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Goldstone mode and soft mode at the smectic- A —smectic- C' phase
transition studied by dielectric relaxation

'V
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The complex dielectric constant has been measured in a room-temperature ferroelectric liquid-

crystal mixture. We have resolved the experimental data into the Goldstone mode and the soft
mode and for each mode determined the dielectric strength and the corresponding relaxation fre-

quency. The results are compared with the dielectric strength calculated using the extended Landau

type of free-energy density proposed by Zeks [Mol. Cryst. Liq. Cryst. 114, 259 (1984)], and it is

shown that this calculation is able to describe the experimental data well ~ We have shown that by
reasonable assumptions we can derive a simple relation between the Goldstone-mode contribution to
the dielectric susceptibility +2} and the polarization (Po), tilt (0O), and pitch (p) of the system:

g2 ——(Pop/00) /8%3~, where K3 is a bend nematic curvature elastic constant. We also predict, on

theoretical grounds, a small peak of the dielectric strength to exist at T, .

I. INTRODUCTION

En 1975 the existence of ferroelectric liquid crystals was
reported by Meyer et ah. ' Since then, considerable experi-
mental and theoretical progress has been made in under-
standing the behavior of the smectic- 3—smectic- C*
(Sm A-Sm C*) transition. The temperature dependence of
the tilt, the spontaneous polarization, and the pitch of the
helix can be calculated to be in good agreement with ex-
perimental data if' one, in the Landau expansion of the
free-energy density, includes a biquadratic coupling as
well as a bilinear one between tilt and polarization. ' In a
recent work it is also shown by the authors how the
dielectric susceptibility of SmC' liquid crystals can be
calculated by this model. Here we will report high-
resolution dielectric measurements of the room-
temperature ferroelectric liquid crystal mixture 71.76
wt. % of 4-n-butyloxy-benzylidene-4'- n-octylaniline, 12.92
wt. % of 4-4'-bis- n-heptyloxy-azoxybenzene and 15.32
wt. %%uoof 4"-(2-methylbutylphenyl)-4'-(2-methylbutyl)-4-
biphenylcarboxylate (shortened by us to BAHABAC for
convenience) close to the Sm A-Sm C' transition. We also
show how we are able to resolve the measured dielectric
strength into the contributions from the soft mode and
from the Goldstone mode. Comparing our experimental
data with previous calculations ' of the static dielectric
susceptibility of SmC* liquid crystals based on a relative-
ly simple Landau expansion of the free-energy density, we
will discuss how and why these calculations have failed to
give a proper account of all the details of the experimental
behavior of the system. %'e then show how an extended
Landau type of free-energy density can be used to calcu-
late the static dielectric susceptibility in fairly good agree-
ment with the experimental data reported here. %"e also
derive a simple expression relating the Goldstone-mode
part of the dielectric susceptibility to the polarization, tilt,
and pitch of the system.

II. DIELECTRIC PROPERTIES
OF Sm C LIQUID CRYSTALS:

GOLDSTONE MODE AND SOFT MODE

gi =Hocos(qz), gp =Oosln(qz),

P„=—Posin(qz), P~ =Pocos(qz), (lb)

where z is the coordinate normal to the smectic planes
and Oo and Po are the magnitudes of the tilt angle and the
spontaneous polarization of the system, respectively.
Thus we see that even if the system exhibits a local net
polarization, the macroscopic average of this will be zero.
Applying an electric field of magnitude E parallel to the
smectic layers will, however, disturb the helix in such a
way that an average macroscopic polarization (P; ) is in-
duced. The dielectric response X is then defined as

X= lim (P;)IE .
E~O

(2)

In order to calculate (P; ) in the limit of weak fields,
we note that the electric field will disturb the helix in two
ways. First of all the magnitude of the tilt of the mole-
cules will change, and secondly the direction (phase) of

The chiral ferroelectric SmC' phase represents a spa-
tially modulated structure. ' ' The gilt of the long molec-
ular axis from the normal to the smectic layers precesses
helicoidally as one goes from one smectic layer to another.
The projection of the molecules into the smectic planes
(which are taken to be parallel to the xy plane) is
described by the order parameter g=g, x+$2y. Because
of the chirality of the molecules the tilt locally breaks the
axial symmetry around the long molecular axis and in-
duces a transverse in-plane polarization P =P„x+P„yper-
pendicular to the direction of the tilt (cf. Fig. 1). Denot-
ing the wave vector of the helix by q we thus can write for
small tilt angles
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FIG. l. Introduction of the order parameters g and P and their changes due to the application of an electric field to the system.
The amplitude changes, which are connected to the soft mode, are denoted 60l and 6Pl while the phase changes, which are connected
to the Goldstone mode, are denoted 60& and 6P2.

the tilt will rotate slightly in order to align the local polar-
ization along the field. In this way both the amplitude
and the phase of the order parameters g and P will be in-
fluenced by the field. Denoting the amplitude changes by
50& and 6P& and the phase changes by 602 and 6P2,
respectively, we see from Fig. 1 that g and P can be writ-
ten

g& ——Oocos(qz) +58&cos(qz) —502sin(qz),

g2
——Hosin(qz) +56~sin(qz)+502cos(qz),

P„=—P&&sin(qz) —5P
&
sin(qz) —5P2cos(qz),

Pz ——Pocos(qz)+5P, cos(qz) —5P2sin(qz) .

By this ansatz we have divided the average induced polar-
ization into two parts, (P; ) =(P;&)+(P;2), showing that
the dielectric response separates into two modes, i.e., we
can write 7=7&++2. One part of g is thus due to the
amplitude changes of the polarization and is denoted the
soft mode (X, ) while the other part which is due to the
phase changes of the polarization will be denoted the
Goldstone mode (X2).

The general experimental behavior of the dielectric sus-
ceptibility will be discussed in the next section. What is
usually experimentally determined is the dielectric
strength defined by

E =Ep —E (4)

where e and ep are the infinite-frequency and static rela-
tive dielectric constants, respectively. The dielectric
strength is related to the dielectric susceptibility 7 by the
relation

EsE

where e, is the permittivity of free space.
Early calculations of 7 presented by Martinot-Lagarde

and Durand and by Benguigui have failed to in a proper
way describe its experimental behavior. These two calcu-
lations are essentially identical and here we review the re-
sults of Ref. 5. Starting with a Landau expansion of the
free-energy density in the presence of an electric field
E=Ex [the meaning of the terms entering go will be dis-
cussed in connection with Eq. (11) in Sec. IV],

go(z) 2 ~(41+42)+ 4 b(Pl+42) A kl k2 + 2 +31 2 2 ~ 2 2 2

dz dz

d g'(

dz
+ d,

'

+ (P +Py ) —P P +Py +C(P„(2 Py()) EP——
2 " d ' d

C2~2C 2~2

(K3 ep )q +2a(T, —T)— (K3 eip, )q—
they calculate the induced polarization in the limit of
weak fields. For the SmC* phase they ultimately arrive
at the expression

1'

where the two terms in the sum represent the contribution
to 7 from the soft mode and the Goldstone mode, respec-
tively. T is the temperature of the system, T, is the
Sm C*-Sm 2 phase transition temperature and q is the
wave vector of the pitch

epC+Aq=
K3 —Ep
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As all material parameters entering Eq. (6) except a
[a =a( T —To ) ] are assumed to be temperature indepen-
dent, q is constant within this model. Calculating 7 in
the Smd phase, Martinot-Lagarde and Durand get

C2~2

(K3 —ep )q +a(T —T, )

a contribution which is solely attributed to the soft mode.
The calculation thus predicts that the Goldstone mode
should give a constant contribution to 7 in all the SmC*
phase while the soft mode contributes to 7 only close to
T„both in the Sm C* phase and in the Smd phase, show-
ing a cusplike peak at T, . At T, both modes contribute
equally. We shall see in the next section that this does not
correctly describe the experimental behavior of 7. In Sec.
IV we then show how we, by adding a few new terms to
the free-energy density expansion, are able to calculate X
in good agreement with experiments.

III. EXPERIMENT

The mixture BAHABAC is in the ferroelectric hel-
icoidal SmC* phase at room temperature having a Smd-
SmC phase transition temperature T, =40.675 C. We
have studied the temperature and frequency dependence
of the complex dielectric constant e* perpendicular to the
helical axis close to T, . The sample was held between
Nessa glass plates and the parallel orientation of the smec-
tic planes was achieved by slowly cooling the sample in a
magnetic field of 6.3 T from the isotropic phase. The
measurements were performed after removing the sample
from the magnet. An ac electric field was applied perpen-
dicular to the normal of the smectic layers and the com-
plex dielectric constant was measured in the frequency
range from 20 Hz to 100 kHz keeping the temperature of
the sample stable within +0.001'C. The results of these
measurements have partly been published previously. '

As mentioned earlier we expect two relaxation modes to
contribute to the dielectric behavior of ferroelectric liquid
crystals. We thus can write the total dielectric strength as
eo —e =Aeo+Ae&, where heG and Aez represent the
contributions from the two modes in question. The mea-
sured data were analyzed using a "generalized" Cole-Cole
expression"

of e'i' were, within 1%, equal to the e" measured at 20 Hz.
In the Smd phase, and in the SmC* phase except close to
T„only one re1axation contributes and the sum of Eq.
(10) consists of one term only. The corresponding charac-
teristic frequency is then found to be the one where the
dielectric loss e" adopts its maximum value. " Close to
T„ in the SmC* phase, however, both modes contribute
to the dielectric response and the corresponding frequen-
cies are obtained by fitting the sum of Eq. (10) to the ex-
perimental data. The distribution parameter h; was
everywhere found to be small.

In Fig. 2 the Cole-Cole diagrams at four different tem-
peratures in the SmC* phase are shown. For the three
lowest temperatures the results are described by Cole-Cole
semicircles showing that only one relaxation behavior is
present. As is discussed in Sec. II, the contribution to the
dielectric constant from the soft mode is negligible in the
Sm C* phase except close to T, . Thus this relaxation can
be attributed to the Goldstone mode. At the temperature
T =40.6 C, corresponding to T, —T =0.075 C, the
Cole-Cole diagram does not show up any longer as a pure
semicircle. By fitting the expression of Eq. (10) to this
distorted semicircle we can show that this Cole-Cole dia-
gram is a superposition of two semicircles, i.e., at this
temperature two modes are contributing to the dielectric
response. Apart from the Goldstone mode we thus also
observe a contribution from the soft mode if the measure-
ments are performed sufficiently close to T, . In the Smd
phase we were only able to perform measurements of e* in
a narrow temperature interval just above T, . Here the
dielectric strength was observed to be 1 order of magni-
tude smaller than in the SmC' phase. The corresponding
Cole-Cole diagrams of the measurements are shown in
Fig. 3. Here we again observe only one relaxation
behavior, which is attributed to the soft mode.

In Fig. 4 we have plotted the relaxation frequency of
the Goldstone mode (triangles) and of the soft mode
(crosses) obtained by the fitting. For T & T, the solid line
through the experimental points is given by the expression
f, =k(T —T, ) where we have determined k to be 15.6
kHz K '. The normal behavior of the soft mode in solid
ferroelectrics is that the slope of the f, (T) line is twice as

]—A;
i =G,s I+(j~r;)

(10)
Tt. = 40. 675'C

where each term in the sum represents the contribution to
the complex dielectric constant e =e' —jr" from a
separate dielectric mode. In Eq. (10) we have introduced
the angular frequency of the applied electric field ~, the
relaxation time of the ith mode r; = I/2mf;, where f; is
the corresponding dispersion frequency, and the distribu-
tion parameter h; H [0,1]. For each temperature the
dielectric loss e" was corrected by subtracting e&' ——o &/~e,
which is the contribution from the low-frequency conduc-
tivity oi (e, being the permittivity of free space). The ex-
perimental data were fitted to the expression of Eq. (10)
varying the parameters he;, e, ~;, h;, and cr~. The values

I ~

I.8 5.0 5.2 5.4 5.6 5.8

FIG. 2. Cole-Cole diagrams of BAHABAC at four different
temperatures in the Sm C phase.
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FIG. 3. Cole-Cole diagram of BAHABAC at three different
temperatures in the Sm A phase.
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large in ihe low symmetry phase. ' Motivated by this we
have plotted the line f, =2k (T, —T) for T & T, in Fig. 3.
The solid line through the points of the Goldstone mode
represents no fit but is just a guide to the eye. In addition
to the two modes discussed above a high-frequency relax-
ation —100 kHz was observed in the whole temperature
range covered by the experiment.

In Fig. 5 the circles show the measured dielectric
strength eo —e as a function of temperature. We notice
the maximum which is observed a few degrees below T, .
This is in accordance with what has been observed for
p-decyloxybenzylidene-p '-amino-2-methylbutylcinnamate
(DGBAMBC) by other authors. ' ' We will also point
out that some authors ' ' locate this maximum to be si-
tuated at T, . We believe that in these papers the location
of T, is wrong —these authors have probably assumed
that the peak in the dielectric strength and T, should
coincide and have not determined T, by any independent
method. The solid line corresponding to the circles in
Fig. 5 shows the result of the calculations of the dielectric
strength which is presented below. This is the first calcu-
lation which is able to describe all the features of the ex-

FIG. 5. The dielectric strength eo —e„of BAHABAC as a
function of temperature (circles). The solid line represents the
results of the calculations using the parameter values y=2. 08,
@=0.32, p=0.036, X=0.14, v= —0.02, and 5=7.5&& 10
The inset shows the separation of the dielectric strength into the
Goldstone mode (triangles) and the soft mode (crosses). The
solid line represents the calculated contribution of the soft mode
while the dotted line represents the calculated contribution of
the Goldstone mode.

perimental data correctly. We also note that the calcula-
tions indicate a small peak of the dielectric strength at T, .
In order to determine the experimental existence of this,
high-resolution temperature measurements need to be per-
formed close to T, . In the measurements by Yoshino
et al. ' there is, however, an indication of this peak's ex-
istence in the dielectric strength of DOBAMBC.

As is seen from the Cole-Cole diagram of Figs. 2 and 3
only one relaxation mechanism comes into play for each
temperature except just below T, . Only at T =40.6 C do
both modes contribute in such a way that it was possible
to resolve the dielectric strength into its contributions
from the Goldstone mode and the soft mode. This
division is shown in the inset of Fig. 5, where the calculat-
ed contributions from the Croldstone mode (dotted line)
and the soft mode (solid line) are shown separately. We
note that both the experimental data as well as the calcu-
lations establish a finite contribution of the Goldstone
mode at T, . This is the first measurement where the con-
tributions of the Goldstone mode and the soft mode to the
dielectric response of ferroelectric liquid crystals have
been presented separately. The soft mode was studied in
DOBAMBC by Garoff and Meyer' by measurements of
the electrooptic response.

2
1P IV. THEORY
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FIG. 4. The dielectric dispersion frequency of BAHABAC as
a function of temperature.

Comparing the predicted behavior of the dielectric
susceptibility of ferroelectric liquid crystals which is a
consequence of the free-energy density of Eq. (6) (cf. end
of Sec. II) with the observed experimental behavior dis-
cussed in the preceding section (cf. Fig. 5) we note some
discrepancies between theory and experiment. Motivated
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by this we have in a recent work investigated the influ-
ence of adding a few more terms to the Landau expansion
of the free-energy density of the system. By the use of
this extended model we can, at the same time, calculate

the temperature dependence of the tilt, polarization, pitch,
dielectric susceptibility, and heat capacity of the ferroelec-
tric SmC* phase in qualitative accordance with experi-
mental data. The free-energy density we use is given by

go(z) a(f1+f2)+ b(f1+42) + c(41+42) + kl k2
2 2 i 2 22 1 2 23

dz dz
+ —K3

1

2

+
2

diaz

dz

dk—d(pl+$2) gl —g2 + (P +Py )+ , 2)(P —+Py) P, P— +Py

+ C(P„$2 P~g, ) ———,
'
Q(P„$2 P2 g, )—

gE(z) = EP„. — (12)

We have shown that the equations governing the
behavior of the system which can be deduced from Eq.
(11) are most conveniently studied by rewriting them into
dimensionless form. By doing so we transform the 11
material parameters introduced in Eq. (11) to six indepen-
dent dimensionless constants and five scaling factors. The
six constants are defined as (the reader should please note
that the set of constants we have chosen does not coincide
with the choice which was made in the early version of
this model presented in Ref. 3)

bg g' Ce cg
+2'

1/2~ 1/2 ~ 1/2 d 1/2 (13)

1/2~1/2 ' K1/2 ' K1/2~3/2-1/2
3 3 3 6

where a, b, c, e, and C are renormalized constants given
by

where z is the coordinate normal to the smectic layers
(which are taken to be parallel to the xy plane). Only the
term quadratic in tilt is explicitly temperature dependent:
a =a(T —Tp). Kq is the elastic modulus, A the coeffi-
cient of the Lifshitz term responsible for the modulation,
and p and C are the coefficients of the flexoelectric and
piezoelectric bilinear coupling. 0, is the coefficient of the
biquadratic coupling term inducing transverse quadrupole
ordering and the g term has been added to stabilize the
system. The d term describes the monotonous increase of
the pitch with temperature at low temperature. The
sixth-order term in tilt (the e term) has been added to ac-
count for the specific-heat temperature dependence of the
system. ' If an electric field is applied in the x direc-
tion, i.e., E =Ex, this will give an additional contribution
to the free-energy density

The physical quantities such as the polarization Po, the
tilt 00, the wave vector of the pitch q, and the dielectric
susceptibility 7 will now be expressed in dimensionless
form and will be denoted by a tilde above the correspond-
ing symbol, while the characteristic units with which
these are measured will be denoted by an asterisk (e.g. ,
Ho = Hp/H* ). The reduced temperature, however, we
denote by r=(T, —T)/T*. The characteristic units are
chosen to be

- 1/2

p Q

1/2

(P*)'

1/2

7j'EX3

(P")'

T b

eaQ

(1Sa)

(15b)

2 -2 i
—4 l —6 l

—2
gp 2 (P 7 r)HO+ 4 r Ho+6P p+ 2 0

PPoHo , P oH—o+ Po——v5PoHo . — —2 2 & 4 3 (16)

The equations for 00 and Po are obtained by minimizing
Eq. (16),

(p yr)Ho+ y H o+pH o H—pP p
—(p+ 3v5H p)Pp———0,

The original 11 parameters [Eq. (11)] can thus be
transformed into six dimensionless constants [Eqs. (13)
and (14)], which determine the shape of the temperature
dependences of the physical quantities, and into five
characteristic units [Eq. (15a)]. The characteristic units
of the free-energy density, of the heat capacity and of the
electric field are not independent and are given in Eq.
(15b) for completeness.

Introducing the ansatz of Eq. (1) of the order parame-
ters into the free-energy density of Eq. (11) and eliminat-
ing q, this can be written in dimensionless form as

a=a —,jy=b- 4Ad
K, '

C =C—3d2

K3
1 1 p — ApC=C+

K3
'

K3

(14)
P o+ ( 1 —H o)Pp —(P+ v5H o)Hp =0

(17a)

(17b)

while q [obtained by minimizing Eq. (16) before the sub-
stitution] is given by
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q =A, +vPp/Op+50 p . (18)

While the tilt, polarization, and pitch are given
straightforwardly by solving Eqs. (17) and (18), the dielec-
tric susceptibility which is defined by Eq. (2) has yet to be
determined. By substituting the ansatz (3) of the dis-
turbed helix into Eqs. (11) and (12) the free-energy density

can be written as g=gp+gz(z)+g2(z) where gp is al-
ready given by Eq. (16), and gE(z) is the part proportional
to the electric field

gz(z) =E[Ppsin(qz)+5P1sin(qz)+5P2cos(qz)] (19)

and 2(z) is the part which is quadratic in the changes
50„„@',, and 5P, :

g2(z) 501[ z 0 2 yr+ Y2y0 o+ —pHo+ v (Po/00) +25 Ho —5v5PoHo zP o—l

+582[—,
'
P —,' yr+ ——,

' y80+ —,P80+ , v (P01—00) v5P000—]+5P1(—,
' + —,

'
v ——,

' 80+ —', P 0)

+5P2( & + 2 v + &
P 0) —5815P1(v Pp/Hp+ v 58 p+ 13+2P000) —58 52P (2vPp/Hp+v 58 p+ p+P080)

2+501502(v 0/00 50 0) 501 502v 0 /00+ z (501 +501 ) v5 1 502+ v5 2 501 (20)

&1=( b1b4be+—b1bsbs+b1b6+b2b3 6+ 2 4

2b2b4b6 —b2bs b—3b4b5 +b 4b—g ) /2A, (21a)

X2 (b1b 4 b1b——4b—6+b1b5b7 2b2b3b4+b2—b3b6

+b2b 4 b2b7 b3b4b—5+b 3b—5)/2A . (21b)

The quantity A entering Eqs. (21) is defined as

A =b ]b 4b 8 +b ]b 5 b 7 b 8 +b
&
b 6b 7

—2b 2 b 3 b4b g

2b2b4b6b7 b pb7b8 2b3b 4b6 +b 3b 5b 8

+b 3b 6+b 4+b4b5b7

and the coefficients b; (i = 1—8) are given by

b1 ———P +yr —X —(2A5+3y)80 —SP80

(22)

+P o+gv5P080 —2ivP0/00 2v (Po/Ho) —55 Ho ~

b2 = —2k 58 0 25 8 p+ 2A vP0 I00+2v (Pp l00)

b3 =p+ v58 p+ 2P000+ v Pp/80

b4 —— (Av+ v Pp/0p+ —v58 0),
b5 ———P +yr —A, —(2A5+y)80 —p80

—5 80—2ivP0/80 —2v (Po/80)

(23)

A prime in Eq. (20) denotes a derivative with respect to
the z coordinate. We now want to find the configuration
of the system which minimizes the total free energy. By
applying the Euler-Lagrange equations we derive four
coupled second-order differential equations determining
the four unknowns [801(z), 502(z), Q'1(z), and 8P2(z)] in
such a way that g2(z)+gE(z) is minimized and the aver-
aged (with respect to z) induced polarization (P; ) can
thus be calculated. The dielectric response is then given
by Eq. (2). The derivation of the resulting expression has
been presented by us elsewhere. Separating 7 into its
contributions from the soft mode X1, and the Goldstone
mode 72, the resulting expressions are given by

b6 =13+v50 o+ PoHo+ v'Po/00

b7 ——1+v +3P p
—80,

bs ——1+v +P 0 .

Concerning the dielectric susceptibility in the Sm 3
phase the following expression is derived:

Il +i, —yr
(1+v )(P +X —yr) —(P—Av)

(24)

V. DISCUSSION

As discussed previously there are two different relaxa-
tion mechanisms which contribute to the dielectric
strength of ferroelectric liquid crystals. One of those is
connected to the phase changes (Goldstone mode) while
the other one is connected to the amplitude changes (soft
mode) of the order parameters. The Goldstone mode
gives a finite contribution in all of the SmC* phase,
showing a drop but still being finite as T, is approached.
In the SmA phase the Goldstone mode is absent. The soft
mode is present in both the Sm C* and the Smd phases

With the exception of the constant high-temperature part
which is included in our Eq. (24), this expression can be
shown to be the same as that derived by Martinot-Lagarde
and Durand [Eq. (9)]. That the two models give the same
result in the Sm h phase is due to the fact that here the ex-
tra terms introduced by our extended version of the free-
energy density only contribute to fourth order in 60 and
6P. Such terms do not enter the calculation of X.

By the use of Eqs. (4) and (5) we are now able to com-
pare the calculated 7 with the measured dielectric
strength ep —t. . Into the calculations the six dimension-
less parameters defined by Eqs. (13) and (14) and two scal-
ing factors T* and 7* enter. The curve in Fig. 5
represents the best fit through the measured values using
the parameters y=2.08, /3=0. 32, p=0.036, A, =0.14,
v= —0.02, and 5=7.5)&10 . The scaling factors have
been chosen to be T*=0.52 K and +*=3.7&&10
C/V m.
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but is suppressed to negligible values in the SmC' phase
except close to T„a fact which makes it hard to resolve
with respect to the Goldstone mode as T, —T gets too
large. In the Sm A phase the soft mode is rapidly
suppressed to its limiting value X„(

~

r
(
~~ ) = 1/

(1+v ), which is written X„(T~oo ) =e in physical units.
At T, our calculations show that the two modes contri-
bute equally to 7, a behavior which is also experimentally
observed as can be seen in the inset of Fig. 5. We thus
conclude that our theoretical model not only gives a good
description of the total dielectric response of ferroelectric
liquid crystals but also of the contribution from the Gold-
stone mode and the soft mode separately. We also con-
clude that the maximum of X which is generally observed
in ferroelectric liquid crystals ' ' is located a few de-
grees below T, . In addition to this, our calculations indi-
cate a small finite peak of 7 at T, in accordance to what
was observed by Yoshino et al. ' Similar results to those
reported above have also been observed by us in
DOBAMBC 2'

When writing down the extended Landau expansion of
the free-energy density [Eq. (11)]we introduced altogether
11 material parameters. This is a large number, but by
the introduction of the renormalized, dimensionless con-
stants [Eqs. (13) and (14)] we have reduced the number of
independent parameters to six. We also want to stress
that the model is not only used to calculate the dielectric
response, but also the polarization, the tilt, the pitch, and
the heat capacity of the system. This means that we use
six parameters to calculate the temperature dependence of
five experimentally observed quantities (or six if one takes
the separation of g into the Goldstone mode and the soft
mode into account).

In order to get a feeling for the meaning of the six con-
stants we note that they appear in the calculations on dif-
ferent levels. As we have found v5 to be several orders of
magnitude smaller than the parameters y, p, and p, we
note from Eqs. (17) that only the last three parameters ef-
fectively enter the calculation of the tilt and the polariza-
tion of the system. The p term (p=cq/eA ), being
present due to the introduction of the cO term in the
free-energy density, does not introduce any qualitatively
new features to the solution of Eqs. (17) but merely gives
saturation effects at large 00 and PQ. The p term is
present in order to account for, in a proper way, the bent
shape of the heat capacity of the SmC* phase. ' ' Thus
only the parameters y and p are needed in order to, in a
qualitatively correct way, describe the tilt and the polari-
zation of the system while p has to be included if one also
wants to correctly describe the heat capacity qualitatively.
One can see from the definition of Eqs. (13) that the pa-
rameter p reflects the relative importance of the bilinear
coupling (the C term) and the biquadratic coupling (the 0
term) between tilt and polarization in the free-energy den-
sity of Eq. (11). The shape of the graph of the polariza-
tion versus temperature is also critically dependent on this
parameter. When P exceeds a value of approximately 0.5
(bilinear coupling dominating) the polarization curve ex-
hibits a classical square-root behavior. If, on the hand, p
is less than 0.5 (biquadratic coupling dominating) the po-
larization curve exhibits a sigmoidal (S-shaped) behavior

characterized by one square-root behavior close to T, and
another one far from T, .

As is seen from Eq. (18) the parameters A, , v, and 5 have
to be included into the calculation if one wants to, in a
proper way, take into account the temperature dependence
of the pitch. The A, term (A, =ArI' e' /K) 0' ) is
connected to the Lifshitz term (the A term) and would
alone give rise to a temperature-independent pitch and so
the v and 5 terms have to be introduced to, in a correct
way, describe the temperature dependence of the pitch.
The 5 term is the one responsible for the decrease of the
pitch at low temperatures (i.e., when T, —T gets large).
Also, as can be deduced from Eqs. (21)—(23), the con-
stants A, , v, and 5 are of the utmost importance when cal-
culating the dielectric response of the system.

We finally discuss how we can get a physical under-
standing of the dependence of the dielectric susceptibility
in terms of the quantities tilt, polarization, and pitch.
Concerning the soft mode, one can show that the ampli-
tudes of the order parameters are affected by external
forces only when close to T, . This explains why the con-
tribution of the soft mode is rapidy suppressed far away
from T, while in the vicinity of T, it contributes in a
cusplike way. Still, however, no critical divergence of the
soft mode is expected. This is due to the fact that at T,
the Smd phase becomes unstable with respect to hel-
icoidal fluctuations with wave vector 2m. /p(T, ), while in
dielectric measurements a homogeneous external field
couples to q =0 fluctuations above T, and to q =0 and

q =4m. /p fluctuations below T, . Only the response of the
system with respect to a modulated external field
(qE ——2m/p) can be infinite. Concerning the Goldstone
mode we make the following reasoning. The coupling of
P to the external field increases with P0. This suggests
X2-P0 as the response cannot depend on the sign of Pa.
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FIG. 6. The calculated contribution of the Goldstone mode
to the dielectric susceptibility (dashed line) is compared to the
calculated ratio (Pap /00) /8~ (solid line) as function of reduced
temperature. The similarity of the two curves supports the hy-
pothesis that the Goldstone-mode contribution to the dielectric
susceptibility of ferroelectric liquid crystals is proportional to
the square of the pitch times the square of the ratio of the polar-
ization and the tilt.
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Furthermore, the elastic energy associated by the pitch is
given by gz ——E3q Oo/2. This suggests X2-1/K3q Oo.
Altogether we thus expect the Goldstone-mode part of the
dielectric susceptibility to obey X2-P~ /K30O, a relation
which is also dimensionally correct. The missing numeri-
cal factor in this relation can be derived to be 1/8m. . We
thus predict the following approximative behavior of g2.

2
Pop

8O

1X2-
8w K3

r

(25a)

2

1 Poa
X2

8n go
(25b)

where the relation is given both in physical and dimen-
sionless units. In order to verify the validity of Eq. (25b),
in Fig. 6 we have plotted the Goldstone-mode contribu-
tion of the dielectric susceptibility 72 calculated by the use
of the parameters given at the end of Sec. IV (dashed line).
In the same figure is also plotted (Pop/Ho) /8tr calculat-
ed by the same parameters. We notice that the two curves
almost fall on top of each other. We have also checked
the relation by performing numerous calculations for dif-
ferent sets of parameters. For each calculation the nu-
merical constant which enters Eq. (25b) was found to de-

viate less than 10 from the value 1/8~ . As we have
not performed any measurements of the polarization of
BAHABAC, we cannot verify the experimental validity
of Eq. (25a) in this case. We have, however, calculated
(Pop/8o) /8&X2 from experimental data obtained for
DOBAMBC. This ratio, which should equal K3, was
found to be constant within the experimental uncertainty
and approximately equal to 3.8)& 10 ' N. This value is
roughly what one would expect for the elastic constant of
DOBAMBC. This verifies that the relations (25) give a
good approximation of the Goldstone-mode contribution
to the dielectric susceptibility of ferroelectric liquid crys-
tals. It is thus easy to understand why the calculation of
X based on the free-energy density given by Eq. (6) fails to
describe the temperature dependence properly. This
model predicts both q and Po!Oo to be temperature in-
dependent. It is thus necessary to extend the free-energy
density in such a way that a more realistic prediction of q
as well as of Po/00 is given. This is done by the extended
free-energy density which we introduce in Eq. (11).
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