
PHYSICAL REVIEW A VOLUME 35, NUMBER 8 APRIL 15, 1987

Low-density properties of a hard-sphere fluid within a thermodynamically consistent theory
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We investigate the low-density limit of a theory for the structure of a fluid of hard spheres which
is made fully consistent on the thermodynamic side [G. Giunta, C. Caccamo, and P. V. Giaquinta,
Phys. Rev. A 31, 2477 (1985)]. The space behavior of the tail function is studied analytically up to
second order in the packing fraction. The fourth virial coefficient predicted by the theory is also ex-

plicitly evaluated and found to slightly underestimate the exact result.

In a recent paper' a thoroughly self-contained and ther-
modynamically consistent approach was proposed for the
study of the structure of a fluid of hard spheres. In that
paper it was shown that, starting from a simple ansatz for
the tail function d (r), it is possible to derive the structural
properties of the system within the Ornstein-Zernike (OZ)
theoretical framework without resorting to any a priori
availability of numerical simulation data. This goal was
achieved by imposing a complete thermodynamic closure
on the solution of the model, based on the existence of
well-defined internal consistency constraints relating
structural and thermodynamic properties of the fluid.
The tail function of a liquid with interatomic potential
u (r), in a thermodynamic state specified by the tempera-
ture T and by the number density p, is defined in di-
agrammatic language as the sum of all distinct connected
simple graphs with Mayer f bonds which are free from
bridge points and lack direct bonds between the root
points. The relation of d(r) to the more common pair-
correlation function h (r) and direct correlation function
c (r) which enter the OZ equation

h(r)=c(r)+p 1 dr'h(
~

r —r'i )c(r') (1)

is given by '

c (r) =f ( r )y (r)+d (r),

ty of d(r) at r=cr is demanded up to its second deriva-
tive. These conditions leave undetermined three
parameters —say K,z, and a3—which are fixed, as a func-
tion of density, by solving a set of three differential equa-
tions arising from the invoked requirements of thermo-
dynamic consistency. The problem can be considerably
simplified if one resorts to the following change of vari-
ables:

z =z(yo, a;p),
K =K(yp, a;p),

(4a)

(4b)

where yo is the value of y(r) at r =o and a is the inverse
reduced compressibility. Such a change of representation
was successfully exploited by H@ye and Stell in studying
the structure of the OZ equation with a core condition
and a direct correlation function of Yukawa form. In
fact, the choice of the more direct physical quantities y0
and a in place of K and z leads to a solution of the OZ
equation which can be given in closed, analytical form.
Such a simplification makes it possible to check explicitly
the reliability of the scheme developed in Ref. 1 in the
low-density limit through the calculation of the first four
coefficients in the virial expansion whose value is known
exactly. After expanding y0 and a in the form

where f (r) = exp[ —pu(r)] —1 is the Mayer function with
p= 1/kz T, and y (r) = [1+h (r)] exp[pu (r)] is the cavity
distribution function. The functional form adopted in
Ref. 1 for the tail function of hard spheres was

yo= &ye n
(1) 1

1=0

a= g a("g',
1=0

(Sa)

(5b)

d(r)= .

3

exp g a„(rjcr 1)", r (cJ—
n=0

K
exp[ —z (r lo —1)], r )cr,

r /o.

(3)

where g=(ni6)prr is the packing fraction, we start by
imposing consistency between the virial and fluctuation
expressions for the equation of state (EOS). This condi-
tion leads to the following relations between the two sets
of coefficients y0' and a' ':

where 0 is the hard-core diameter. In Ref. 1 the continui- (I+)) 4(i +2) (I) (6)
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with I =0, 1, . . . , and yo
' ——a' '=1. We truncate the ex-

pansion of yo after the term of second order in the pack-
ing fraction, which is equivalent to pushing the expansion
of the EOS up to the fourth virial coefficient. The ex-
panded form of a and of the remaining quantities which
enter the present scheme can be obtained straightforward-
ly by making use of the formalism developed in Ref. 4.
First of all, we focus on the low-density behavior of the
original parameters K and z because of their relevance to
the shape of the direct correlation function outside the
core. We find that a necessary condition for the q~O
value of the inverse range parameter z' ' to be real is
yo" ———,, which yields the correct third virial coefficient.
Once the value of yp" is fixed, z' ' is found to depend on
yo

' only. Its expression reads

z(0)
I 3(y (2) 4) + [3(y ( ) 4)(26 5y

(2) )]i/2
]

X (19—4yo" ) (7)

In order to ensure that e(r) asymptotically vanishes as
r ~ oo one also needs z' ' to be positive. This last require-
ment restricts the range of physically acceptable values
for yo

' to

4&3'o & 4 ~

We note that the lower and upper bounds in Eq. (8) corre-
spond to the values which are obtained for yo

' in the
Percus-Yevick (PY) approximation following the virial
and fluctuation route, respectively, for the evaluation of
the EOS. Furthermore, the known exact value of yo

'

falls within the above range. Figure 1 shows z' ' as a
function of yo '. As a result of the virial-compressibility
consistency requirement —which, so far, is the only con-
straint explicitly taken into account —the spatial range of
the Yukawa tail in c (r) monotonously increases from zero
as yo is lowered from its upper bound value. On the oth-
er hand, the overall amplitude of the tail shrinks to zero
as yo

' approaches its lower extreme. In fact, we find that
K vanishes as g in the limit of g~0

(9)

with a coefficient K' '=yo ' —4. Incidentally, we note
that the low-density behavior exhibited by c(r=o+) is
consistent with the well-known result that the PY theory
[where c(r) =0 outside the core] is exact up to first order
in g at the level of pair correlation functions. As a result
of the expansion and of the continuity conditions imposed
upon d(r) at contact, it also follows that the tail function
vanishes over the whole range of r up to first order in g.
Hence, only the g~O value of a3 is needed in the expan-
sion of d (r) to order q . The quantities yo ', z' ', and a3 '

can be univocally determined by exploiting the residual
conditions which arise from the r~O behavior of y(r).
In fact, the value of the cavity distribution function and
of its first spatial derivative at r =0 are related to the ex-
cess chemical potential and virial pressure, respectively.
The ensuing consistency requirements lead to Eqs. (11)
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FIG. 1. Zero-density limit of the inverse range parameter z
as a function of yo '. The point on the curve marked by a closed
circle corresponds to the values for yo

' and z' ' which are
predicted by the self-consistent theory (SCT).

and (15) of Ref. 1 which, in the limit of F1~0, reduce to

yo
' ——4+17exp ——,'(z' '+ '„) (10)

By solving the coupled set of equations (7), (10), and (11)
we find
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y o =4.463

z' '=3.184,

a3 ' ——1.081 .

The above prediction for yo
' leads to a result for the

fourth virial coefficient 84/o =2.563 which slightly un-
derestimates the exact value (2.636). Furthermore, the
inverse range parameter z of the Yukawa tail in the direct
correlation function is found to tend to a finite nonzero
value as g~0.
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