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Low-density properties of a hard-sphere fluid within a thermodynamically consistent theory
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We investigate the low-density limit of a theory for the structure of a fluid of hard spheres which
is made fully consistent on the thermodynamic side [G. Giunta, C. Caccamo, and P. V. Giaquinta,
Phys. Rev. A 31, 2477 (1985)]. The space behavior of the tail function is studied analytically up to
second order in the packing fraction. The fourth virial coefficient predicted by the theory is also ex-
plicitly evaluated and found to slightly underestimate the exact result.

In a recent paper' a thoroughly self-contained and ther-
modynamically consistent approach was proposed for the
study of the structure of a fluid of hard spheres. In that
paper it was shown that, starting from a simple ansatz for
the tail function d (r), it is possible to derive the structural
properties of the system within the Ornstein-Zernike (OZ)
theoretical framework without resorting to any a priori
availability of numerical simulation data. This goal was
achieved by imposing a complete thermodynamic closure
on the solution of the model, based on the existence of
well-defined internal consistency constraints relating
structural and thermodynamic properties of the fluid.
The tail function of a liquid with interatomic potential
u(r), in a thermodynamic state specified by the tempera-
ture T and by the number density p, is defined in di-
agrammatic language as the sum of all distinct connected
simple graphs with Mayer f bonds which are free from
bridge points and lack direct bonds between the root
points.> The relation of d(r) to the more common pair-
correlation function A (r) and direct correlation function
¢ (r) which enter the OZ equation

h(r)=c(r)+p f dr'h(|r—1'"|)c(r’) (1)
is given by>?
c(r)=f(ry(r)+d(r), (2)

where f(r)= exp[ —Bu(r)]—1 is the Mayer function with
B=1/kgT, and y(r)=[1+4+h(r)]exp[Bu(r)] is the cavity
distribution function. The functional form adopted in
Ref. 1 for the tail function of hard spheres was

3
> a,(r/o—1)"

exp , r<o
_ n=0
d(r)= X 3)
expl —z(r/o—-1)], r>0,
r/o

where o is the hard-core diameter. In Ref. 1 the continui-
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ty of d(r) at r =0 is demanded up to its second deriva-
tive. These conditions leave undetermined three
parameters—say K,z, and a;—which are fixed, as a func-
tion of density, by solving a set of three differential equa-
tions arising from the invoked requirements of thermo-
dynamic consistency. The problem can be considerably
simplified if one resorts to the following change of vari-
ables:

z=z(yg,a;p) , (4a)
K =K(yg,a;p) , (4b)

where y, is the value of y(r) at r =0 and a is the inverse
reduced compressibility. Such a change of representation
was successfully exploited by Hgye and Stell* in studying
the structure of the OZ equation with a core condition
and a direct correlation function of Yukawa form. In
fact, the choice of the more direct physical quantities y,
and a in place of K and z leads to a solution of the OZ
equation which can be given in closed, analytical form.
Such a simplification makes it possible to check explicitly
the reliability of the scheme developed in Ref. 1 in the
low-density limit through the calculation of the first four
coefficients in the virial expansion whose value is known
exactly.® After expanding y, and a in the form

yo= 2y6'7", (5a)
1=0

a= Y a''y', (5b)
=0

where n=(mw/6)po* is the packing fraction, we start by
imposing consistency between the virial and fluctuation
expressions for the equation of state (EOS). This condi-
tion leads to the following relations between the two sets

of coefficients y§ and a‘":

a'*V=al+2)yy , (6)
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with 1 =0,1, ..., and y =a'”=1. We truncate the ex-
pansion of y, after the term of second order in the pack-
ing fraction, which is equivalent to pushing the expansion
of the EOS up to the fourth virial coefficient. The ex-
panded form of a and of the remaining quantities which
enter the present scheme can be obtained straightforward-
ly by making use of the formalism developed in Ref. 4.
First of all, we focus on the low-density behavior of the
original parameters K and z because of their relevance to
the shape of the direct correlation function outside the
core. We find that a necessary condition for the 7—0
value of the inverse range parameter z©) to be real is

W= <, which yields the correct third virial coefficient.
Once the value of y{' is fixed, z'* is found to depend on
yE,Z) only. Its expression reads

2= (35" —4)+[35” —4)(26—5p )]
X (19—4yP)—1 . @)

In order to ensure that c(r) asymptotically vanishes as
r— oo one also needs z‘? to be positive. This last require-
ment restricts the range of physically acceptable values
for y ¥’ to

d<yd <. (8)

We note that the lower and upper bounds in Eq. (8) corre-
spond to the values which are obtained for y{?’ in the
Percus-Yevick (PY) approximation following the virial
and fluctuation route, respectively, for the evaluation of
the EOS. Furthermore, the known exact value of yﬁf’
falls within the above range.’> Figure 1 shows z® as a
function of y{?’. As a result of the virial-compressibility
consistency requirement—which, so far, is the only con-
straint explicitly taken into account—the spatial range of
the Yukawa tail in ¢ () monotonously increases from zero
as y¢?' is lowered from its upper bound value. On the oth-
er hand, the overall amplitude of the tail shrinks to zero
as y(?) approaches its lower extreme. In fact, we find that

K vanishes as %? in the limit of 7—0
K=K%9*4--- | )

with a coefficient K‘?=p{*’ —4. Incidentally, we note
that the low-density behavior exhibited by c(r=o07) is
consistent with the well-known result that the PY theory
[where ¢ (7)=0 outside the core] is exact up to first order
in 7 at the level of pair correlation functions.® As a result
of the expansion and of the continuity conditions imposed
upon d (r) at contact, it also follows that the tail function
vanishes over the whole range of r up to first order in 7.
Hence, only the 7—0 value of a; is needed in the expan-
sion of d(r) to order . The quantities y*’, z'®), and o’
can be univocally determined by exploiting the residual
conditions which arise from the r—0 behavior of y(r).
In fact, the value of the cavity distribution function and
of its first spatial derivative at »r =0 are related to the ex-
cess chemical potential and virial pressure, respectively.
The ensuing consistency requirements lead to Egs. (11)
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FIG. 1. Zero-density limit of the inverse range parameter z
as a function of y§¥’. The point on the curve marked by a closed
circle corresponds to the values for y§¥ and z‘® which are
predicted by the self-consistent theory (SCT).

and (15) of Ref. 1 which, in the limit of 7—0, reduce to

y& =4+17exp |— 20+ 8L |, (10)
af =273+ 7 . (11)

By solving the coupled set of equations (7), (10), and (11)
we find

yH'=4.463 ,
z2'9=3.184,
a¥=1.081 .

The above prediction for y{?’ leads to a result for the

fourth virial coefficient B,/0°=2.563 which slightly un-
derestimates the exact value (2.636).> Furthermore, the
inverse range parameter z of the Yukawa tail in the direct
correlation function is found to tend to a finite nonzero
value as 7—0.
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