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Generating and detecting short-duration pulses of squeezed light

B. Yurke, P. Grangier, R. E. Slusher, and M. J. Potasek
ATd'c T Bell Laboratories, Murray Hill, New Jersey 07974

(Received 19 December 1986)

Mode-locked lasers provide a train of high-intensity light pulses that can be used to pump non-
linear media in order to produce squeezed light. The squeezed light produced would consist of a
train of short-duration pulses. It is shown here that a homodyne detector using a pulsed local os-
cillator can be used to observe the squeezing even when the response time of the photodetector is
much longer than the local oscillator or squeezed light pulse width.

I. INTRODUCTION

Squeezed states have been successfully generated ' us-
ing optical materials which exhibit parametric gain (ei-
ther parametric down conversion or four-wave mixing
gain). Since the optical nonlinearities suitable for
squeezed-state generation are generally weak, high finesse
cavities or long-path-length media (such as optical fibers)
were employed. High-intensity lasers to serve as pumps
for the optical media could reduce the cavity storage time
or interaction length, making the generation of squeezed
light a less demanding technical task. In addition, linear
losses, which limit the amount of squeezing that can be
realized, are reduced by decreasing the eA'ective optical
path length.

High-intensity lasers generally emit light pulses whose
pulse width is short compared to the characteristic
response time of currently available photodetectors. Here
a technique is described by which fast time-scale squeez-
ing can be detected using slow photodetectors. A laser
source emitting a periodic train of pulses (such as a
mode-locked laser) is used to provide both the pump for
the parametric gain medium and the local oscillator for
the homodyne detector. The pulsed local oscillator in
eAect stroboscopically samples the pulsed squeezed light
generated by the pump. By employing a periodic train of
pulses with period T the output current from a homodyne
detector will have intense spectral peaks at the frequencies
f„=n/T where n is a positive integer. Between these
sharp spectral peaks the power spectrum exhibits a shot
noise floor. When squeezed light enters the signal port of
the homodyne detector this noise floor will drop below the
level due to the vacuum entering the signal port, provided
the local oscillator phase is adjusted correctly and the op-
tical path lengths are chosen so that the squeezed-light
pulses and local-oscillator light pulses overlap when they
arrive at the photodetector surface. An explicit expression
for this noise reduction, involving the local oscillator and
pump-pulse shape functions, will be given. As a technical
point, balanced homodyne detection can be used to
greatly reduce (and in principle completely eliminate) the
intense spectral peaks occurring at f„.

The pulsed technique which can be used to overcome
linear medium losses can be regarded as an AM analog of
an FM technique introduced by Shelby et al. to generate
and detect squeezed light in which they spread the pump

energy over many frequency components in order to
suppress stimulated Brillouin oscillations. Schumaker
has also investigated the use of pump beams comprised of
multiple frequency components for the generation of
squeezed light and has explored various amplitude corre-
lations that arise among the frequency components of the
squeezed light generated in nonlinear media with such
pumps.

Operator expressions for the squeezed light generated
by a parametric gain medium pumped with a periodic
train of light pulses (e.g. , obtained by frequency doubling
the mode-locked laser output) will now be obtained.

Assume that the signal and pump beams are collinear
and phase matched, then (using the undepleted pump ap-
proximation) the signal field E, propagating through a
nonlinear medium with a second-order polarizability will
be adequately described by the wave equation

8 E,
Bt 2 rcEp Es,

where Ep is the pump electric field, v is the light velocity
in the medium, and K characterizes the strength of the
nonlinearity. The incoming intense pump field can be
treated as a classical field of the form

Ep(x, t) =A(t —x/v)sin[2a)p(t x/v)+p)

where 2mo is the angular frequency of the optical carrier
and t)) is the phase of the optical cycle at (t —x/v) =0.
The carrier is modulated by the periodic envelope function
A(t —x/v) which consists of a train of equally spaced
pulses in which each pulse has a temporal width of
r(1/r« top). The temporal periodicity (T) of successive
pulses need not be commensurate with a multiple of the
optical period. The signal field is split into positive- and
negative-frequency components and expressed in the form

( ) E(+)( ) tmP(l x/P) +E(—)( ) ~~P(i

(3)
where E, is the Hermitian conjugate of E, + . The goal
of the exercise here is to determine the response of a
homodyne detector to the squeezed light. The temporal
range over which the variations in E, and E, + can be
detected is determined by the shortest of the three charac-
teristic response times given by r, rLo (local oscillator
pulse width), and 1/8 (inverse bandwidth of the homo-
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dyne detector electronics). All characteristic times are as-
sumed to be long compared to an optical period, therefore
only frequency components encompassing the greatest
~alue of 1/z, 1 jzLo, or 8 are kept in the Fourier expansion
of the electromagnetic field E, + . Hence, neglecting
weak frequenc dependences, ' ' the positive frequency
components E, +), of the electromagnetic field incident on
the nonlinear medium (x =0) can be expressed by

E,'+'(O, t) =epJ dp) a(p))e

where sp converts the right-hand side to the electric field
units and a(a)) denotes the annihilation operator for a
photon of frequency p)p+ p) and satisfies the usual boson
commutation relations:

where perfect phase matching has been assumed.
Transforming to the coordinates

t+x/v, rt-t —x/v . (7)

Equation (6) can be further simplified to

E, + (g, rI) —K(rt)e '~E, (g, rt), (8)

where K(rt) xA(rI)/8a)p. Between this equation and its
Hermitian conjugate, E,~ ) can be eliminated to yield the
equation

B2
2 E, + (g, rt) -K (rt)E,'+'(g, rt),

[a(p)), a t(p)')] =b(p) —p)'), [a (~) a (~ )] 0 (5) which has the general solution

The integration is carried out over the frequency interval
—0 ( p) & 0, where 2p)p)) 0 but 0/2n is somewhat
greater than the greatest of 1/z, 1/zLo, or B

Substituting Eqs. (2) and (3) into Eq. (1) and making
the slowly varying amplitude approximation which
neglects second-order derivatives in E ~+)(x, t ) and
E )(x,t), one obtains the expression

IP

+v E, +)(x,t)
t x

xA(t xjv—)e "E( )( )Es X, t
4COp

Eg+ ((, rt) C)(rI)e "t+C2(rt)e (io)

The C) and C2, in terms of the initial field operators
E, +

(O, t) and E, (O, t), are

e
—K(~)t

C, (t) = [E +)(O, t) —e '~E, (O, t)],
eK(r)I

C,(t) = ' [E,'+'(O, t)+e '~E,' '(O, t)] .
-

Having obtained the functional form of C) (t) and C2(t ),
Eqs. (10) and (11) give Et+)( xt) and Et )(x,t) inside
the nonlinear medium 0 ~ x ~ L,

E, + (x, t) cosh
2K(t x/v)x E, + (O—, t —x/v) e t&sinh

2K(t x/v)x E& )(0—
U V

(i2)

Equation (12) relates the electromagnetic field of the light emerging from the nonlinear medium at x -L and time t to
the field entering the medium at x =0 at the earlier time t L/v. Equation (—12) is a generalization of the canonical
transformation '

b pa+ vat (i 3)

which converts coherent light into squeezed light. After emerging from the nonlinear medium the light beam will be
governed by the wave equation

BE 2BE (i4)

and propagates to the homodyne detector (x -l). The time td it takes for light to propagate from x 0 to x l is given
by td =(l —L)/c+L/v and the phase y accumulated by the optical carrier is given by y p)ptq. The electric field of the
light arriving at the homodyne detector is then given by

E, (l, t) = [cosh[2K(t —td)L/v]E, + (O, t —td) —e '~sinh[2K(t —td)L/v]E, (O, t —tg)e'~e +H.c.j . (is)

The response of a homodyne detector to light emitted
by the parametric gain medium will now be evaluated.
The analysis will be carried out for a balanced homodyne
detector since this detector has the advantage of being
blind to intensity fluctuations of the pump or signal. It
responds only to the interference between the signal and
the local oscillator. To a good approximation, ' the out-
put current delivered by a balanced homodyne detector is
given by

r t

1(t)
&

dzH(t —z)I (z) . (i6)

l

Iz(t) is proportional to the instantaneous current and is
given by

l, (t) =E,' (t)E,"'(t)+E,'-'(t)E'&'(t),

and H(t) is the response function of the detector electron-
1cs.

The intense coherent local oscillator light can be treated
classically and has the form

ELo(t ) F(t )cos(p)pt +8)
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where 8 is the local oscillator phase and F(t) is the periodic (T) amplitude function. Assuming rLo )) 1/cop,
one has, to a good approximation,

e
—i8

E,'c')'(t) = '
2

F(t) .

Substituting Eqs. (19) and (20) into Eq. (17), Ip(t) becomes

i (e+ y)
Ip(t) = [g(t)E, + (O, t —td) —e 'eh(t)E( )(O, t —td)]+H. c. ,

From Eq. (15) one has

E, + (t) =[cosh[2K(t —td)L/v]E, +
(O, t —td) —e 'esinh[2K(t —td)L/v]E, (O, t —td)[e'~ .

(19)

(2o)

(21)

where g(t) and h(t) are given by

g(t) =F(t)cosh[2K(t —td)L/v],

h(t) =F(t)sinh[2K(t —td)L/v] .
(22) g —„=g„, h —„=h„ (24)

From Eq. (4), E, +
(O, t —td) can be written in the form

where co, =2tr/T. Furthermore, g(t) and h(t) are real,
yielding the relations

The functions g(t) and h(t) have periodicity T and will
be expanded in a Fourier series to determine the noise
power spectrum of I~(t). Therefore,

E,'+'(O, t td) =ep—„dcob(co)e (2S)

g(t)= g g e where b(co) =a(co)e' '. The Fourier transform of lz(t),

h(t)= g h e

(23) I (co) =1/42tr„" dt e+'"'I (t),
is then given by

(26)

&/2
J%

I (co) =
2

e g [(e' e+~ —e ' +~ e h )b(co —nco ) +(e ' +"g —e' (27)

For simplicity one assumes that H(co) [the Fourier transform of H(r)] has the value hp out to frequency d, co and then
rapidly drops to zero so that I(t) can be approximated by

t bc@

I(t ) = '
dcoIp(co)eJ2z" (2g)

phG0 fO Q /gal OO OO

( l (e+ P) l (e+ P Q)h ) ( l (e+ P) + J(e+ IP' e)h + )gn e e gm e m
hco + dido n~ —oo ~~ —oo

The moments of I(t ) can now be evaluated for a given state of incoming light. Consider the case in which the incident
light is in the vacuum state

I
0). From Eqs. (28) and (27) it is evident that the expectation value of I{t) is zero

(0
I
I(t)

I
0) =0. The first moment of I(t) is, keeping Eq. (24) in mind,

&oII'(t) Io) =
2

xe ' " ' 6(co —co' —(n —m)co, ) .

The time average of this quantity can be written more compactly as
2

(29)

(&I'(t))) =2
2 n

I

ei(e+y) e
—i(e+y —e)h

I
2P~ (3o)

Using the experimental variability of the electronic band-
width (dco) of the homodyne detector, and realizing that
the average power is equal to the integral of the power
spectrum, one concludes that the power spectrum S(co) is
given by

[ I g. I
'+

I b. I

'
—2cos(20+2))c —P)g„h„*] .

It is useful to express this in the form
2

S(co) =2
2

S(co) =2
2

2

((e+ y) i(e+ y e)h—
I

2

n ~ —oo

(31)

From Eq. (23) one can readily show that

(g(t)h(t)) = y g„h„',

(32)

(33)
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where the () denote time average. Hence the power spec-
trum can be written in the form

II' i 2

S(co) -2 ' [&g'(t))+&h'(t)&
2 —icos(28+ 2'—p)(g (t )h (t ))I .

(34)

Since g (t ) and h (t ) are real functions of t, the power
spectrum is maximized or minimized when cos(20
+2llr —p) + l. This condition can be met by adjusting
any one of the three phases i9, y, p which could be accom-
plished by using a phase shifter in the local oscillator, sig-
nal, or pump beam, respectively. Without loss of generali-
ty (g(t )It (t)) can be chosen to be positive, then the max-
imum and minimum values of S(co) are, using Eq. (22),

S(co),„2 (F(t) exp[+ 4K(t —td)L/v 1 & .
&o~

(35)

From Eq. (37) the noise power spectrum normalized to
the vacuum noise power spectrum is

I T/2F —(t)exp[ ~ 4K(t —ty)L/v 1dt
n( )max yT/2

Equation (36) constitutes the major result of this paper.
The maximum increase or decrease in the noise power
spectrum is directly related to the homodyne detector
pulse shape F(t) and pump pulse shape K(t). To maxim-
ize the squeezing observed, it is evident that the pulse
shape F(t) of the local oscillator light should be chosen so
that the function exp[4K(t —td)L/v l is sampled only near

its maximum, that is, the local oscillator pulse width zLQ
should be of the same order as the pump pulse width r, or
shorter. The analysis assumed an ideal balanced homo-
dyne detector. For a real detector, imperfect balancing
will give rise to spectral peaks at frequency f„n/T. Be-
tween these peaks the power spectrum is still given by Eq.
(36). That S„(co)of Eq. (36) is independent of frequency
is a consequence of the assumption of ideal phase match-
ing over the frequency interval

~
co

~
( t1 of Eq. (4). The

eA'ect of phase mismatches on S„(ca) will be described
elsewhere. '

An explicit expression, Eq. (36), has been obtained for
the degree of noise reduction observed in the power spec-
trum of a homodyne detector's output when a periodically
pulsed local oscillator is used to observe the squeezing in
periodically pulsed squeezed light. To see a large effect
the local oscillator and squeezed light pulses should have
comparable pulse widths. It may thus be necessary to em-
ploy pulse compression techniques' to the local oscillator
light before it reaches the homodyne detector. Alterna-
tively, a cavity could be used to lengthen the pump pulse.

More generally, the technique described here could be
used to stroboscopically sample portions of the squeezed
light where the degree of squeezing and the amplitude
component which is squeezed varies along the pulse en-
velope. For example, the degree of squeezing at various
positions along a soliton pulse propagating through an op-
tical fiber' ' could be explored in this manner.
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