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Generalized mean spherical approximations of the dense hard-sphere fluid
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After having discussed how integral equations of the Percus-Yevick type can be generated stem-
ming from known approximations of the direct correlation function (DCF), we show that in the case
of the hard-sphere (HS) fluid they can be recast into the generalized mean spherical approximation
form by using truncated Dirichlet's series. The analysis is numerically carried through by using
present knowledge of second- and third-order approximations of the DCF. The virial and compres-
sibility pressures tend to close on the Carnahan-Starling values, but improvement in the radial distri-
bution functions is noteworthy only in the contact region, while the Waisman thermodynamical con-
sistent approximation appears to be the most accurate one. The mechanical stability of the system is
analyzed: For all the considered approximations the HS system appears mechanically stable.

I. INTRODUCTION

The thermodynamical behavior as well as the structural
properties of the hard-sphere (HS) fluid are well known'
thanks to the Monte Carlo (MC) and to the molecular-
dynamics (MD) calculations carried out mainly by Wood
and Jacobson and by Adler and Wainwright in the late
1950s. A few years later, Wertheim"" and Thiele '

solved the Percus-Yevick (PY) equation and obtained a
description of the HS fluid in a much easier and clearer
way. The comparison of the two descriptions shows that
the PY approximation is satisfactory only for densities
which are not very large, i.e., p&0. 7. ' Moreover, the
PY description does not show any indication ' of phase
transition, while the MC and the MD calculations strong-
ly suggest that the HS system should freeze and melt at
the densities pf ——0.94 and p =1.04, respectively. In
our opinion, it is interesting to follow the behavior of
these discrepancies as one considers integral equations of
increasing thermodynamical self-consistency.

In this paper we show how it is possible to construct in-
tegral equations of the PY type whose solutions are per-
turbatively exact up to a given order M (Sec. II). To this
aim it is necessary to know the sum of the parallel and
bridge graphs up to the Mth order. This property holds
true for any fluid with a hard core. In the case of HS, by
using a general theorem on Dirilchlet's series, ' we show
that the integral equation can always be formulated in
terms of a generalized mean spherical approximation
(GMSA) with a convenient number of Yukawa contribu-
tions (Sec. II and Appendix A, where the HS restriction is
removed). In practice however, the numerical analysis
can really be carried through only when the number of
Yukawa terms is not large. It turns out that in the case of
the HS fluid the former condition is satisfactorily ful-
filled. In Sec. III we report the results obtained by expli-
citly performing the relevant calculations. In Sec. IV we

analyze the problem of the phase transition. In fact, the
former approach could give an answer to the question of
the existence of a particular density value po ( &v 2)
beyond which the fluid phase of the HS system can no
longer exist. Our argument runs as follows. On the one
hand, the canonical HS ensemble, in the thermodynamical
limit, does not admit metastable states. " On the other
hand, the virial series for the grand-canonical HS ensem-
ble has a finite radius of convergence. ' Therefore, if we
confine ourselves to the fluid phase, we are led to con-
clude that the analytical continuation of the sum of the
virial series, relevant to a thermodynamical potential or to
an n-point correlation function, should show a mathemat-
ical singularity at a particular density value p, . The use
of GMSA's can be particularly useful in this respect. In
fact, the algebraic equations associated to GMSA's do not
always admit a real solution throughout the physical
range of densities, as the physical root may meet with one
of the unphysical ones at a particular density value ( =p, )

beyond which both roots become complex. ' ' We find
that this possibility does not take place for any of the con-
sidered approximations. It should be stressed that this
conclusion contrasts with the one reported in Ref. 15,
which has turned out to be incorrect. '

But the system may also be mechanically unstable.
From our analysis also this phenomenon does not seem to
take place. In fact, for all the considered approximations
the HS fluid turns out mechanically stable. In Ref. 15 it
has been already shown that the mechanical instability,
present when the lowest 0 (p ) approximations of the
direct correlation function (DCF) are used, disappears if
one takes into account also the graph contributions re-
quired for restoring exactly the core condition. One could
think that this conclusion depends on the fact that the in-
volved procedure accounts for a rather unsymmetrical
subset of graphs. ' However, the former criticism does
not apply to the Waisman' self-consistent DCF, which
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approximates all the contributing graphs. Consequently,
having found that the HS system is mechanically stable
also in this case makes the mechanical stability of the HS
fluid almost sure. These results are reported and dis-
cussed in the conclusive section (Sec. IV).

II. GMSA-LIKE INTECTRAL EQUATIONS

h (r p):f(r)+e—(r)[N(r p)+P(r p)+B(r p)],
where

(2.2)

f(r)—:exp[ PV(r)]-
e(r)—:1+f(r) .

(2.3a)

(2.3b)

(The dependence on the inverse temperature P will be om-
itted throughout for greater notational simplicity. )

With the definition

N(r, p)—:p f C(r', p)h (
~

r —r', p)du'—:pCeh
R3

the Ornstein-Zernike (OZ) equation reads

h =C+N

(2.4)

(2.5)

If we denote by C„(r), h„(r), and so on the coefficients
of the term p" in the density expansions of C(r,p), h (r,p),
etc. , Eqs. (2.1), (2.2), and (2.4) take on the following form:

C„(r)=5„of+fN„+e (P„+B„),
h„(r)=5„of+e(N„+P„+B„),

n —1

N„(r)= g C eh„, , Vn)1.
m =0

(2.6a)

(2.6b)

(2.6c)

We notice now that Eq. (2.6) can be looked at as an
iterative way of constructing the solution of the OZ equa-
tion. In fact, from the topological definitions of P, B, and

N, we know that Np =Pp =Bp =P1 =B1
=0 and thus,

from Eqs. (2.6a) and (2.6b), we derive that Co=ho= f.
Now we use Eq. (2.6c) and obtain N~. From Eqs. (2.6a)
and (2.6b) we immediately get C& and h &. In this way we
can use Eq (2.6c) o.nce more and obtain N2. At this
point, C2 and h 2 can be exactly determined only if we
know the contributions due to the second-order parallel
and bridge graphs in the region external to the core. ' The
procedure can be iterated, but at each step the determ. ina-
tion of h„and C„requires the introduction of the quanti-
ty e(P„+B„).The structure of Eq. (2.6) is such that if
we assume that e (P„+B„)=—0, Vn )M, we obtain a solu-
tion of the OZ equation which has the following proper-
ties:

(i) it is thermodynamically self-consistent up to the
Mth order;

By following Ref. 1 5 we show how it is possible to con-
struct integral equations of the GMSA type, whose solu-
tions are thermodynamically self-consistent up to a given
perturbative order in the density parameter.

We begin by recalling the well-known expression of the
DCF [=C(r,p)—] and of the total correlation function

[=h (r,p)], in terms of the nodal [:N(r, p)—], parallel

[ =P(r,p)], and bridge graphs [=B(r,p)]—

C(r,p)=f(r)[1+N(r p)]+e(r)[B(r p)+P(r p)], (2.1)

(ii) h (r,p) fulfills exactly the core condition;
(iii) the parallel and bridge content of DCF is exactly

the one which has been put explicitly into the iterative
procedure;

(iv) in the case of the HS fluid the former condition
amounts to stating that the aforesaid iterative procedure
does not modify C,„,(r,p), i.e., the expression of the DCF
in the region external to the core.

In order to translate the preceding remarks into an in-
tegral equation, let us introduce the function

M

BM(r,p)=e(r) g p"[B„(r)+P„(r)] (2.7)

+ e (
/

r —r
[

)N(
f
r —r' /, p)] . (2.8)

This equation is a generalization of the PY equation
(GPY), because it treats parallel and bridge graphs in a
fairly symmetrical way and it reduces to the latter for
M ( 1. Furthermore, the solution (2.8) is thermodynami-
cally self-consistent up to terms O(p ). Since Eq. (2.8)
requires knowledge of BM(r,p), it can be useful only when
one is able to obtain an accurate approximation of this
quantity. We emphasize that, when the fluid has a rigid
core, BM must be evaluated only in the external region.

In the case of HS, to which we shall confine ourselves
from now on, we can convert the former equation into a
GMSA (Refs. 18 and 1) and thus the problem of finding
the solution to Eq. (2.8) is converted into the problem of
finding the numerical solutions of a system of algebraic
equations. We first notice that BM(r,p) represents
C,'„,'(r,p), the Mth-order approximant of the direct corre-
lation function external to the core. Should

M N

C,'„,'(r,p) = g p g K „exp[—z„(r —I)]/r (2.9)
m =2 n =1

the aforesaid connection between GPY's and GMSA's
would be evident. In fact, the C and h, obtained by solv-
ing the GMSA defined by Eq. (2.9), can be expanded in a
power series in p and are related by the OZ equation.
Then N„=h„—C„ is given by (2.6c). Moreover, in the
external region C,„,(r,p) turns out to be equal to C',„,'
while in the internal region one finds h (r,p)= —1. These
properties are exactly the same as the ones of the solution
of Eq. (2.8). Thus the equivalence of (2.8) with the
GMSA is proved when Eq. (2.9) holds true.

In general Eq. (2.9) is not true, but, according to a
theorem on Dirichlet s series due to Muntz (Ref. 10, p.
22), one can always approximate BM(r,p) by a sum of Yu-
kawa terms. More definitely, the theorem states that any
function F(x), continuous in the closed interval [0, oo]

which represents the sum of the parallel and bridge
graphs up to terms of the Mth order. We assume that
e(r)[P(r,p)+B(r,p)] can be approximated by BM(r,p),
which by hypothesis is known. Then, by using Eqs. (2.1)
and (2.2), the OZ becomes the following integral equation
for N(r, p):

N(r, p)=p f,dr'tBM(r', p)+f (r')[1+N(r', p)]I

X[f(
~

r —r'
~

)+BM(
~

r —r' ~,p)
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can be approximated by a Dirichlet polynomial [DM(x)]
with an error smaller than an arbitrary positive number e,
namely,

have analyzed the following GMSA's:

2
ext( p) =p C2, ext

with

DM(x)
~

+e tfx )0 (2.10) denoted TF1 or TF2;
3C,„t(r,p) =p C3,„ (3.2)

M

DM(x) = g K„exp( —z„x) .
n=0

(2.11)
denoted FT1; and

2 3Cext(r~P) =P C2ext ,+P C3,ext

C,„,(r,p) =- g K„exp[ —z„(r —1)]/r .
n=1

(2.12)

In this way, Eq. (2.9) holds approximately true and thus
one concludes that Eq. (2.8) can be made equivalent to a
GMSA with a prefixed degree of accuracy. The loss of
accuracy, corresponding to approximation (2.12), is large-
ly compensated for by the fact that solving GMSA equa-
tions is essentially an algebraic problem and thus we can
be more confident of the correctness of the solutions as we
approach the region where phase transitions may occur. '

Of course, the aforesaid conversion can be practically use-
ful only when approximation (2.12) turns out satisfactory
with a smaH M value.

III. APPLICATION TO HS

This really happens in the case of the HS fluid, ' where
we know quantities

e (P2+B2)—=C2,„,(r)

and

e(P3+B3)=C3 t(r)

The first, evaluated by Nijober and van Hove, is algebra-
ically known, while the second, calculated by Ree et al. ,
is known numerically. Both contributions are different
from zero only inside the interval [1,2] where they exhibit
a smooth behavior. Thus they can be well approximated
even by a single Yukawa function. The coefficients t(K I

and Iz I have been determined by requiring that
2

j
oo M

r C„,„,(r) —g K„z exp[ —z„(r—1)]/r dr,
j=]

n =2, 3 (3.1)

be as small as possible. While for C3,„, M has been taken
equal to 1, for C2,„, we have considered both the case
M =1 and M =2. The best K„and z„values are report-
ed in Table E of Ref. 15. With these approximations, we

In Eq. (2.11), the z„'s form an increasing sequence with
zo ——0 and such that

M
lim g z„'=~ .

M~oo „
If we put x =r —1, F(x):rc(r, p—) and we use the con-
tinuity of rc(r, p) in the set [1,ec]; from Eq. (2.11) it fol-
lows that C,„,(r,p) can always be approximate by the sum
of a convenient number of Yukawa functions with an er-
ror smaller than e in [1,ec ], viz. ,

denoted TT2. These will be globally referred to later as
the GM cases. The "name" has been assigned on the fol-
lowing basis. The first letter is T or F depending on
whether contribution C2,„, has been accounted for or not.
The second letter refers to contribution C3 t while the
final digit gives the total nuInber of Yukawians used for
approximating C,„,. Approximations TF1 and TF2 a11ow
us to control the stability of the results with respect to
small changes in the outset approximation. We notice
also that thermodynamically, approximation FT1 is less
consistent than TF1 or TF2, but it does not lead to any
overcounting of graphs. Thus its use is legitimate and
useful for examining the importance of thermodynamical
consistency. Besides the GM cases, we have also con-
sidered the two following approximations, referred to later
as the CT ones:

C,„,(r,p) =KI (p)p exp[ —z'&(p)(r —1)]/r,
named CT1; and

(3.3a)

C,„,(r,p) =-K2(p)p exp[ —z2(p)(r —1)]/r

+p'C, ,„,(r), (3.3b)

named CT2. In Eq. (3.3b) p C3,„,(r) is approximated by
the same Yukawa function used in case & L'1. In this way,
cases CT1 and CT2 correspond to approximating the total
C,„,(r,p) by a single and by two Yukawian terms, respec-
tively Since . C,„,(r,p) is not known, K (p) and z (p) can-
not be determined by using the aforesaid minimization
procedure. In fact they will be determined by requiring
that the equation of state (EOS) evaluated along the virial
route and the one evaluated along the compressibility
route are equal to the Carnahan-Starling EOS, which can
be considered as the exact one. ' One should notice that
by so doing we impose thermodynamical self-consistency
in a way which could rightly be called external. In fact,
imposing thermodynamical self-consistency amounts to
fixing the values of some unknown parameters, which
have suitably been introduced into the equations by re-
quiring that a physical quantity turns out to have the
same value independently of the thermodynamical routes
chosen for its evaluation. This procedure can be carried
through in two ways: the internal and the external one.
In the first case all the considered evaluations involve the
unknown parameters, whereas in the second at least one
of the evaluations does not. Clearly, in the first case one
cannot be sure that the resulting outcome is really relevant
to the physical model one has started from. By contrast,
the second case can be usefully applied only when an ac-
curate evaluation of the physical quantity is available.
For the HS fluid the last condition is fulfilled and thus we
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can rightly claim that, after having imposed the thermo-
dynamical self-consistency, Eq. (3.3) does really yield an
approximation of the true C,„,(r,p). It should also be
stressed that the CT1 case was invented, solved, and, to a
good extent, numerically analyzed by Waisman. ' Before
illustrating our numerical results, let us outline how they
have been obtained. Cases GM and CT correspond to as-
suming

M

C,„,(r,p)= g K; exp[ —z;(r —I)]/r,

where M can be 1 or 2 and the K's account for the correct
p dependence.

According to Ref. 27, the internal direct correlation
function is given by

C;„,(rp)= —a(1+0.5rlr ) br ——g [(u;/z;)[1 —exp( z;r)]/r—+(u;/z;) [cosh(z;r) —1]/[2rK; exp(z;)]} (3.4)

and a, b, and [v~, v2, . . . , vM I are the numerical solution
of the following system of equations:

a =1—pC(O, p),
M

36rl yo —— 6gb + g—q;,

(3.5a)

(3.5b)

M
9n'(yi —2yoy2) =9m'a —g q z /4 (3.5c)

M

9g (2yoy4 —2y& y3+y2) —(36' yo) = g q;z; /4 .

d'[rC, „,(r,p)]
d7'

d'[rC;„,(r,p)]
d7'

(3.6)

while g =—m.p/6,

q; =3gz; (u;/z;)[1 ——,
' v;/K z; exp(z;)],

i =1,2, . . . , M (3.7)

and C(O,p) is the value of C(k,p), the Fourier transform
(FT) of C(r,p), at k =0. The GM cases have been
analyzed by solving the corresponding numerical equa-
tions (3.5). We started from a rather small density value,
i.e., p=0.05 and we used as a starting point the approxi-
mate expressions of [a,b, v~, vz, . . . , v } at small p report-
ed in Ref. 27. Then we determined the trajectory of the
root in terms of the density by letting the latter slowly
increase.

The system of numerical equations corresponding to
cases CT is again system (3.5), but the unknown quantities
are z&, b, and [u&, v2, . . . , vM }. In fact, a is eliminated by
using the compressibility relation a =P()p /()p (p is
the pressure according to the Carnahan-Starling EOS),
while K (p) is eliminated by solving the equation

1 —(2m. /3)pg (1+) = 1 —(2~/3)pyo 13p /p——
corresponding to the virial route. %'e can now illustrate
the results.

(3.5d)

There y; denotes the discontinuity of the ith derivative of
rC(r, p) at the contact point, i.e.,

Figure 1 represents the roots of the most typical GM
and CT cases. One should notice that we have not been
able to find out the roots throughout the physically acces-
sible range of densities for the CT cases. The structure of
Eq. (3.5), after the elimination of a and K;, becomes so in-
volved that round-off errors prevent us from going
beyond p=1.11 and p=0. 7 in the CT1 and in the CT2
cases, respectively. Actually, in both CT cases, round-off
errors are amplified by the rather sharp increase of z (p)'s
with the density, as one can see from Fig. 2, where the
[K,z } values, relevant to each CT case, are shown. The
marked 8 points correspond to the solution reported by
Waisman. '

Table I reports the contact values relevant to the con-
sidered approximations, while the osmotic coefficients in
excess with respect to the Carnahan-Starling ones are
shown in Fig. 3. One sees a noteworthy improvement in
the thermodynamical consistency as the accuracy of C,„,
improves. One should also notice that the virial and the
compressibility values tend to bracket the CS ones.

The knowledge of [a,b, u&, . . . , uM } allows us to evalu-
ate algebraically C(k,p) and h (k,p) for all the considered
cases. The use of a fast FT algorithm yields the radial
distribution functions (RDF's). Figure 4 illustrate the
changes resulting in the RDF's as we improve the accura-
cy. One can see that the improvement due to the in-
clusion of the second- and third-order corrections to C,„,
is noticeable only in the contact region (see also the results
of Table I). At larger distances, the RDF's relevant to all
the considered GM approximations are practically equal
to the MSA's ones. Thus, if one wants to reproduce the
dip and the peak found by MC calculations one has to ac-
count for more graphs. In principle this job is done by
the CT approximation. In practice, however, the resulting
C,„,(r,p), both in the one- and in the two-Yukawa func-
tion cases, does not turn out as satisfactory as the empiri-
cal approximation worked out in Ref. 30. In this respect
we notice that our main reason for considering approxi-
mation CT2 was the hope that in Eq. (3.3b) the contribu-
tion depending on K2(p) would turn out small at large
densities, since approximation Pl'1 already seems quite
satisfactory (see Table I). The behavior of the resulting
K2(p), shown in Fig. 3, confirms this. But the sharper in-
crease of z2(p) emphasizes that C,„,(r,p) must be rather
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lararge only near the contact region. This result indicates
t at i,„, r,p as a range longer than the one d t d

y e considered CT approximations then it must show
some oscillations. In fact the C ( )e ggt r,p & evaluated by
Grundke and Henderson ' has d d
behavior. Consequently a more accurate CT approxima-
tion cannot involve Yukawian term

'
th 1s wi rea z 's only.

IV. CONCLUSIONS

From the discussion of Sec. II and A O' A,ppen ix A, the
GMSA can describe the behavior of all real fluids with a
hard core. The specificity of th fl

'
d

'
fle ui 1s re ected only in

the way the E''s and z 's, present in the Yukain e u awian approxi-
a ion o,„,(r,p, P), depend on p and P. In this way the
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FIG. 2. Plots of 10I( (p) and z (p) for the CT1 and CT2
cases. The marked points coincide with the values found by
Waisman at p =0.936 (q =0.49) (Ref. 18). (Notice that
K~ ——Kp ). Round-off errors made the search of solutions im-

possible beyond the reported range.

singularity can occur both in the series giving the direct
correlation function and in the series giving the RDF.

The first eventuality can occur either in the series
representing C,„,(r,p) or in the series representing
C;„,(r,p). In the former case, GMSA's are not useful be-
cause the nonanalyticity of C,„,(r,p) with respect to p is
washed out by the unavoidable inaccuracies due to the nu-
merical determination of K s and z s. Oppositely, in the
second case, the nonanalyticity can be safely made evident
by the fact that, beyond a particular density value ( =p, ),
no physically acceptable real solution exists. By contrast
to Ref. 15, no p, value smaller than U 2 has been found
for any of the considered GM approximations and thus
one concludes that C;„,(r,p) does not become singular in
the range of physical densities.

In order to see whether the second eventuality takes
place, we have to look at the mechanical stability of the
HS fluid.

A further advantage of GMSA is that this question can
be analyzed in a safe and rather quick way since C(k,p),
the FT of C(r,p), can be evaluated explicitly from Eqs.
(2.12) and (3.4). Then one has to look for the trajectory of
the complex z root (lying in the first quadrant and closest
to the origin) of the equation

1 —pC(z, p) =0 (4.1)

problem of solving the integral equation yielding the RDF
is converted into two numerical problems: that of approx-
imating C,„,(r,p, P) by finding the best IKI and Izj
values, and that of finding the numerical solution of the
GMSA system of equations. The first step is the only one
which introduces an approximation whose influence on
the accuracy of final results cannot be easily estimated at
the outset. The results of Sec. III indicate that this effect
should be rather small and thus the use of GMSA's ap-
pears quite advantageous.

After having underlined this aspect we turn to the prob-
lem of the existence of a phase transition in the HS model.
As we have stressed in the introductory section, this
phenomenon should be signaled by the appearance of a
mathematical singularity in one of the n-point correlation
functions, at a particular density value.

At the level of the two-point correlation function, the

as the density increases. If the trajectory meets the real
axis at a density p~i smaller than the close-packed densi-
ty, the system is said to be mechanically unstable. The
trajectories relevant to the most typical cases, i.e., MSA,
TT2, and CT1, are reported in Fig. 5. The curves on the
left show their behavior as the density increases up to 1 ~ 1,
while those on the right complete their behaviors at
higher densities. On each trajectory, each point differs
from its left neighbor by a density increase of 0.1. We
stress that in order to distinguish the trajectories on the
left, we have vertically shifted the MSA and the TT2
curves by —0.1 and —0.05, respectively, while, on the
right, only the MSA trajectory has been lowered by 0.01.
However, one should note that the scales for the two sets
of curves are different. In fact, the left and the bottom
scales refer to the curves on the left, while the other two
scales refer to the trajectory tails.

TABLE I. The contact values of the RDF, relevant to the approximations considered in this paper
(columns 3—6) are compared with the corresponding values calculated by the Monte Carlo method (Ref.
6) (column 7) for different densities (column 1).

0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900
1.000

MSA

1.1427
1.3129
1.5180
1.7676
2.0753
2.4599
2.9486
3.5814
4.4194
5.5596

TF1

1.1442
1.3182
1.5288
1.7857
2.1034
2.5044
3.0239
3.7198
4.6902
6.1105

TF2

1.1442
1.3182
1.5285
1.7846
2.1003
2.4964
3.0055
3.6800
4.6085
5.9488

1.1431
1.3156
1.5261
1.7855
2.1081
2.5149
3.0391
3.7367
4.7090
6.1529

TT2

1.1445
1.3209
1.5370
1.8037
2.1364
2.5599
3.1155
3.8771
4.9836
6.7099

MC

1.339
1.548
1.818
2.116
2.561
3.157
3.971
5.147
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7.0

2.0

7.5 8.0

0.3

of the parallel and bridge graphs. This is evident from
Eq. (2.6a).

By contrast, for fluids with a rigid core, C,„,(r,p, /3)
also depends on the sum of nodal graphs. One has in fact

C,„,(r,p, P) =f,„,(r,P)[1+N,„,(r,p, P)]

+e(r, P)B,„,(r,p, P) . (A 1)

1.0

One can now construct GMSA's which are "exact" up
to a given order, say M, by using the Mth approximant of
Eq. (Al), viz. ,

M M

C,' t'(r, p, P)=f 1+ g p"N„+e g p"(P„+B„),
71 =2

r &1. (A2)

{).() I I I I I l I I I l 1 l 7 1

6.0 7.0 8.0

|b.(z)

FIG. 5. The curves on the left show the trajectories of the
root of Eq. (4.1) when C {z,r) is described by one of the approxi-
mations reported in the upper right of the figure. The dots cor-
respond to density values increasing by 0.1 from the starting
value p=0. 5. The scales on the left and on the bottom are the
appropriate ones. The curves on the right represent the con-
tinuations of the former trajectories. On each of these curves,
the upper point corresponds to p=1. 1 and it increases by 0.1.
The relevant scales are the right and the upper ones. Finally, in
order to distinguish the different trajectories, on the left, the
MSA and the TT2 curves have been lowered by 0.1 and 0.05,
respectively. On the right, only the MSA curve has been
lowered by 0.01.

appears extremely unlikely. Therefore we can confidently
conclude that the HS systein is mechanically stable. Of
course, this fact does not necessarily imply that the HS
system can exist only in the fluid phase. One has still to
analyze the equation for the one-particle correlation func-
tion

p(r)/z =exp & f C~+((r, r2, . . . , r~+))
N=1

N+1
X g p(r;)dv;

l =2
(4.2)

The property f ( r) =—0, Vr & 1, is the distinctive feature
of the HS model. Its main consequence is that the direct
correlation function outside the core is equal to the sum

where C~(r, . . . , r~) denotes the N-point direct correla-
tion function. If this does not admit the uniform solution
p=const beyond a particular density value, then this value
will represent the freezing density, as is indicated by re-
cent theoretical analyses. From our analysis it appears
that this is the only practicable way for determining the
region of existence of the fluid phase, in the case of the
HS system.

APPENDIX

One expands the latter in a Dirichlet series

C,'„,'(r,p, P) = g K„'™(p,P) exp[ z„(r ——1)]/r,
n=1

r)1 (A3)

and one solves the GMSA, corresponding to C' '(r),
the Nth approximant of series (A3). The limit, as N ~ ac,
of these solutions represents the GMSA solution exact up
to the Mth order.

We remark that in order to construct the generalized
PY (GPY) equation, exact up to the Mth order, we need
to know B' ', while the corresponding GMSA also re-
quires the knowledge of N'

This can hardly be considered a limitation, since the
knowledge of B' ' in practice rests on that of all P„'s and
N„'s with n &M. It should also be noted that the solu-
tions of the GMSA and of the equivalent GPY, i.e., the
GPY which is exact to the same order M, coincide only
up to terms O(p ) inclusive, although both solutions ful-
fill exactly the core condition. In order to recover the
GPY solution exactly, one should expand in a Dirichlet
series the C,„,(r,p, P) resulting from the solution of the
GPY. This expression in fact differs from the right-hand
side of (A2) for the quantity

p"f,„,N„' ', r & 1

n =M+1

i.e., the sum of the contributions generated by Eq. (2.8) or
(2.6a). This remark has some interest only in principle.
Although the use of the Mth-order GMSA can be con-
venient only if one uses the first formulation, presently we
do not know any reason for saying which of the two ap-
proximations is the most reliable.

Finally, we remark that GMSA's turn out accurate and
practically convenient since one optimizes also the choice
of z„'s. Actually, the considered CT cases represent an
extreme case, since at each density we choose the most
suitable z values. On the one hand, one could say that
they turn out so suitable that a single Yukawa function
yields already a good approximation. On the other hand,
it is difficult to say whether this property also holds true
for other simple fluids, because one cannot forget that the
HS case is particularly lucky since we are essentially
aware of the EOS of the system.
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