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Intrinsic viscosity for a polymer chain with self-avoiding interactions
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The complex intrinsic viscosity for a single polymer chain in the presence of self-avoiding interac-
tions is calculated renormalization-group theoretically directly from the Green-Kubo formula. The
universal functional form to O(c) (c.=—4—d, d being the spatial dimensionality) is presented.

The intrinsic viscosity, which is the most fundamental
quantity of dilute polymer solutions, has so far been cal-
culated within the Kirkwood-Riseman approximation.
This calculation was performed in the presence of hydro-
dynamic and self-avoiding interactions to lowest order in
the couplings, starting from the Kramers formula.

Recently in Ref. 4 the limited reliability of the
Kirkwood-Riseman scheme was studied by calculating the
frequency-dependent intrinsic viscosity starting directly
from the Green-Kubo formula. By considering a Gauss-
ian chain with hydrodynamic interactions only, it was
found that in the zero-frequency limit the Green-Kubo
formalism and the Kirkwood-Riseman formalism give
identical results to the lowest nontrivial order (i.e., to or-
der 8=4 —d, d being the spatial dimensionality) even
without using the hydrodynamic preaveraging approxima-
tion. However, in the presence of self-avoiding interac-
tions, the two formalisms are expected to give different
results to 0 (E), for the following reason: The self-
avoiding interaction modifies not only the equilibrium
state, but also the dynamics of the chain-solvent system.
Whereas the equilibrium state and the solvent velocity-
field motion can also be treated within the Kirkwood-
Riseman formalism, the modification of the chain motion
due to the direct monomer-monomer interaction cannot
be thus taken into account.

In the present report we calculate the intrinsic viscosity
at arbitrary frequencies for a single self-avoiding chain in
the vacuum, i.e., without hydrodynamic interaction, start-
ing from the Green-Kubo formula, and thus incorporate
the influence of the monomer-monomer interaction on the
chain motion. We start from the following Langevin

No
equation for the conformation [c(r,t)], 0 where r is the
contour variable, t the time, and No the total (bare)
length:

5HE
+8(r, t) .
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Here HE is the Edwards Harniltonian:
2

No QC0,=-,' f

while 8(r, t) is a Gaussian white noise with the average
zero, satisfying

(8(r, t)8(o,s)) =2go '5(r —cr)5(t s)I . —

vo is the bare excluded-volume parameter, go is the bare
translational friction constant per chain unit, and I is the
d Xd unit matrix. It is implicitly understood that (2) con-
tains an appropriate cutoff to eliminate unphysical self-
interaction.

Explicitly (1) is
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where Po rrp/No, (4) c——an be formally solved as

c(r, t) =co(r, t)
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~

t)c(o,0).
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We assume that the initial ensemble is in equilibrium, and
c(0,0)=0.

The Green-Kubo formula foI the intrinsic viscosity
reads

[ri]= f (J~(t)J~(0) )dt,
Mk~ Tgo

No
with the monomer density field p(r ) = f dr5[r c(r)]. —
Introducing the following Green's function with free-end
condition:

No No
+ 2 vo f dr f der 5[c(r,t) —c(o,t)], (2)

where Jz(t) is the xy component of the momentum flux
tensor for the polymer chain, %z is the Avogadro con-
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C(t) = (J~(t)J~(0) ) (9)

to O(E) where ( ) is the average over the initial equilibri-
um ensemble and over the Gaussian noise. Jp can be writ-
ten as

No 5HE
Jp(t) = —f dr cy(r, t) (10)

stant, M is the molecular weight of the chain, and go is
the solvent viscosity. As pointed out in Ref. 4, (8) is reli-
able only to the lowest nontrivial order [O(e)] of the re-
normalized perturbation theory. Thus we have to calcu-
late the correlation function

Using (1) and (2) in (9) and solving iteratively, we can dis-
card terms of higher order than vo, and in terms of order
vo we can replace c with co, given by (7). In order to ob-
tain a result which is valid in the large-t limit we cannot
naively exponentiate the results obtained to O(E). Rather
we have to use the idea of singular perturbation theory
and exploit the asymptotic behavior of the relaxation
times as dictated by the renormalization-group equation.
For the case of hydrodynamic interactions this procedure
was explained in detail in Ref. 4. To 0 (E) we find the re-
laxation spectrum

where

exp 8 4 + [50B(2p) 35B(p) 27B(3p)+4B(4p) 12pA(2p)+12pg(p)]
E [1—( —1)t'] 1
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Here y is Euler's constant, ci(x) = — dt cost, and
00 Xsi(x)= — dtsint/t. In (11) we have used the func-

X
tions A (p) and B (p) which are defined by

A(p)=( —1)t'+' —ci(
i mp

~

)+ln(
~

mp
~

)

7T—mp si(harp)+—
2

(13)

B(p) =p [ci(
~

~p
i

) —ln(
~

mp
~
)] . (14)

Besides we have introduced in (12) the renormalized quan-
tities N and g. L is some phenomenological length scale.

Ap was derived in Ref. 10 for the calculation of the
I

time-dependent correlation function (,c(r, t}.c(r, t) ) in the
presence of self-avoiding interactions.

happ
is the recipro-

cal of the relaxation time of the doubly excited p mode.
k~~/2k~ describes the interference effect of two p modes
in the presence of self-avoiding interactions. We should
point out that Ap -p +' asymptotically, as required by
the renormalization group. (Note that p +'i =p "+'
=p"', z being the dynamical exponent, z =2+1/v, and
v = —, +E/16 the Flory exponent to lowest order. ) Final-
ly, using (11), (12), and performing a Fourier transforma-
tion, we obtain the real and imaginary part of the complex
intrinsic viscosity [7)(G)]=(Ng /Mgokg T)C(co) at the
free-draining self-avoiding fixed point:

ReC(co) = g ~
exp E(p)—1 1 E, c. 1

p —] happ
1 +co /happ 4~ p+p =] p p

+, g — Q3(p p')1 1

47T p+p ] Ppp 1 +G /X pp

[Qi(p,p')+Q~(p, p')]
1+co /k

(15)

cv /k&& I

ImC(co)= g, , exp E(p)—
p —] happ

1 +B /happ 4~ p&p'= [

[Qi(p,p')+ Qz(p, p')]
1+co /A. pp

—2 2

1 co /A. pp+ g Q3(p p')
4+ p~p' —] A,pp 1+co /A. pp

(16)

The functions E(p), Q;(p,p ) are given in the Appendix. Azz
——2A&&/A&z(p =1) and C(co)=C(co)kzz(p =1) are universal

quantities, with co=co/Azz (p =1) a new frequency unit. Equations (15) and (16) are illustrated in Figs. 1 and 2 for e= 1

(d =3). Note that these curves are universal curves.

In the zero-frequency limit we obtain

MrIokg T 1 g ~~~ 2vrNN„12 (2~) L exp —g I(p) exp —— g Q(p, p')
8 p=1 8

(17)
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FICs. 1. The storage part of the normalized complex intrinsic
viscosity q& expressed in universal quantities. q&(co) is calculat-
ed as [q~(co)] =[N„/Myoid~~(p =1)k~T]ReC(a), with co=co/
App {p= 1 ), and ReC(co) given in Eq. (15) to 0 (c).
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FIG. 2. The loss part of the renormalized complex intrinsic
viscosity gz expressed in universal quantities. q2(co) is calculat-
ed as [q2(co)] = [IVY/Mgok~z(p = 1)k~T]lmC(co), with 1mC(co)
given in Eq. (16) to O(c, ).

where I(p) and Q(p, p') are given in the Appendix, and
g=g/rloL ' . Performing the sums we obtain

Mgpkg T
N, 12 (2~)' I.

which should be compared with the results obtained in
Ref. 2 within the Kirkwood-Riseman formalism:
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APPENDIX

The functions E(p), Q~(p, p') in Eqs. (15) and (16) are

Mgokg T
[nl

1 g ~d/p 2mN

12 (27T)

UZ

exp( ——„E) . 3 [1—( —1) ]Ep= +g
2p (mp)

(19)

Summarizing, we have calculated the complex intrinsic
viscosity for a polymer chain with self-avoiding interac-
tion to O(e), starting from the Green-Kubo formula. In
the ~—+0 limit, performing the sums numerically, we find
a result which differs from that obtained in Ref. 2, using
the Kirkwood-Riseman scheme. It remains to exhibit the
analytical form of the correction.
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I(p)=,I(p),6

(vrp )

I(p) = +ci(mp) —y 1n(—vrp)+ —+ [1—( —1)"]— + +85 3 2 3si(vrp) 2si(2vrp) [1—( —1) ]
2p (~p) 7Tp 7Tp (vrp )

+— [50B(2p) —35B(p) 27B (—3p) +4B (4p) —12pA (2p)+ 12pA (p) ],4 (mp)
I

Q( p) 6 Qpp
7T p p

(A7)

(A8)

(A9)

(A10)

J. G. Kirkwood and J. Riseman, J. Chem. Phys. 16, 565 (1948).
Y. Oono and M. Kohmoto, J. Chem. Phys. 78, 520 (1983).
H. A. Kramers, J. Chem. Phys. 14, 415 (1946)~

4A. Jagannathan, Y. Oono and B. Schaub (unpublished).
~R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).
S. F. Edwards, Proc. Phys. Soc. London 85, 613 (1965).

~W. H. Stockmayer, W. Gobush, Y. Chikahisa, and D. K. Car-

penter, Discuss. Faraday Soc. 49, 182 (1970).
8J. Kevokian and J. D. Cole, Perturbation Methods in Applied

Mathematics (Springer, New York, 1981)~

See, e.g. , Y. Oono, in Advances in Chemical Physics, edited by I.
Prigogine and S. A. Rice (Wiley, New York, 1985).
B. Schaub, B. A. Friedman, and Y. Oono, Phys. Lett. 110A,
136 (1985).


