation of harmonics used is that of Eq. {27).
In (b) the prediagonalized representation is adopted instead (see
text). (From Ref. 25.)

sive eigenvalues contain one additional degenerate state
[see Fig. 2(b)]. Therefore, the dimensionality of the space
increases in direct proportion to A, ,„. A way to circum-
vent this problem emerged in BG upon consideration of
Fig. 3, which shows the absolute value of the eigenvector
of U corresponding to the lowest eigenvalue U~ at A=20

a.u. for the 'I" Ps system (analogous plots are obtained
for each of the different systems studied here). Figure
3(a) shows the eigenvector

l zz & l
in the "primitive" basis

of hyperspherical harmonics. Notice how the components
are distributed among most of the g's. Figure 3(b) shows
eigenvector components

l
z~ & l

of this same adiabatic
eigenstate (p= 1), but transformed into a different repre-
sentation in which submatrices of the potential matrix C
within a fixed-A, subspace are made diagonal. It is clear
that only the eigenstates corresponding to the two or three
lowest eigenvalues of each submatrix contribute appreci-
ably to the adiabatic wave function. The reason why this
prediagonalization sorts out the linear combination of
physically relevant harmonics can be understood by con-
sidering the probability density plots corresponding to
these states. The method used in calculating the density is
presented in Appendix B. Figure 4 shows primitive basis
functions corresponding to A, =9 and l~ ——4, l2 ——5, m=O
in (a) and l~

——2, lz ——3 and m =2 in (b), and l&
——0, l2 ——1

and m=4 in (c). Notice how the density is distributed
over the whole (a, 8&2) plane without any pattern relevant
to physical considerations. Figure 5 shows prediagonal-
ized basis functions in the A, =19 subspace. Figure 5(a)
shows the density corresponding to the lowest eigenvalue.
Notice how most of the density is distributed over the
portions of the (a, O&2) plane corresponding to physical
configurations like (e —e+)—e (a=m/6, 0&2—O, n. ).
Figure 5(b) shows the density corresponding to the second
lowest eigenvalue. Figure 5(f) shows the one correspond-
ing to the highest eigenvalue. In this last case most of the
density is in the region a=m/2, which corresponds to the
unphysical configuration ( e —e )—e+.

I have therefore truncated the basis set accordingly, re-
taining only the lower eigenstates in each A, subspace.
Computational aspects of the method are detailed in Ap-
pendix A.

Next consider the nodal structure in 8~2 that appears to
be present in these prediagonalized eigenstates, even
though this is a nonseparable problem, which means that
the nodal structure in 8&2 should not be independent of a

7r

FIG. 4. Primitive squared basis functions (hyperspherical harmonics) in the 'I" A, =9 subspace. In (a) l'& ——4, lz ——5, and I=0; in
b) Ii=2 hz=3, and m=2; in (c) l&=0 Iz=I, and m=4.
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in general. Nevertheless, such a pattern seems to exist.
Figure 5 shows plots of the density corresponding to
states in the A, =19 subspace. The states correspond to the
lowest, second, fourth, sixth, eighth and highest eigen-
values in (a), (b), (c), (d), (e), and (f), respectively. The
state corresponding to the highest eigenvalue has no nodes
in Oiq, and the number of nodes increases as the eigen-
value decreases down to a point where that symmetry" is
broken. This pattern is the same in all A, subspaces. An
analogous pattern is observed when one plots all the eigen-
values in an energy-versus-A, plot. ' Figure 6 shows this
plot for the 'P' Ps system up to =35. Each line corre-
sponds to the position of one eigenvalue in the corre-
sponding A, subspace. The upper half of the "spectrum"
follows some regularity while the lower part apparently
does not. Notice that the eigenstates in which the nodal
structure is lost is apparently the same state where the
regularity in the E A, plot -is lost (for example, when
A, =19, this occurs in the third lowest eigenstate). The
reason why this regularity in the nodal structure exists is
still not understood but suggests that the problem may be
quasiseparable, at least for those states that have large
amplitude in the high prediagqnalized eigenstates. This
kind of regular and chaotic behavior of the spectrum of

the Hamiltonian has been studied by Stefanski and Tay-
lor2z for a classical Hamiltonian. A similar "prediagonal-
ization" was introduced, parallel to BG, in the problem of
a hydrogen atom in a magnetic field. There, the predi-
agonalization was made in subspaces with n fixed, where
n is the principal quantum number of the hydrogen atoin.

Large-R limit of the potential curves I.n the limit
R~ ao (and E&0) the physical configuration of the sys-
tem is an electron far from a neutral atom. In the Jacobi
coordinates described above, this limit implies that both
ri and r2 go to infinity. This suggests the use, in this
limiting region, of a different set of coordinates in which
the physical configuration is represented more clearly. In
this new set of coordinates ri is the position vector of
electron 1 with respect to the nucleus (e+) and x' is the
position vector of electron 2 with respect to the center of
mass of the atom. Notice that this new set is identical to
the independent-particle coordinate system mentioned be-
fore, when the nucleus is infinitely massive.

A new set of hyperspherical coordinates analogous to R
and u is defined as follows:

I2 l2 l2=r) +r2
(30)

FIG. 5. Probability density corresponding to 'P' prediagonalized basis functions. In (a) is the density corresponding to the lowest
eigenvalue. In (f) is the one corresponding to the highest eigenvalue (see text).
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where

II2=C X

C =(@13,2/@13) ( 3 )
1/2 4 1/2 (31)

04-

0.0-

-0.4

Since the squared hyperspherical radius is defined such
that it is proportional to the trace of the moment-of-
inertia tensor of the systems, R' must be proportional to
R, i.e., R' =dR . The constant of proportionality was
found to be

c P

-0.8—

—
I 2-

-2 0-

1d= +—=14c2 (32)
-2.4—

-2.8-

by expressing R' in terms of r
&

and I"2. The hyperspheri-
cal radius R enters the adiabatic equation only as a pa-
rameter. Therefore the only effect of this transformation
of coordinates is a scaling of the abscissas of the potential
curves by a factor d'

The asymptotic, limit of these new coordinates is

( r ', )~const,

—3.2-

-3.6
I

I

5 9 I3 l7 2I 25 29 33

FIG. 6. Each line corresponds to the position of one eigen-
value of c in the corresponding A, subspace (see text).

r2~R',

a'~~/2, a"=a' —m./2~0

(33) as R ~~, provided the total energy is negative.
In order to see the asymptotic limit of the adiabatic

equation, I set p=R'a" and expand in powers of 1/R',
obtaining'

1

,

2pj3

lr2
——,'+ +12 +c' pr'~ rq —+ +O(1/R' ) 4„(R',0')

= U„(R')4&~(R', 0') . (34)

(35)

The terms inside the first square brackets coincide with
the atomic Hamiltonian when I set r'& —p. It has been
proved in the appendix of Ref. 13 that, to order 1/R, the
potential in the large-R limit is the same as that obtained
from the close-coupling equations for states of the same
principal quantum number. This means that, when in-
cluding the adiabatic correction in Eq. (34), the term pro-
portional to 1/R' is

D= l2 +c' r&-r2,
2p

-0.035

+ -0.055—

~ -0.075—

-0.095
20

I

40

R(a.u.)

f1=2

60 80

'S Ps

where I have also set r& —p. The effect of this term on
the adiabatic potential curve can be calculated using de-
generate perturbation theory. This amounts to finding the
eigenvalues of the operator D in the corresponding n —L,
subspace. Here n is the principal quantum number of the
atom and I, is the total angular momentum of the system.
This is the standard procedure of Seaton and of Gailitis
and Damburg.

V. RESULTS AND DISCUSSION

A. 'S' symmetry

-0.15

CO

CC -0.25—

K

-0.35
I

10

R(a.u.)

I

15

(a)

'S' Ps

20

The ground state of Ps has a 'S' symmetry. This re-
quires l

&
and l2 to be even and equal, so that 1, is also

FIG. 7. The lowest two 'S' hyperspherical potential curves of
Ps converging to the {a) n = 1 and (b) n =2 threshold of Ps.
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even (including A, =O). The ground-state potential curve,
U, (R)+W»(R), is shown in Fig. 7(a). It has been
proved (see Appendix of Ref. 26) that the solution of the
radial equation [Eq. (23)] gives a lower bound on the
lowest exact energy for each symmetry (assuming that the
potential curves are perfectly converged) when the adia-
batic correction term W&&(R) is not included, and gives
an upper bound when the adiabatic correction term is in-
cluded. At large R, R ) 15, the curve was smoothly con-
nected to the one calculated using the method presented in
Ref. 6, in which an asymptotic basis is used. The asymp-
totic basis helps to obtain a better-converged curve in this
region with a much smaller number of basis functions.
At small R, R & 15 a.u. , the two curves are almost exactly
the same. The lower and upper bounds on the ground-
state energy obtained were EI ———0.2646 and
E„=—0.2597 a.u. , which bracket the best calculated
value Z = —0.2620 a.u. (Ref. 27).

The lowest 'S' potential curve converging to the n=2
threshold of Ps is shown in Fig. 7(b). It has a minimum
at R=20 a.u. and behaves asymptotically as —7.06/R
below threshold. It supports an infinite number of Fesh-
bach resonances, owing to the long-range dipole attrac-
tion, the lowest of which was calculated to be
E = —0.0763 a.u. , in good agreement with a previous cal-
culation using the complex-coordinate rotation method
E = —0.07602 a.u. There is a second curve converging
to the same threshold which is completely repulsive and
behaves asymptotically as 10.06/R above threshold.

B. 'I" symmetry

Photodetachment of the ground state of Ps leads to
'P' symmetry in the final state, since the transition

h v+ Ps ( ls 'S')~Ps ('P') —+e +Ps

is the only allowed dipole transition. By analyzing the po-
tential curves obtained with the method described in ear-
lier sections, BG was able to predict the main resonance
features which should be seen in Ps photodetachment.
The results obtained there will be discussed here along
with probability density plots, which corroborate the dia-
batic interpolation of the + and —potential curves.

This symmetry requires I~ to be even and l2 to be odd,
so that A, is odd as well. The potential curves
U„(R)+W»(R) are shown in Fig. 8. (The ground state,
a completely repulsive curve converging to the ground
state of Ps, is not shown. ) As explained in Sec. IV, these
potential curves were connected smoothly to their asymp-
totic form at R &45 a.u. These potential curves and those
for H calculated by Lin and by Klar and Klar and
also by the author using the method presented here are
qualitatively similar, apart from numerical values, so the
same classification (+, —,and pd) introduced by Coop-
er, Fano, and Prats ' is used here.

The von Neuman —Wigner noncrossing rule states that
adiabatic potential curves belonging to the same symme-
try cannot cross. The + and —curves do not strictly
have different symmetry, so they cannot cross. In fact,
they show an avoided crossing at R=3S.S a.u. with a
minimum separation of AU=0.0012 a.u. The diabatic in-

-0.055

D
gj -0.060—

CC

+ -0.065—
CC

-0.070 .I

20 40
R(a.u.)

I

60 80

FIG. 8. The 'P' hyperspherical potential curves of Ps con-
verging to the Ps {n=2) threshold. (From Ref. 25.)

FIG. 9. Probability density of the 'P' + channel of Ps at
R =20 a.u. {before the crossing between the + and —potential
curves).

terpolation in the region 28&R&42 made in Fig. 8 is
based on the fact that the system does not behave adiabat-
ically in regions of avoided crossings' where two adiabat-
ic channels interact strongly. In order to corroborate this,
I present plots of the probability density corresponding to
the + and —states before and after the crossing. Figure
9 shows the density plot corresponding to the + state at
R=20 a.u. (before the crossing), and Fig. 10 shows the
one corresponding to the —state at R=25 a.u. (also, be-
fore the crossing). Notice the big difference between these
two plots. The —character is mainly expressed by the
presence of an approximate node at 8&2 n/2 (this ——corre-
sponds to a node at a=~/4 in Macek's coordinates or to
r& r2 in inde——pendent-particle coordinates), and the j
character by the absence of this node (at small R, there is
an antinode at 8~2

——m /2). Figure 11 shows the —poten-
tial curve (e.g., the potential curve corresponding to the
second lowest eigenvalue, rather than the third) at R =42
a.u. Notice that the node at 8&2

——m/2 is still present. Fig-
ure 12 shows the + potential curve at the same R value.
Notice the absence of a node at 8&z ——vr/2. This strongly
suggests that the diabatic interpolation is correct. The po-
sition and width of the shape resonance supported by the
+ potential curve and the two lowest Feshbach reso-

nances supported by the —potential curve were reported
in BG.
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FIG. 10. Probability density of the 'P' —channe' —channel of Ps at

R =25 a.u. {before the crossing between the + and —potential

curves).

(b)
FIG. 12. Probability density of the 'P' + channel of Ps at

R =42 a.u. (after the crossing between the + and —potential
curves). In (b), the plot has been cut at p=0.025 in order to see
the absence of a node at Oq2

——m/2.

C. P' symmetry

The existence of a metastable 2p I" state of Ps
would have many experimental implications, for it mould
not decay by two-photon electron-positron annihilation (in
first order) but rather by a slow radiative transition to an

-0.055

-0.060-
CC

+
-0.065—CC

n=2

-0.070
0 20

I

40
I

60 80
FIG. 11. Probability density of the 'P' —channel of Ps at

R=42 a.u. {after the crossing between the + and —potential

curves). In {b},the plot has been cut at p=0.025 in order to see

more clearly the approximate node at 0» ——0 =m/2.

R(a.u.)

FIG. 13. The lowest hyperspherical potential curve for Ps
P' symmetry, converging to the Ps (n=2) threshold.
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FIG. 16. Lowest two of the three P' hyperspherical poten-
tial curves of Ps which converge to the Ps ( n =2) threshold.

FIG. 14. The elastic scattering phase shift and its energy
derivative just above the Ps (n=2) threshold for 3P' symmetry
of Ps . These indicate a shape resonance at an energy of
3.7 X 10 a.u. above threshold.

autoionizing state. Two previous studies ' have not
found such a state. In this calculation I confirm these
studies, and find the reason for the absence of such a
state: it has become a shape resonance. In this case, l~ is
odd, l2 is odd, and A, is even and nonzero.

Figure 13 shows the lowest potential curve correspond-
ing to P' symmetry converging to the n=2 threshold of
Ps. Much like the 'P' + channel, the P' potential
curve is not sufficiently deep to support a metastable
state, but it does support a shape resonance at an energy
E =3.8)& 10 a.u. above threshold. Figure 14 shows the
calculated elastic scattering phase shifts and the time de-
lay, from which the width of the resonance (coming also
from tunneling through the barrier) can be obtained,
I =3.6)& 10 a.u. Figure 15 shows the probability densi-
ty at R=20 a.u. (at about the minimum of the potential
curve). The results of this calculation confirm the super-

FIG. 15. Probability density of the lowest P' state of Ps at
R =20 a.u.

multiplet classification of Herrick et al. 3 in which the
P' and the 'P' are part of a supermultiplet in H, since

the 'P' resonance lies very close in energy to the P' reso-
nance. The same resemblance exists in the probability
density as can be seen by corn.paring Figs. 15 and 9, even
though a remarkable difference exists at 8~2 ——0 and m. ,
where the density corresponding to the P' state is con-
strained to vanish while the 'P' + state is nonzero there.
These symmetry constraints can be understood by analogy
with the exclusion of parity unfavored transitions in for-
ward (or backward) scattering collisions, explained by
Fano in 1964. A second difference between the proba-
bility density plots corresponding to the 'P' + @nd the
P' states is the presence of an extra node in the 'P' state.

This can be understood with the help of the independent-
electron picture, where the 'P' is a linear combination of
2scp+2pcs with some 2@cd and has a node in the 2s
function, while the P' is basically 2P and has no nodes.

D. P' symmetry

In both He and H, the P' symmetry holds a quasi-
bound state which has the strongest binding of all of the
P doubly excited states near the n=2 threshold. The
same is expected for Ps . This symmetry requires l& to
be odd and Iz to be even so that A, is also odd.

The two lowest potential curves converging to the n=2
threshold of Ps are shown in Fig. 16. The + channel is
much more attractive than in the 'P' + case; the
minimum of the P' potential curve is U2+ Wq2= —0.085 a.u. at R =20 a.u. compared to
U2+ W22 ———0.069 at R =20 for 'P'. This-is consistent
with Hund's rule, which states that all else being equal,
triplet atomic states lie lower than singlets, since the Pauli
principle keeps the electrons farther apart in the triplet
state. The coupling between the + and —channels in
the avoided crossing regiog. , R =45, is much smaller for
the P' than for 'P', and the system therefore behaves
adiabatically. This can again be illustrated with the prob-
ability density. Figure 17 shows the density correspond-
ing to the + channel at R =20 a.u. , before the avoided
crossing region, in (a), and at R= 50 a.u. , after the avoid-
ed crossing region, in (b). Figure 18 shows the density
corresponding to the —channel at R=25 a.u. in (a) and
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at 8=50 a.u. in (b). Notice how the characteristic prop-
erties of each channel are conserved through the avoided-
crossing region, strongly suggesting that the two potential
curves do not cross (as in He and H ). Therefore the po-
tential curves were adiabatically interpolated in the region
38 & R & 50. At large R, the potential curves were
smoothly connected with the asymptotic curves, just as in
the 'P' case.

The + potential curve, the only attractive one, is now
deep enough to support quasibound states below the n=2
threshold of Ps. It supports an infinite number of reso-
nances (nonrelativistically). The three lowest were found
by numerically integrating the radial equation giving
Ej

——1.03 )& 10 a.u. , E& ——4.5 &( 10 a.u. , and
. E3——9&10 a.u. below the n=2 threshold, the lowest

two of which are in good agreement with another calcula-
tion. The binding energy ef successive resonances de-
creases exponentially to zero. The —potential curve is in
this case completely repulsive, as is the pd curve (which is
not shown in Fig. 16), and they do not hold any reso-
nances.

FICJ. IS. Probability density of the P' —channel. In (a)
A =25 a.u. while in (b) R =50 a.u. (see text).

E. 'D' symmetry

FICx. 17. Probability density of the 'P' + channel of Ps
In (a} R =20 a.u. while in (b} R =SO a.u. (see text).

In H the symmetry holding the most deeply bound
resonant state after P' is D'. In view of all of the simi-
larities seen thus far, the same is expected in Ps . Sym-
metry requires l~ and lz to be even so that A, is also even
and nonzero. The degeneracy in each A, subspace is even
higher in this case, since the orbital angular momentum is
L, =2. Figure 19 shows how the degeneracy increases as A,

increases. In this case, the use of the prediagonalized
basis is even more necessary, since the number of "primi-
tive" basis functions required to reach convergence was
more than 800.

The potential curves converging to the n=2 threshold
of Ps are shown in Fig. 20. (The ground-state curve, a
completely repulsive curve converging to the n =1 thresh-
old of Ps, is not shown. ) These curves are like those cor-
responding to the P' symmetry, but not as deep. The
lowest curve shown (the + curve) has a minimum
U&+ 8'zz ———0.078 a.u. at R =20 a.u. In this case there
is no avoided crossing at large R and the curves behave
adiabatically. At small R there is an avoided crossing at
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FIG. 19. Degeneracy of the eigenvalues of A ' for an even-
parity singlet state with L =2.

VI. CONCLUSIONS

The present analysis has shown the existence of many
resonance states in Ps . %'hile most previous studies us-
ing hyperspherical coordinates were aimed at understand-
ing features of electron correlations in doubly excited
states which were obtained from more sophisticated calcu-
lations or from experiment, the present study relies only
on the hyperspherical potential curves to predict these res-

R= 10 a.u. (It does not appear in Fig. 20 because it is at
higher energy. ) At large R, the curves were smoothly
connected to their asymptotic limit. For this symmetry
with I.=2, the three channels in the n =2 subspace in the
independent-electron picture are 2sEd, 2pEp, and 2psf.
As for P' symmetry, the only attractive curve is the one
corresponding to p=2. It supports an infinite number of
resonances as is guaranteed by the long-range dipole at-
traction which behaves at large R as 1,.44/R . The lowest
of these was calculated to be E~ ———0.067243 a.u. by nu-
merically integrating the radial equation. The other two
curves are completely repulsive and behave asymptotically
as 6/R and 9.44/R, respectively

onance features. From the P' potential curve, it can now
be understood why previous studies have not found a
quasibound state below the n=2 threshold corresponding
to the known 2p P' metastable state of H . The poten-
tial curve is not attractive enough to support a level below
threshold, but rather it supports a shape resonance above
threshold instead. As for the 'P' shape resonance, the
P' shape resonance decay width comes primarily from

tunneling through the barrier. The P' and 'D' potential
curves show that there is no possible shape resonance in
these symmetries (near the n=2 threshold), as there is
none in H, since the + and —curves behave adiabati-
cally, and therefore there is only one attractive curve ( + ),
which supports an infinite number of Feshbach reso-
nances. The spectrum of Ps presented here is very simi-
lar to the spectrum of H, in the sense that it follows the
same order: 'S', P' 'D' 'P' —,P', 'P' +. Table I
shows the binding energy of Ps and H resonances in
the different symmetries studied here. As can be seen in
the table, the scaling factor of approximately one-half
does not hold for all symmetries. A study of other three-
particle systems, including the recently observed muoni-
um negative ion, using the method presented in this pa-
per shows a remarkably /inear dependence of the bind-
ing energy of three-particle systems on the atomic reduced
mass.

The prediagonalization method, introduced by BG and
used in this analysis, should prove very useful in the study
of many-particle systems, since it exploits the degeneracy
of the adiabatic eigenvalues in one region (R —+0) of con-
figuration space. It enables one to choose only those

' eigenstates in each degenerate subspace which have a high
density in the region where the potential is minimum.
Lastly, the method introduced in Appendix 8 for calcu-
lating the body-fixed probability density should also prove
useful in the study of other three-particle systems, since it
is not restricted in any way to the Jacobi coordinates used
in this work.

ACKNOWLEDGMENTS

I want to express my deep gratitude to Dr. Chris -H.
Greene for suggesting this problem, for his continual gui-
dance and support, and for his editorial help during the

-0.04

-0.05—
CO

-0.06—

Ps TABLE I. Binding energy of Ps and H for different sym-
metries (in a.u.).

Binding energy (a.u. )

Ps H
+
Cf

-0.07—

-0.08 l

20 40
I

60 80

'S' {p=1)
'S' (p=2)
3p0

lg) e

1po

0.0120'
0.0139
0.0103
0.004 93
0.000087

0.027 56
0.0237'
0.0171'
0.002 78'
0.001 04d

R(a.u.)

FIG. 20. Lowest two of the three 'D' hyperspherical poten-
tial curves of Ps which converge to the Ps ( n =2) threshold.

'Reference 27.
"Reference 42.
'Reference 43.
Reference 44.



48 JAVIER BOTERO 35

writing of this paper. I also acknowledge several useful
conversations with Dr. A. R. P. Rau, Dr. Y. K. Ho, and
Dr. M. Lawen, I acknowledge support from the Fulbright
Commission and from the Escuela Colombiana de In-
genieria, from which I have been on a leave of absence.
This work was partially supported by the National Sci-
ence Foundation. The computational work was per-
formed on a Ridge 32 system and on the IBM 3084 of the
System Network Computer Center of Louisiana State
University. Thanks to N. N. Choi for pointing out the
misprint in Ref. 6.

tive basis, e.g., the hyperspherical harmonics of Eq. (27).
This amounts to diagonalizing submatrices c with di-
mensions given by the degeneracy of the corresponding I,
subsp ace.

In order to calculate the matrix elements of c", C was
expanded as follows:

COSA

C

APPENDIX A: COMPUTATION OF U
& ~

i'. 1'ml& 12,m'l &l2

00 7—2 g k+t Pk(cosO)z),
COSA k 0 P +

(A 1)

As explained in the text, the diag'onalization of U is
made here in two steps, First, the potential matrix C is
diagonalized within degenerate k subspaces in the primi-

I

where r& (r&) is the lesser (greater) of —,'cosa
( I/c)sina, and g' implies summation over even values of
k only. Then

'„„=(~
~

c ~»',
m/2

c& z Nr t~lzN~——.&.
&

daF( m, m —+1&+lz+2, lz+ —', , sin a)F( —m', m'+1', +lz+2, lz+ —,,sin a)

(A2)

li + l 1 +2 . 12+12+2X(cosa) ' ' (sina) ' k

5( (, 5E (, —2g' k+, p(l, lzl)lz, kLM)
COSA 11 22 k P

(A3)

with

2m +l)+$2 ——A, (A4)

and where I have defined an integral over r& and rz to be

p(11121112 ~~M) ~ I l)lzLM I
Pk(cosgiz)

l I( ( LM & (A5)
I

which was evaluated using Eq. (13.63) of Sobel'man.
The expansion of the hypergeometric polynomials used

for the computation of cz z is

expression is unstable as well in the region sin A-0.5. In
this regime, I then used an asymptotic expression for the
hypergeometric function"' for values of a in the region
0.1&sin A &0.9:

F( —m, m+l~+lz+2;lz+ —', ;sin a)
1

m +l2+ —,
'

F( —m, m +1&+lz+2, lz+ —', ;sin a)

I (m +1)l (lz+ —, )

I (m+1, + —, )

cos[(2m +1
& +lz+ 2)a —(lz ~ —,

' )~]
1)+1 . l2+1(nm)' (cosa) ' (sina) ' (A8)

X g( —1) -' m +lz+ —, m +1&+—,

m —s

X(cosa) '(sina) ' (A6)

XF(—m, m +1&+lz+2;l~+ —', ;1—sin a) (A7)

This expression becomes unstable at sin A = 1 when
m & 20. For this reason, I use the expression

F( —m, m+l~+lz+2, lz+ —', ;sin a)

I (m+1, ——,
' )I (1 ——,

'
)=(—1)

1(m +lz ——,
'

)r(1& ——,
'

)

The diagonalization of each submatrix of C gives then
eigenvalues c and eigenvectors a z . As mentioned
above, only the lowest eigenstates are retained in each X
subspace. In the actual calculation, the lowest four eigen-
states are retained up to A, =41 (this comes from the fact
that for low A, 's, the third and fourth eigenstate contri-
butes to the second-lowest potential curve, the + channel
in the 'P' symmetry). The lowest two were then used
from A, =43 to 59, and the lowest one from A, =59 to 71,
when an odd parity was being studied. Instead when an
even parity was being studied, the lowest three such eigen-
states were used up to A, =66.

These eigenstates were then used as a basis to finally di-

agonalize U, so that the matrix elements are given by

Uk„k, = g —a „~„„(zl~

C
~

zl' &V, V

for all values of m where sin a&0.5. When m &27, this .. +, l(~+2)' —
& f&u. &

R
(A9)
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The diagonajization determines eigenvalues U& and their
corresponding eigenvectors z~ &.

'APPENDIX B: COMPQTATION
OF THE BODY-FRAME PROBABILITY DENSITY

In this appendix a method for calculating the density as
a function of the angular variables a and 8,2 is presented.
In order to have a density independent of the space-fixed
coordinate system, I calculate the scalar quantity
pL (R;a,8i2):

pL, « 'a 8i2) = g I +t.st I

'
~ (B1)

Gt', t, (a)
ii+1 . /2+1= g N~t, t,zi„„„a„„(cosa) (sina)

A, v

&&F( —m, m +li+lz+2, l2+ —,';sin a)XsM

so that

In order to do so, the wave function at any particular R
value is written as

'pL, M = g GI', t, (a»t, t, LM«i rz»
I), l~

where

X &t't'rM(ri'r2)
1 2

This expression can then be simplified into the form

(84)

pl. (R a 8iz)= Q ( —I) +
2 [(2li+1)(2lz+1)(2li+1)(2l2+I)]'~2I.+k (2L + l)(2k+1)

(4~)
S', , I2t,

k

li l2
r

2 t(l2 ' ' l' l' k () () () () () 0 I k(cos8iz)
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