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Energy loss of fast particles in confined atomic systems at very high temperatures
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Using a self-consistent description of an inhomogeneous electron gas in thermal equilibrium, we
formulate a simple model for the stopping power of confined atomic systems at high temperatures.
The model is based on previous studies of the energy loss of particles in partially degenerate plas-
rnas. We describe the thermal enhancement of the energy loss in pellet fusion targets, in accord with
recent experiments, and we explain this behavior in terms of quantum-mechanical and thermal ef-
fects in partially degenerate systems.

In the last years much interest has focused on the possi-
bility of using light ion beams as drivers for inertial-
confinement fusion (ICF).' This stems both from the
property of efficient beam-target energy coupling and
from the possibility of controlling and adjusting the ener-

gy deposition profiles. In this respect, ion-beam fusion
has emerged as an important alternative in ICF studies.

Theoretical predictions' and experimental evidences '

show the existence of a strong enhancement in the energy
loss of proton and deuteron beams in heated solid targets
as compared with the values in cold media. This effect
has been theoretically explained' in terms of changes in
the contributions of bound and free electrons in dense ion-
ized media. The calculation of the energy loss by this ap-
proach requires evaluations of the degree of atomic ioni-
zation and average ionization potentials, or the use of ap-
proximate scaling laws, for a wide range of temperatures.

We present in this paper a simple and accurate model
for calculating the energy loss of swift particles in solids
at very high temperatures. The model is based on previ-
ous studies of dielectric response and stopping powers of
dense plasmas at all degrees of degeneracy, and on a gen-
eralization of the Thomas-Fermi model for confined
atomic systems at finite temperatures. Information of
atomic structure parameters is not required in this ap-
proach. The treatment permits a complete analysis of the
density and temperature dependences, and provides a nov-
el explanation for the enhancement effect in the stopping
power.

We base our description on previously derived analyti-
cal expressions for the stopping power of a dense electron
plasma for all degrees of degeneracy. From a dielec-
tric treatment of elementary excitations in a dense plasma
of density n and temperature T, the energy loss of a parti-
cle of charge Zie and velocity u, S(n, u, T)= dE/dx, —
can be cast in the usual form

47Tnz leS(n, u, T)= L(n, u, T) .
fly V

The "stopping number" L can be calculated analytically
for the cases of low and high velocities; we quote here the
results:
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where EF is the Fermi energy and I = 1.78.
These expressions describe the temperature dependence

of the energy loss. The high-velocity expression depends
very weakly on temperature [the leading term in Eq. (2b)
is independent of T]; therefore, the main temperature
dependence arises in the low-velocity domain.

We now consider the description of electron density dis-
tributions in atomic systems under conditions of high
pressures and temperatures. A generalization of the
Thomas-Fermi model for atomic systems at finite tern-
peratures was presented much earlier by Marshak and
Bethe, and it was studied in detail by Feynman et aL'
and by Latter. " We use this approach to derive the elec-
tron density profiles for various atomic densities and tern-
peratures. ' To this end we consider an atom, with atorn-

where cop is the plasma frequency, UF is the Fermi veloci-
ty, p is the chemical potential, k is Boltzmann's constant,
and v, is the velocity corresponding to the energy loss
maximum (in practice u, is taken as the velocity where
the two expressions intersect). The low-velocity "collision
logarithm, " lnA, is given by

lnA(n, T) = ln(1+F) F/(1+F), —
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FIG. 3. Density and temperature dependence of the stopping
power, for 1-MeV proton beams in gold. The enhancement of
the energy loss becomes greater at lower densities, due to a
larger relaxation of quantum constraints (see the text for discus-
sion).

tained in Eqs. (2a) and (2b). As noted before, the main
temperature dependence arises from the low-velocity ex-
pression. In particular, Eq. (2a) leads to the following
limits (the values are given here in atomic units):
(a) for kT «EF,

4Z ) 4 EF
S(n, u, O) = u ln

377 3 cup
(7a)

and (b) for kT»EF,
4 (2~)'"

S(n, u, T)=— Z &nv ln
3 (kT) ~

kT 1+ 4COp
(7b)

It can be shown that the departure of the leading linear
density dependence in S(n, u, O) [cf. Eq. (1)] is a direct
consequence of the exclusion principle, ' which gives
place to the factor ( v/vF ) in Eq. (2a). This produces a
strong reduction of the energy loss (in fact, the exclusion
principle inhibits most of the transitions of those electrons
inside the Fermi sphere, so that only electrons with veloci-
ties close to vF can participate in the low-velocity range).
For high temperatures, the factor vF is canceled out by
the term

1+ exp( pp)= exp(p
~ p —

~

) ~(kTiEF)' '

in Eq. (2a), and the "classical" dependence in niT ~ is
retrieved [note, however, that our result for the logarith-
mic term in Eq. (7b) is still quantum mechanical, as it
should be in this case' ].

To summarize these results in a convenient form, we
define a "specific" stopping power (or stopping coeffi-
cient), s:SIn, which represents —the plasma stopping

power "per electron. " Then, we remark the following ef-
fects in a dense electron plasma: (a) an effect of "quan-
tum transparency, " with origin in the exclusion principle,
leading to a decrease of s ~1/vz with increasing vz, and
(b) an additional effect of "classical (or thermal) trans-
parency" which further reduces the energy loss; in partic-
ular, for kT ~~Ez it leads to a dependence of the form

1 /T3/2

To see how these effects give place to the energy loss
enhancement shown in Fig. 3, we first note that the initial
effect of the temperature arises through the modification
of the density profile n(r ), in which electrons are removed
from the high-density region of the core, and are distri-
buted in the outer region of the atomic cell, with lower
values of both local densities n(r) and Fermi velocities
uF(r) ~n(r)'~ . Since the exclusion principle strongly in-
hibits excitations in the inner region of high densities, the
local values of the specific stopping power are smaller in
the atomic core than in the outer region. Hence, the
enhancement of the energy loss can be attributed to a re-
laxation of the exclusion constraints, due to the spatial
redistribution of electrons into regions of lower degenera-
cy [smaller vF(r)].

At still higher temperatures, the effects of partial de-
generacy become of increasing importance, and a distinct
classical behavior arises. For kT&EF(r), the classical
T dependence takes over, and produces the final de-
cline of the stopping power, also illustrated in Fig. 3.

We can finally note that this explanation of the
enhancement effect, which arises in a natural way from
the description of the atomic electrons given by our
model, is also consistent with the one given by previous
authors' in terms of contributions from bound and free
electrons (in particular, the redistribution of electrons can
be regarded as ionization of the atomic core).

In conclusion, we present a new approach to calculate
the energy loss of swift particle beams in confined atomic
systems at very high temperatures. The model provides a
unified description based on analytical results for partially
degenerate plasmas (from dielectric response and energy
loss studies), and on a generalization of the Thomas-
Fermi model for confined atoms at finite temperatures.
This permits a fast evaluation of the energy loss, through
a self-consistent description of an electron gas of varying
degeneracy, and does not require the determination of
wave functions or atomic structure parameters. The
model describes the enhancement effect in the energy loss
of heated targets, as a result of a competition between
quantum and thermal effects in partially degenerate sys-
tems.
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