
PHYSICAL REVIEW A VOLUME 35, NUMBER 8 APRIL 15, 1987

Anomalous viscosity of polyelectrolyte solutions
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The electrostatic contribution to the viscosity of dilute polyball solutions is calculated using the
"two-fluid" model of colloidal liquids. A similar approach is applied to dilute and semidilute ionic
solutions of rodlike polyelectrolytes, and the experimentally observed anomalous rise of the reduced
viscosity with decreasing polymer concentration, the phenomenological Fuoss law, and the max-
imum seen at low added-salt concentration are derived.

The anomalous behavior of polyelectrolyte solutions at
low salt concentrations has been well known for many
years. ' The main effects observed in viscometric exper-
iments include the apparently unbounded rise of the
specific viscosity (per unit polymer concentration) with di-
lution in the salt-free regime, its nonanalytic dependence
on the polymer concentration, and the appearance of a
maximum in the reduced viscosity, at small (but nonzero)
salt concentrations. Although it has been suggested that
the above anomalies are produced by long-range Coulomb
interactions between polyions, to the best of our
knowledge, no theory has been able to account for these
effects. '

In this report we discuss the consequences of a model
which estimates the electrostatic contribution to the
viscosity of dilute solutions of charged polyballs and

apply it to solutions of rodlike polyelectrolyes. According
to the "two-fluid" model of colloidal liquids, the viscosi-
ty can be written as the sum of three terms: the solvent
viscosity go, the hydrodynamic contribution g~ which is
proportional to the volume fraction of the colloidal parti-
cles (polyballs), and the viscosity of the "fluid" of these
interacting polyballs, g&. We adopt the phenomenological
relationship between the latter, the shear modulus E, and
the stress relaxation time ~,

g) ——E~,
which was found to be in excellent agreement with experi-
ments on charged polyballs. Although long-range crys-
talline order is not present in the liquid state, one assumes
that the shear modulus can be computed from the expres-
sion for the elastic energy associated with small displace-
ments from the equilibrium location in the colloidal crys-
tal. Since the polyball lattice is immersed in a uniform
background of univalent counterions (number density

Cct) and salt ions (density Cs and valence Zs), it can be
shown that, upon a suitable renormalization of the poly-
mer charge Z (i.e., replacing Z by a renormalized value
Z*), the pair interaction potential between the charged
polyballs can be approximated by the Debye-Huckel ex-
pression V(r)=(Z*e) e ""/epr, where ep is the dielectric
constant of the solvent, e the electron charge, and v
the inverse Debye screening length given by
=4trltt (Z*C& +2Z, C, ), with ltt e /epktt T bein——g the

Bjerrum length, kz the Boltzmann constant, and T the
temperature (we have used the charge neutrality condition
Cct ——Z*C~ to relate tc to the polyball density C~ = 1/d ).
For a lattice with equilibrium spacing d, the shear
modulus is related to V(d) (in the nearest-neighbor ap-
proximation )

E=(1/d )(ted) V(d) . (2)

g, /C =al~Z* (1+2Z, C, /Z*C~)

X exp[ —(4~lit Z*C~ )'~

X(1+2Z,'C, /Z*C, )'"], (4)

where we have neglected the small hydrodynamic contri-
bution gH to the viscosity (dominant for neutral parti-
cles).

The exponential decrease of the g,p/Cp with Cz at
zero salt concentration is due to the fact that the density
of counterions increases as we increase the polyball con-
centration and, although the interpolyball separation de-
creases, the net effect is that the interaction between poly-
balls becomes increasingly screened. At finite salt concen-
trations we expect a transition between the regimes
C, « C& in which our previous arguments apply and
C, ~~Cz in which the screening length becomes a func-
tion of salt concentration only (e.g. , constant) and further
reduction in Cz decreases the interpolyball interaction. In
between, a maximum in the interparticle interaction is ex-
pected. If, on the other hand, we keep C~ constant and
vary the salt concentration, we expect to observe exponen-
tial decay with C,' at high salt concentration (with, pos-
sibly, nonmonotonic behavior at lower C, ).

The case of polyelectrolyte solutions is complicated by
the fact that flexible polyions can change their conforma-

The relaxation time r appearing in Eq. (1) can be related
to the time it takes the polyball to diffuse across a lattice
spacing d,

~=d /D,
where D=k&T/g~ is the diffusion constant of a polyball
of radius a. Using the above equation and the definition
of the reduced viscosity riz/C~ =(g rip)/rlpC~, —we get
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tion depending on the salt and polymer concentrations. In
the following we shall assume that the stoichiometric de-
gree of ionization (ZIN') of the polyion is of order unity
and take the salt concentration to be low enough so that
the polyions can be described as uniformly charged
rods. ' While this approximation breaks down at high
polyion concentrations, the assumption that the electro-
static persistence length scales like the square of the
Debye screening length implies that the stretched-
polymer assumption remains valid as long as the polyion
concentration remains below 1/lzbN, where b is the
monomer length and N the degree of polymerization, e.g. ,
well into the semidilute regime (the onset of which is de-
fined by the overlap concentration for rods,
C~'=1/b N ). Thus, according to the classification of
Ref. 9, our considerations pertain to the so-called, dilute-
semidilute regime.

Coulomb interaction energies for various arrangements
(hexagonal, p-tungsten, grain boundary) of charged rods
have been calculated by de rennes et al. In all cases the
interaction energy was found to be of the form
V= V(ted), where d=(1/bc)' is the nearest-neighbor
distance between rods (C =NCAA is the monomer concen-
tration) and where tc ' is the Debye screening length
given by tc =4ttlttaC(1+2Z, C, laC}, with a =Z*IN be-
ing the effective degree of ionization which accounts for
charge renormalization (Z~Z*) due to counterion con-

densation on the polyion. ' '" The other difference com-
pared to the spherical polyball case is that the translation-
al diffusion coefficient is replaced by that appropriate for
a rod, D=kTlnNlnobN S.ubstituting into Eqs. (1)—(3)
and noticing that the reduced viscosity is defined with
respect to the monomeric concentration, one obtains

g,~/C=b (N/lnN)(ted) V(ted)/king TC'

In the limit of vanishing salt concentration ~d
=(4tral~/b)' becomes independent of C [apart from
possible logarithmic dependence of a on C (Ref. 6)] and
one arrives at the phenomenological Fuoss law' for the
reduced viscosity of salt-free polyelectrolyte solutions,
pzp /C 1 /C ' . Notice that the above result is universal
in the sense that it does not depend on the choice of the
polyion lattice, At concentrations below Cz* (physically
realizable only for short polyions), one needs to correct
the interaction energies for finite polyion size effects; the
spherical polyball result [Eq. (4)] is approached, as expect-
ed, in the limit of pointlike polyions ( C «Cz*).

At finite salt concentrations, the behavior is no longer
universal and depends on the polyion arrangement. One
obtains ted = [y(l~ /b)a(1+ 2Z, C, /aC)] ', where
@=8m/ ~3 and 3tr for the hexagonal and the p-tungsten
phases, respectively. Substituting the corresponding in-
teraction energies into Eq. (5) gives

and

(g,z/C)h, „,s—(N/inN)[l~a(1+2Z, C, /aC)] expI —[(8vrltt/W3b)a(1+2Z, C, /aC))' )
/C'

(rl& IC)ti=(N/lnN)[b lita(1+2Z, C, /aC)]' exp{ —[(3trltt Ib)a(1+2Z, C, laC)]' ] IC'

(6)

Both expressions show Fuoss law behavior for C~~C„
followed by a maximum in g,p/C versus C curve when
C-O(C, ) and a rapid increase with concentration at
C «C,—all in qualitative agreement with existing exper-
imental data. ' In the limit of high salt concentrations,
one recovers the neutral polymer behavior since both the
intrapolyion and interpolyion Coulomb repulsions become
small and the neglected hydrodynamic contribution to the
viscosity (gH) becomes larger than the electrostatic con-
tribution (g&} given by Eqs. (6) and (7). A detailed com-
parison with recent experimental results will be published
shortly. ' Notice that although energy considerations
favor the hexagonal over the P-tungsten phase, there is

no experimental evidence for long-range order in polyelec-
trolyte solutions and, since twist deformations increase the
energy of the former but not of the latter phase, one
might expect that entropy considerations will favor a local
P-tungsten-like arrangement (roughly perpendicular
nearest-neighbor rods) in the liquid state.
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See, however, a speculation based on a Rouse-type argument,
in Ref. 8. A model different from ours which also gives the
Fuoss law in the semidilute regime, has also been considered
(P. Pincus and T. A. Witten, private communication).


