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Solutions of the basic equations of a simplified model of the cavity quantum electrodynamics are
presented under the condition that the single-photon Rabi frequency is much larger than the cavity
decay rate. Such solutions are used to calculate the quantum-statistical properties of the field and
atomic observables under a variety of initial conditions involving the states of the field and atom.
Effects of increasing cavity damping and of the addition of thermal photons on collapse and revival

phenomena are discussed. Phase-sensitive aspects of the cavity field are also treated. Quantum ef-
fects are shown to be most easily isolated by sending an atom initially prepared in a dressed state for
such a state does not evolve further under the influence of a classical field. The appearance of
squeezing in the cavity field is demonstrated. The squeezing is most prominent for a coherently
prepared atom passing through an empty cavity. The quantum features of the complex dipole mo-

ment and their detectability are also discussed in detail.

I. INTRODUCTION

The interaction of an atom with the field in an infinite-
ly high-Q cavity leads to several quantum-mechanical ef-
fects such as vacuum field Rabi oscillations, ' collapse and
revival in the atomic excitation as a function of time.
Recent experiments have established the existence of
such remarkable quantum effects. Other very interesting
effects in cavity quantum electrodynamics arise from the
competition of coherent and incoherent (which results
from the leakage of photons from the cavity) effects. For
example, the decay of the atom can be significantly affect-
ed by the cavity. ' The quantum statistics of the photons
in the cavity is also crucial for the overall behavior of the
atom. It is clear that a complete theory should (a) quan-
tize the cavity field, (b) take into account the quantum
statistics of the field, (c) account for the cavity losses.
Many aspects of the cavity electrodynamics have been
treated in the literature. Exact solutions to the models"
of cavity-field —atom interaction have been reported. The
effect of the cavity damping on the predictions of such
models has been disussed in special cases. ' ' In a recent
communication' we reported the effect of cavity damp-
ing on the collapse and revival phenomena. Analogous re-
sults were also reported by Barnett and Knight. ' In this
paper we give detailed results for the various dynamical
quantities in cavity electrodynamics. We fully account
for quantum statistical and cavity leakage effects.

The organization of this paper is as follows. In Sec. II
we present the model equations and their solutions assum-
ing that the cavity damping is much smaller than the
single-photon Rabi frequency. In Sec. III we discuss the
effect of the cavity damping and field statistics on the col-
lapse and revival phenomena. In Sec. IV we discuss the
time-dependent quantum statistics of the cavity field. We
also examine the phase-dependent properties of the cavity

field. We treat in Sec. V the case when the atom is
prepared initially in a coherent state, say, by irradiation
by a microwave field. In particular, we discuss the evolu-
tion of the classical dressed states. The further evolution
of the dressed states is due to the quantized nature of the
electromagnetic field in the cavity. In Sec. VI we calcu-
late the complex dipole moment. The real part of the di-
pole moment shows collapse and revival phenomena on a
much larger time scale. The detectability of the collapse
and revivals in complex dipole moments is also discussed.
Various Appendixes give the supplementary results and
some details of the calculations. We also discuss very in-
teresting squeezing properties of the cavity field when an
atom prepared coherently passes through an empty cavity.

II. MODEL AND SOLUTION FOR DENSITY MATRIX
ELEMENTS IN THE HIGH-Q LIMIT

The master equation for the density matrix p of the
Jaynes-Cummings model consisting of a two-level atom of
transition frequency co interacting resonantly with a single
mode of the radiation field in a cavity is given by

Bp
at

i fi/[ Hp] ——tc(a ap —2apa +pa a), (2.1)

where H, the Jaynes-Cummings Hamiltonian in the
rotating-wave approximation, is

H =fico(S'+a a)+fig(S+a+S a ) . (2.2)

Here g denotes coupling between the atom (which is
characterized by the spin- —,

' angular momentum operators
S—,S') and the field (described by the creation and an-
nihilation operators a and a). The last term in Eq. (2.1)
arises due to finite g (—:co/21c) of the cavity. Thus 2tc

represents the rate of loss of photons from the cavity. We
further assume that the cavity frequency and temperature
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are such that the mean number of thermal photons is
much smaller than unity.

To solve Eq. (2.1) we work in the dressed-states repre-
sentation, i.e, the representation consisting of the complete
set of eigenstates of H which are known to be given by

H Io, ——,
' &= —ir yZI0, ——, &,

H
I
e„-&=a„-

I

e„-&,
(2.3)
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Here
I

n, + —,
'

& refers to a state with n photons in the
cavity-field mode and the atom in the excited

I
+ —,

'
& or

in the ground
I

——, & state. Note that H causes transi-
tions only between the eigenstates of X =a~a +S' having
the same eigenvalue. Each eigenvalue of X is twofold de-
generate since the eigenvalue of S' can only be + —,'.
Therefore, in the absence of damping, Eq. (2.1) becomes a
2)&2 matrix equation which can be easily solved. Howev-
er, the relaxation of the cavity causes a decrease in the
number of photons without a corresponding increase in
the atomic population. Consequently, an initial state with
an eigenvalue X ——, of 1V can be connected with any of
the states with eigenvalue X ——,',X ——,', . . . , ——,'. Since
an eigenvalue N —(2m+1)/2 (m =1,2, . . . ,X) is two-

fold degenerate it follows that in the case of cavity damp-
ing, Eq. (2.1) reduces to a (2N+1))&(2N+1) matrix
equation. For 1V = 1 we have reported' an exact solution
of Eq. (2.1). Evidently, for increasing X, the task of solv-

ing Eq. (2.1) becomes increasingly formidable and one
needs to take recourse to approximate methods for its
solution. The analytic methods for obtaining approximate
solutions of Eq. (2.1) distinguish between two limiting
cases of a low-Q (z &&g) and a high-Q (v «g) cavity. In
the case of a low-Q cavity, one can obtain an equation for
the reduced atomic density matrix by tracing out the fast
decaying field modes. ' In the case of a high-Q cavity,
Haroche has used the dressed-state representation to
derive the equations for the density matrix. We present
analytic expressions for the elements of the density matrix
in a high-Q cavity which is valid for any initial state of
the field. A preliminary account of our work has previ-
ously been given. '

To derive the equation in the high-Q limit we first
write the field operators appearing in Eq. (2. 1) in terms of
the dressed states. Note that on the basis of the n, + —,

'
&

states we have
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which upon using Eqs. (2.3) gives
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The number operator can be similarly expressed as
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Next, we go to the interaction picture by defining

W(t) =exp(iHt)p(t)exp( iHt), — (2.7)

and obtain an equation for W(t) by substituting Eqs. (2.5) and (2.6) in Eq. (2.1). The exact equation for W(t) is found to
be a sum of time-independent and time-dependent terms. The time-dependent terms in this equation oscillate at the fre-
quency proportional to the atom-field coupling g. It can be shown that the contribution of the oscillatory terms is of the
order of ~ /g . Hence, if we make the secular approximation, i.e., if we neglect the oscillatory terms by assuming ~ &&g
then the equation for W(t) is found to be
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Equation (2.9) along with its Hermitian conjugates deter-
mines all the off-diagonal elements of W(t). These off-
diagonal elements describe the evolution of the coherences
between different dressed states. It is clear that any initial
coherence between the dressed-atom states is eventually
destroyed.

For the population of the dressed states, Eq. (2.8) yields

&+'.
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where the I"s are defined as

I"„—= ( v'n + 1+v n ) /4 . (2.11)

It turns out to be convenient to work with the following
equation which is derived from Eq. (2.10):

We now solve Eq. (2.8) to find various matrix elements of
W(t) From Eq. (2.8) it easily follows that
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in what follows G„(t) is not needed.
Lastly, for the population of the ground state, the solu-

tion of Eq. (2.8) is found to be
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The initial state of the field is taken to be

pf(0) =:exp[ —(a —z*)(a z)/(n+—1)]:/(n+1), (2.17)

where:: denotes normal ordering of the operators a and
a. In the number state representation we have

The density matrix is thus completely determined for
an arbitrary initial state of the system. To specify the ini-
tial state, we assume that at t =0 the field and the atom
are decoupled so that p(0) =p, (0)pf(0).

For an ideal cavity (v=0) an extensive study of the ef-
fects of the field statistics on the dynamics of the system
has been made by considering the atom initially in an ex-
cited or ground state and the field in a coherent or a
chaotic state. ' It is found that a superposition of non-
commensurate Rabi frequencies arising due to a distribu-
tion in the number of photons, leads to the phenomenon
of collapse and revival Rabi oscillations. In the presence
of a coherent field the revivals occur at regular intervals
but this regularity seems to be missing in the case of a
chaotic field.

In this work we investigate the effect of finite but large
cavity Q on the collapse and revival phenomena. We as-
sume that the atom is initially in an excited state, i.e.,

(2.16)
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To solve Eq. (2.12) we write it as
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and assume that there is an upper limit on the number of
photons initially present in the system so

'
that

(4~+~ I
W(0)

I +~+~) =0. This, in turn, implies that
(0g+, I

W(t)
I Pg+&) =0 for all t since the cavity cannot

add to the number of photons; it can only absorb them.
We then start with n =N and iterate Eq. (2.12) for succes-
sively smaller values of n to obtain

( —1) (n+v)!L„'x = X
0 (n —m)!m!(m +v)!

(2.20)

The coherent state Ia) of the field corresponds to the
case n =0 when Eq. (2.19) reduces to

for m &n and p „=p„* for m (n. Here L„(x) are the
associated Laguerre polynomials:

F„(t)= exp[ 2a(n + —,
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For a chaotic field (a =0) Eq. (2.19) results in

p „=[n™/(n+I)+']5 „.

(2.21)

(2.22)

If there is no upper limit on the initial number of photons
in the system we take the limit X~ oo in Eq. (2.14).

We can likewise obtain an equation for
G„(t)=('0„+

I
W(t)

I
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I

W(t)
I
4„). However,

Thus the state (2.17) is general enough. Note that ex-
perimentally it is feasible to put in the cavity photons in
a variety of states such as coherent, thermal, as well as in
a state obtained by superposing coherent and thermal pho-
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tons. It should be noted that we are considering the in-
teraction of the field, in a variety of initial states, with
atoms in a cavity at zero temperature. If the cavity is at
finite temperature, then the basic Eq. (2.1) gets modified
which in turn modifies Eq. (2.12). However, so far we
have not succeeded in obtaining solutions of such modi-
fied equations. In what follows we assume that the cavity
temperatures and frequencies are such that
(e~~" —1) '=0. This would, for example, be the case
with experiments at subkelvin temperatures.

For p, (0) and pf(0) as given above, the expression for
W(0) in the dressed-state representation becomes

W(0)= —,
' g P..( i~+&&~.+I+I~;&(~;I

m, n =0

+ I+.+&&+; I+ I+;&&q.+
I

) .

(2.23)

In the following sections we use the density matrix ele-
ments derived here to study the dynamical and statistical
properties of the system.

III. COLLAPSE AND REVIVAL
OF RABI OSCILLATIONS IN THE POPULATIONS

OF THE ATOMIC STATES

In the experiments on cavity electrodynamics, one mon-
itors the excited state as a function of time t. In terms of
the density matrix p, the excited-state population is

P(t)= g (n, —,
'

I
p(t) n, —,

'
&,

n=0
(3.1)

P„cos(2gtv'n + 1)

which when using the dressed atom representation [Eq.
(2.3)] can be written as
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with (AIA„+
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AIA„& and F„(t) given by Eqs. (2.9) and
(2.14), respectively. For W(0) given by Eq. (2.23) we
have

( n, —,
'

I p( t)
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exp[ 2yrt (n + —,
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2

A. Coherent state

In Fig. 1 we have plotted P(t) for
I

a
I

=5, n =0 and
for different values of the cavity damping. For ~=0 the
plot shows the familiar phenomenon of collapse and re-
vival of the Rabi oscillations around P ( t) = —, . This
phenomenon can be studied analytically by going over to
an integral representation for the sum in Eq. (3.3) and
evaluating the integral by the method of steepest descent
by assuming that

I

a
I
»1. Following the methods of

Ref. 2 (see also Ref. 18) we present the details of the
derivation of the asymptotic expression for P(t) in Ap-
pendix B. It is found that the revivals are regularly
placed. The period of the revivals is given by
Ttt 2'

I
a

I
Ig.——The envelope of the revivals is almost a

Gaussian. The width of the envelope of the kth Gaussian
is given by

~.,=&2(I+~'k')'"y~
I
a

I
(3.4)

which increases with k. Thus, as the time increases, the
neighboring revivals overlap increasingly. In the overlap
region, the Rabi oscillations are a result of the superposi-
tion of the oscillations from different overlapping re-
vivals. For long times, therefore, when the overlap occurs
between increasingly more revivals, the oscillations then
are due to the superposition of many frequencies, and
P(t) exhibits an apparently chaotic behavior. As dis-
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ence in the method of derivation. In Appendix A we
show that the expression for (n, , —I p(t)

I
n, —, & derived by

following the approach of Ref. 15 is equivalent to Eq.
(3.3). We now use Eqs. (3.1) to (3.3) to study the effects of
field statistics on the atomic excitation.

j=n

(j + —, )![1—exp( 2hrt)]~—
(j n)!(n + —,

' —)! p, (3.3)
20 40 60 80 100

where pj =pjj is the photon number distribution function.
Barnett and Knight' have also studied the effects of cavi-
ty damping on the atomic excitation. However, the form
of their expression appears different because of the differ-

FICs. 1. The probability of finding the atom in the excited
state as a function of time for

I
a

I

=5 and n =0. The curve A
is for the cavity relaxation parameter ~=0; the curves B and C
represent the excitation probability for Arlg =0.001[P{t)—z ]
and Ar/g =0.005[P{t}—~ ]. Note that gt is dimensionless.
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cussed by Yoo and Eberly, the asymptotic expression is
found to be good even for the values of

I
a

I
as low as 3.

For a&0 it is seen from Fig. 1 that the amplitude of the
oscillations in each revival decreases with virtually no os-
cillations for large values of gt. Also, the mean value of
the oscillations in P(t) keeps dropping below —, to ap-
proach the steady-state value zero.

A
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B. The effects of the chaotic field

Let us now consider the initial state to be a superposi-
tion of the coherent and the chaotic fields. In this case
the p „'s are given by Eq. (2.19). In Figs. 2 and 3 we
have plotted P(t) for

I

a
I

=5 and increasingly large
values of n, whereas Fig. 4 is for the case of a purely
chaotic field. A comparison of Figs. 2—4 with Fig. 1

shows that as the proportion of the chaotic photons is in-
creased, the envelope of the revivals deviates increasingly
from its Gaussian shape. The addition of the chaotic field
seems to cause an interference between different revivals
even for smaller times much like what happens in the case
of a purely coherent field for longer times. For large n,
therefore, the oscillations appear to be more and more ir-
regular because of an increase in the overlap between dif-
ferent revivals. The increased interference between the re-
vivals in a chaotic field may perhaps be attributed to the
fact that its photon number distribution function is much
more broad as compared with that in the case of a
coherent field.

For a purely chaotic field (
I
a

I
=0) in an ideal cavity

(ye=0) the atomic excitation probability P (t) can be
represented in terms of an integral. In Appendix C we
present an analytic expression for P(t) valid for large n

and for the time range within the first collapse. This is
also the time range in which the classical description of
the chaotic field gives results in agreement with the exact
quantum analysis. The classical description of the field
fails to account for the revivals of the oscillations.

B
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FIG. 3. The same as Fig. 1 but with
I
a

I

' = 5 and n =20.

IV. DYNAMICAL PROPERTIES OF THE CAVITY
FIELD
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The properties of the cavity field can be determined by
evaluating the average of a normally ordered product of
the field operators:
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FICs. 2. The same as Fig. !but with
I
a
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'=5 and n = I. FIG. 4. The same as Fig. 1 but with ! a I
=0 and n =5.



3438 R. R. PURI AND G. S. AGARWAL 35

The matrix elements relevant for the evaluation of Eq. (4.1) are as follows:
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W(0)
~

'pz+, + )

+exp[ igt[U p ——n +m +1—Vp+1]I (0'z
~

W(0)
~

'Pz „+ ) )

+
(p n)!—

v'p + 1 v'p n+ m + 1—
(p n+ 1)!— exp [ tgt ( v'p —n'+ m + 1+&—p + 1 ) ]

)& (++
~

W(0)
~

4 „+ )+exp[igt(V'p n+m+1+&p+1—)] (%~ ~
W(0)

~
%~ „+~)

v+'m!/ 5„2eox[ p2trt(m ——, )][ (0, ———, ~

W(0)
~

0'+ ~)exp(igtv m )

—(0, ——,
~

W(0)
~

+ &)exp( igt~m)], — (4.5)

with A „=A„* for n ~m. We use these expressions to
show the time evolution of the mean photon number
n (t)= (a (t)a(t)) =A~, (t) in Figs. 5 and 6. Note that the
photons decay to the steady state much faster than the
atomic population inversion. This is understandable be-
cause even one photon is sufficient to maintain the Rabi
oscillations between the atomic levels and, besides, the
cavity permits the leakage of photons.

The statistical properties of the field can be studied by

examining the second-order correlation function

g t = (a '(t)a'(t)) —(a (t)a(t))'
(a (t)a(t))'

Figures 7 and 8 exhibit the behavior of g'~'(t) for
a.=0.005 and various values of n and

~

a
~

. It is clear
that the antibunching present for the case of a pure
coherent field is destroyed by the presence of on the aver-
age of even one chaotic photon.
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FIG. 5. The mean photon number n(t)=(a (t)a(t)) as a
function of time for

I

a
I

'=5 and n =0. The curves A, B, and
C are for a/g =0,0.001, and 0.005, respectively.

gt
FIG. 7. The normalized intensity correlation function g' '(t)

as a function of time for
I
a

I
'=5, n = 1, and x =0.

Note that Eq. (4.6) gives the noise in the field intensity
(or the dispersion in the photon number distribution) in
the process of direct detection of radiation. This noise is
clearly insensitive to the phase of the field. Alternatively,
we may use the method of homodyne detection' in which
the signal field is mixed with a strong local oscillator field
before its photodetection. This process, for a detector of
unity efficiency, measures the field quadrature
a exp(i8)+a exp( —iO) where 8 is the phase difference
between the signal and the local oscillator field. More-
over, it can be shown that if the local oscillator field is
very strong compared with the signal field then the
second-order correlation function g' '(O, t) for the super-
posed field is given by o 0 20 40 60 80 100

gt
FICj. 8. The same as Fig. 7 but with

I
a

I

'=0, n =5.

O

n(t j

O
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9"'(e, t j

O
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FICy. 6. The mean photon number n(t)=(a (t)a(t)) as a
function of time. The curves 2 and B are n(t) with

I
a

I
=5,

n =1, and for a/g =0 and 0.001, respectively. The curves C
and D are n(t) —1 with

I
a

I
=0, n =5, and for wig =0 and

0.001, respectively.

FIG. 9. The phase-sensitive correlation function g' '(O, t) as a
function of time for

I
u

I

=5, n = 1. The curves A and B are
g' '(m/2, t) for sc/g =0 and 0.001, respectively. The curves C
and D are g' '(0, t) —4 for ~/g =0 and 0.001, respectively.
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g' '(8, t)= ((:E,:)—(E& ) )cos (8)

+((:E2.) —(Eq) )sin (8)

+-, ( (E&E2)+ (E2E& )

—2& E& ) (E2 & )sin(28), (4.7)

thermal field destroys antibunching in the homodyned ra-
diation or equivalently the squeezing in the signal field.
Note also the sensitive dependence on the relative phase 0.

We can also use our results for studying the properties
of the photon number distribution function p„(t):

p„(t) = ( n, + —,
'

I p( t )
I
n, +. —,

' ) + ( n, ——,
'

I p( t )
I
n, ——,

' ) .

where E& ——a+a and E2 i——(a —a ). In Fig. 9 we have
plotted g' '(8, t) for 8=0 and m/2 to show the effect of
thermal field on the phase sensitive noise. Note that the Using Eqs. (4.2), (4.3), and the results of Sec. II we get

(4.8)

p„(t)=
exp[ —2~t(n + —,

'
)]

2
[exp( —2igt&n +1)(4„+ W(0)

I
4„)+exp(2igtV n +1)(+n

I
W(0)

I 4n+)

—(1 —6„o)(terms with n~n —1)]

j=n

(j + —, )![1—exp( 2lrt))~—

(j —n)!(n + —, )!
Fi (0)

+(1—5„o) (terms with n ~n —1) +6„yc f Fo(r)d7 . (4.9)

We have already given' a discussion of p„(t) for the case of an input field in coherent state. We have found that p„(t)
was very close to a Poisson distribution centered around n (t)—:(a (t)a (t) ).

V. EFFECT OF ATOMIC COHERENCE ON COLLAPSE AND REVIVAL PHENOMENA

So far we ha"e assumed the atom to be initially in an excited state. However, when an atom interacts with an external
coherent field, it is left, in general, in a coherent superposition of the two states. The extent of the superposition depends
on the duration of the interaction (see Sec. VI for the details). Hence, it is interesting to investigate the effects of the
coherence between the atomic levels on the dynamical properties of the system. Let us then consider the atom in an
atomic coherent state

I
st) where

I s & =( I+
I s I

') '"(
I

—' &+s (5.1)

and let the initial state of the field be given by Eq. (2.18). The expression for W(0) in the dressed-state representation is
then found to be

w(o)= z g [(p ~ + lu I'p +t.+i+stp +i. +s *p .+i) I

++&&q'.+
I

m, n =0

+(pmn+ p I pm+in+1 o'pm+in p pmn+1) I
+m )(+n

+(pmn p I pm+ln+1+spm+1n o' pmn+1) I
+m &&+n

+(pmn I p I pm+in+i o'pm+1n+p pmn+1) I
+m &&+n

I ]

+ I/~2 g [[po„p( I
0, ——, )(4„+

I
+

I
0, ——,

' )(+„
I
)+H.c]

n=0

+ ls I'[po„+, ( Io, ——,
'

&&+„+
I

—
I
o, ——,

' )&e„-
I
)+H.cl]+p~ ls I'Io, ——,

'
&&o, ——,

'

(5.2)

For the sake of simplicity we consider the initial state of the field to be a coherent state so that the p „are given by Eq.
(2.21). Using this expression for W(0) in Eqs. (3.1) and (3.2) the excited-state population is found to be given by
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exp( —tet)exp( —
I
a

I
) y 2 I

a
I

"

2(1+ lc I')
2 2

cos(2gt~n + 1)n+1

2 I I I sin(f)+q, )sin(2gtv n +1)v'n + 1

j=n

(j + —, )![1—exp( 2xt)—]~

(j —n)!(n + —, )!
(

I
a

I
"/j!)

(5.3)

where p =
I p I

exp(ip) and z =
I

z
I

exp(i8). For p =0, P (t) gives the excitation probability for an initially excited atom
whereas for p~ op it gives that for an initially unexcited atom. Thus, for p~ oo, we do not expect any dependence on 0
or g of P(t). We have found that even for

I p I

—5, P(t) is phase independent and its behavior is very close to that for
an initially unexcited atom. In Appendix B we have derived an asymptotic expression for P(t) in the case of an ideal
cavity (Ic=O). An interesting special case of the asymptotic expression Eq. (B29) arises for 8+y=O. In this case the
population inversion at the kth revival (sk =0) is

P(k)= —, + [(1—Ip I

)cos[2n.
I
a

I
k+ —, tan '(mk)]]/[2(1+m. k )'~ (1+ Ip I )] . (5.4)

For
I p, I

=1 we find that P(k)= —,'. Thus, in this case,
the population is equally distributed between the two lev-
els at each revival time. In Fig. 10 we show the effect of
cavity damping on P(t) when the population is initially
equally distributed between the two levels, i.e., Ip I

= l.
We show the effect of level coherence by plotting P(t) for
y=O and y=m. /2. Note that q=O is the classical dressed
state

I

—,
' )+

I

——,
'

) of the atom which is a stationary
state of the semiclassical Hamiltonian in the interaction
picture. Hence, the oscillations exhibited in the figure for
p=O are purely due to the quantum effects. The other
semiclassical dressed state

I

—, ) —
I

——, ) corresponding
to I)tt

I

=l,y=rr gives P(t) identical to that for y=O as

LA
LA

C)

P(t)

'Ui

is evident from the expression (5.3). Thus a clean way of
studying the quantum effects is to send the atom initially
prepared in either of the dressed states

I

—, ) +
I

——, ).
If the phase of the atomic coherent state is a random

variable then the atomic excitation is obtained by averag-
ing Eq. (5.3) over q&. The value of P(t) in this case is the
same as that in the case of 0+g =0.

In Ref. 14 we have discussed the effects of field coher-
ence on the squeezing characteristics of the output field.
Here we study the effects of atomic level coherence on
squeezing. To isolate the effects of level coherence from
those of the field coherence, we consider the field to be in-

itially in the vacuum state. In Appendix D we present the
details of the derivation of the squeezing in the in-phase
component of the field. We find that if the atom is
prepared in a suitable superposition of the two states, the
field is indeed squeezed. For example, for the resonant in-
teraction between the field in an ideal cavity (a=0) and
the atom, the field is found to be squeezed if p; ~ 1+p„
where p„and p; are, respectively, the real and imaginary
parts of p. In fact, the maximum squeezing in this case is
obtained when the probability of finding the atom in the
ground state is three times than that in the excited state.

VI. THE DIPOLE MOMENT

C)

]0 30 50 70 90 110

A complete description of the atomic dynamical prop-
erties involves, besides the population, a knowledge of the
dynamics of the coherence between the two atomic levels
which can be studied by evaluating the dipole matrix ele-
ment D(t):

FIG. 10. The probability of finding the atom in the excited
state as a function of time for

I
a

I
=5,

I p I

=1, 0=0, and

~/g =0.005. The curve 2 is P(t) for y=0 and the curve 8 is

P(t) —
~ for y=m/2.

D(t)= g (n, ——,
'

I
p(t) I

n, —, )exp( icut) . —
n=0

In terms of the dressed states we get

(6.1)
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D(t)= —,
' g [ (++

& I
W(t)

I
4+)exp[i(v'n+1 —V n )gt] —(ql„&

I
W(t)

I
%„}exp[ —i(V'n+1 —vn )gt]

n=0

+(4„&I
W(t)

I
4„+)exp[i(V'n +1+V'n )gt] —(4„+

& I
W(t)

I
%„)exp[ i—(v'n +1+v n )gt] J

+1/v 2[exp(igt)(0, ——,
I
W(t)

I
+o+)+exp( ig—t)(0, ——,

I
W(t)

I
0'o )] . (6.2)

If the atom is initially in the excited state then it follows from Eqs. (2.9), (2.23), and (6.2) that

D(t)= —i g p„,„[sin[gt(V'n +1+v n )]—sin[gt(v'n +1—v n )]Iexp( —2nlrt)2 .
n=1

(6.3)

For @=0, Eq. (6.3) reproduces the results of Narozhny et al. If the field is initially in a chaotic state, then p „=0
for m&n which implies that D(t) =0.

If, on the other hand, the atom is in the coherent state
I p ) and the field is in the coherent state

I
a ) then the real and

imaginary parts of D (t) are given, respectively, by

Dg (t) =
2 g exp( —2nIrt)

exp( —
I
a I') " Ia I'"

2(1+ ic I'} .=i

X [ I p f fa I
(cos(cp) [ cos[gt ( v'n + 1 —v n )]+cos[gt (V'n + 1+V n ) ] I

+V n /(n +1)cos(20+cp) [cos[gt(v'n +1—v n )] cos[gt(v—'n +1+Un )]J )

+sin(0)(v n [sin[gt(V n +1 vn )]—sin[g—t(v'n + 1+v n )] I

+
I p I I

a
I

[sin[gt(&n +1—V n )] +sin[gt(V'n +1+V n )]]/V'(n +1))]

and

+ exp( —fa
I

)
2 exp( at)

I p I
[—cos(gt)cos(y)+

I p I I

a
I
sin(gt)sin(0)],(1+ li I'}

(6.4)

Dt(t}= — g exp( 2nzt)—exp( —la I
)

" Ia I

2(1+ fp I'},=
X[

I pl fa I
( —sin(qr)[cos[gt(v n+1 vn )]—+cos[gt(V n +1+V n }]I

+v'n /(n + 1)sin(20+ y)

)& [ cos [gt ( V'n + 1 —V n )] cos[gt ( v—'n + 1+V n ) ] t )

—cos(0)(v n [sin[gt(v'n +1—v'n )]—sin[gt(v'n +1+v n )]I

+
I p I

fa
I

[sin[gt(V'n+1 —Vn )]+sin[gt( nV+1+V n )]]/Vn+1)]

+ exp( —
I
a

I

')
exp( vt)

I p I
[cos(gt}sin(y)+ —

I p I I
a

I
sin(gt)cos(0)],(1+ Iv I') (6.5)

Note that the dipole moment is a sum of the fast and
the slow oscillating terms which have a sum or difference
of frequencies in the argument of the trigonometric func-
tions. This is in contrast with the population inversion
which contains only the fast oscillating terms. In Appen-

dix 8 we have outlined a method for the asymptotic
evaluation of these terms. It is interesting to see from
Eqs. (6.4) and (6.5) that the dominant contribution to
DR(t) comes from the slow terms whereas Dt(t) is dom-
inated by the fast term. This is also borne out by Figs. 11
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FIG. 11. The real part of the atomic dipole moment as a
function of time for

I
a

I
=10,

I p I
=0.25, O=g=O, and K=O.

FIG. 12. The imaginary part of the atomic dipole moment as
a function of time for

I
a

I

'=10,
I p I

=0.25, H=y=O, and
a =0.

( S+(z) ) = —, sin(2gr)exp[ i(v+n. /2—)],
(S'(r)) = ——, cos(2gr),

where

(6.6)

(6.7)

and 12 for Dz(t) and Dz(t), respectively.
The dipole matrix elements are useful in studying the

properties of the fluorescent radiation emitted in a direc-
tion perpendicular to the cavity field. The positive fre-
quency part of the fluorescent radiation is given by
P(S ) where P is a constant. This weak field can be
detected by making it interfere with a part of the incident
field used for preparing the atoms in the superposed state.
Thus, during the initial preparation stage of the atom, if
E is the part of the incident field interacting with the
atoms for time ~ then using the Heisenberg equations it
can be shown that

g exp(iv) = (dE* )/A' .

The initial state of the atoms is, therefore, the atomic
coherent state

~ p) [Eq. (6.1)] with p given by

Itt =cot(8/2)exp(ig), (6.8)

where

0=2gt, P= —(v+m/2) . (6.9)

Note that the phase factor P can have an additional con-
tribution of the form coT where T is the time during
which the atom evolves freely before entering the cavity.
The fluorescent radiation from the atoms, after they have
interacted with the cavity field, is then made to interfere
with the other part 8' of the incident field after shifting
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FIG. 13. The interference term I(t) as a function of time for

I
a

I
= 10,

I p I

=0.25, 0=n. /2, and K =0. FIG. 14. The same as Fig. 13 but with ~/g =0.005.
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=(~~8'
~
exp[i(v+f1)] —PS

~
)

+iP [

8'
( [ (S }exp[ i —(P —0)]

—(S )exp[i(P —Q)]I . (6.10)

Here we have neglected the terms of the order p as the

its phase by Q. The intensity of the superposed field is
given by

((e'*—p*s+)(a' —ps-) )

fluorescent field is assumed to be weak. In terms of the
dipole moment matrix elements Dz and DI the interfer-
ence term in Eq. (6.10) may be written as

I = [Dt(t)cos(P —Q) —D~(t)sin(P —Q)], (6.11)

where we have used the relation (S+ ) =D~+iDt. Now,
if the initial field has a random phase we must average
over P in which case for an initially coherent state

~

a ) of
the cavity field it follows that

I=sin(A)
~ p ~

exp( —
~

a
~

) exp( at)c—os(2gt)+ g2 ~

a
~

'"exp( —2na-t)
cos(gtv'n + 1)cos(gtv n )

@=1 n! (1+ IC I')

(6.12)

where overbar denotes the average over the random distribution of P. It is seen that the state of the atom enters the ex-
pression for I just as a multiplying factor. In Fig. 13 we have plotted I for

~

a
~

=10,
~ p ~

=0.25, and ~=0. The effect
of cavity damping is shown in Fig. 14. In this case, damping is found to suppress the collapse and revival phenomena
drastically.
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APPENDIX A: RELATION WITH THE WORK OF BARNETT AND KNIGHT {REF.15)

In this appendix we show that the expression

oc m!
( n, , ~

p(t)
~
n, —, ) = g, ,

[exp(2~t) —1] "exp( —2m at) X
n!(m —n)! (Al)

where

x exp( 2~t)—
2

( —1)J™j![1—exp( —2~t)]
pj+pm+ $

~(
~

)~
IJ

j(—m ——, )![1—exp( 2~t)]~-
(j —m)!

X cos(2gtV j+1) (A2)

for the probability of finding the atom in the excited state with field in an n-photon state derived in Ref. 15 is equivalent
to the one obtained in Eq. (3.3) of this paper.

The contribution from the first term in Eq. (A2) to Eq. (Al) is

exp[ 2irt(n + —, )] ~ —J —
& m!(j —m ——, )![1—exp( 2at)]~—

2 . „& „n!(m—n)!(j —m)!
(A3)

where in writing Eq. (A3) we have interchanged the order of j and m summations. Using the beta function representa-
tion for the factorials in Eq. (A3) it follows that
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exp[ 2—1rt (n + —, )]

exp[ 2—~t (n + —, )]

j=n+1

. j=n+1

[1—exp( 2—vt)]J "(j+—,
'

)!

n!

(j+—,
' )![1—exp( —2at)]j.

nf

j—1 l 1

m=n

j—n 1 n +mr i s) —m —n —1/2X iI —&r
X

o m!(j—m —n)!

1

dx xj(1—x) ' /(j n—)!
0

(A4)

Now, by summing the binomial series in Eq. (A4) and using the definition of beta function it can be shown that

exp[ 2~t—(n + —,
'

)]

j=n

(j+—,
' )![1—exp( —2Irt)]j

(n + —, )!(j n)—!
[1—exp( 2Irt)—]j "j!p—J n!(j —n)!j=n

(A5)

The last te~ in Eq. (A5) cancels with the contribution to Eq. (Al) from the second term of Eq. (A2) Next the contri-
bution to Eq. (Al) from the last term in Eq. (A2) is

exP[ —2Irt (n + Ti)] j![I—exp( —2vt)]~

~
j ( 1)j—m

Pj.cos(2gtV'j+1) g (m n)I(j m)I
(A6)

where, as before, the j and m summations have been interchanged. Clearly, the nonzero contribution to the summation
over m in Eq. (A6) is obtained only when j = n so that

I2 ——exp[ 2~t (n + —, )]p—„cos[2gtv'(n + 1)] .

Thus, by combining all the contributions to Eq. (Al) it follows that

(j+—,
' )![1—exp( 2~t)]j-

(n, —,
l
p(t)

l
n, —, ) =exp[ 2~t(n+ —, )] p—„cos(2gtv n+1)+g, pi.

(j n)!(n—+ —,
' )!

(Aj)

(A8)

which is the same as the expression in Eq. (3.3).

APPENDIX B: ASYMPTOTIC FORM
OF OBSERVABLES FOR AN ATOM INITIALLY

PREPARED IN A SUPERPOSITION STATE

In this appendix we present an asymptotic evaluation of
the excitation probability P(t) and the dipole moment for
an atom in a superposed state in an initially coherent field
in an ideal cavity. Here we follow Ref. 2 where P(t) has
been evaluated for an atom initially in ground state.

From Eqs. (3.1) and (3.3) it follows that for II =0

II ——
l
a

l
&(2/m. ) I exp[ —

l

a
l

Q(z, t)]dz, (B3)

where we have substituted z =~n /
l
a

l
and Q (z, t) is de-

fined as

Let us first evaluate I1. As discussed in Ref. 2, the dom-
inant contribution to II comes from the values of n near

l
a

l
. Therefore, for large

l
a l, we may use Stirling's

approximation for n! and also replace the summation
over n by an integral to obtain

—2sin(8+/)
l
j2

l
Im(I3)]/[2(1+

l p l
)],

Q(z, t)=1 —z +2z ln(z) 2igtz/l a —
l

(B4)

where

(B1) We now evaluate I1 by the method of steepest descent.
Note that the saddle points z, which are the roots of
Q'(z„t) =0 [Q'(z, t):BQ (z„t)—/dz] satisfy the equation

II ——exp( —lal ) g
n=0

exp(2igt~n )n! z, ln(z, ) =i nT, . (B5)

l

2li —2

I2 ——exp( —lal ) g exp(2igtV n )
n=0 n!

with

T=gt/2m
l

a
l

(B6)

oa ~ 2n —I

I3 ——exp( —
l
a

l
) g exp(2igtvn )
n=0 n!

Let

z, =p, exp(i g, ), (Bj)

(B2) so that
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Q"(z„t)=
I Q,"(z,t)

I
exp(iP,),

where

(88) where s/„p/„and f/, are the small increments. It then
follows from Eq. (813) that

I Q,"(z,t)
I
=4IQ, +[1+in(p, )] }'

P, =tan '[P, /[1+in(p, )]} .

(89)

(810)

a, = —P, /2= ——, tan 'Ig, /[1+In(p, )]} . (811)

Hence it follows that the angle of steepest descent at z, in
the complex plane is given by

f/, m——( —1) s/, /(1+rr k ), p/, =( —I)"eke/, , (816)

i ( ——1)"P/, }), (817)

so that Eq. (812) yields

I
~

——g ((1+~'T') '"exp [ —
I

a
I

'[q//, +/ ( —1)"+~]
k

x exp[ —
I

a
I Q (z„t)+/a, ], (812)

It can now be shown that the asymptotic expression for I]
1s

Ii = g I/t/. +[1+»(p.)) }

where

q//, 2' s—/—, /(1+rr k ),

N/, ——2n.
I k +2s/, + [k n s/, /( I +m k ) ]},

P/, = —,
' tan '(m[T —[2' k s/, /(I+m k )]}).

(818)

where the summation is over all the solutions of Eq. (85).
We now determine these solutions. Note that from Eqs.
(85) and (87) we have

An alternate method of obtaining the integral representa-
tion for I&(t) is given in Ref. (18).

In a similar way it is can be shown that

p, [ln(p, )cos(g, ) —g, sin(g, ) ]=0,
p, [ln(p, )sin(ti/, )+g, cos(g, ) ]=~T,

from which we get

p, P, =sr T cos(g, ) .

(813)

(814)

I2= g [(1+2p/, )+/P/, ](1+sr T )
k

Xexp[ —
I
a

I
'[P/, +i( —I)"@/,]—i( —I)"4}

(819)

Clearly, for T=k (k =0, 1,2, . . . ), p, =l, and

///, =(—1)" m.k are the exact roots of these equations. At
each such scaled time, k, the inversion has the same
phase. Hence T =k is the revival time. We now deter-
mine the approximate solution of Eq. (813) near these re-

vival times by letting

T=k+s~, p, =l+p~, g, =( —1) mk+gg, (815)

I3 ——g ( —1)"(1+p/, +i g/, )(1+vr T )
k

XexpI —
I

a I'[P/, +i( —I)"@/,]—i( —I)"0/ } .

(820)

Finally, substituting the expressions for I], I2, and I3 in
Eq. (Bl), the asymptotic expression for P(t) is obtained as

P(t)= —, + /exp( —
I

a
I

4/, )([ 1+(277 ks/, )/(1+77 k ) —
I p I

k

+[2sin(6+/)
I p I

ms~]/(1+m k )}cos(
I
a

I
@/, +P/, )

+ [ ~~k [ 1 2~k
I V 1»n( ~+P ) ] /( I + '/r'k ') —2

I
/L/ 1»n( (9+P) }

x»n(
I

a
I

'@/, +y/, ))/[2(1+~'T')'"(1+ Is I

')] . (821)

Note that p=0 corresponds to the case of the atom initially in an excited state whereas p~ oo represents an unexcited
atom.

Next, we derive the asymptotic expression for the dipole moment. For the sake of simplicity we restrict our attention
to the case of an initially excited atom. The other terms in the expression for the dipole moment for the atom in the su-

perposed state can be similarly evaluated. From Eqs. (6.4) and (6.5) we find that the dipole moment in the presence of
coherent field in an ideal cavity is given by

D(t)=ia*exp( —
I
a

I )/I a
I g [sin[gt(Un +1+v'n )t] —si [ngt(v'n +1—v n )t]I .2 Mn Ial'"-'

n=1 n!
(822)

(823)

Following the same procedure which leads us from Eq. (82) to Eq. (83) we find that the fast oscillating term in D(t) has
the integral representation given by

Df (t) = ia*&2/grim 1 dz z exp[ —
I

a
I Q (z, t)],
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where Q (z, t) is defined in Eq. (84). Again, by following the procedure which leads to Eq. (817) it can be shown that

Df(t) =(ia /2
I
a

I
) g ((I++T') ' 'exp( —

I

a
I
'q'k)

X [ask(1 +m k ) 'cos(
)
a

) Nk+Pj, ) —[1+(m ksk)/(I+a k )]sin(
~

a
~

@k+Pk))) (824)

D, (t)= i (a*/—
~

a
~

)Im(I, ),
where

(826)

Now we evaluate the slow term of D(t) which, for large
~

a ~, is given by

~n~a! '"
D jt) = ia *I—

~

a
~ g sin(gt/2n) . (825)

n=1 nt

Its integral representation is easily found to be of the form

the solutions of the Eq. (831). At these time points, the
phase of I, remains the same. Hence, T, =k is the revival
time for the slow oscillations. Note that T, =k l3, p, = 1,
and g, =(—I)"~k/3 (k not necessarily a multiple of 3)
also satisfy Eqs. (831). However, unless k is a multiple of
3 the phase of I, at the points T, =k/3 is different.
Hence, T, =k/3 is not a revival time if k is not a multi-
ple of 3. As before, we determine the roots of Eqs. (831)
around the revival time T, =k by letting

The roots z, of Q'(z, t) =0 satisfy the equation

z, ln(z, ) = igt l( 8
~

a—
~

) = i nT, —. .

If we let

(829)

I, = [a
~

v'2/~ f zexp[ —
~

a
~ Q, (z, t)]dz, (827)

Q, (z, t) = 1 —z +2z ln(z) igt/2—
~

a
~

z . (828)

T, =k+sk, P, =( —1)"+'mk+tg, p, =l+p," .

It is now straightforward to show that

Q, = ( —1)"+ '~sk /(I+ 9m k ),
p, =3(—1)"+'vrkg," .

Note that

(833)

(834)

z, =p, exp(ig, ), (830) ~

Q"(z„t)
~

' =2(1+9m. T )' (835)

then we find that Eq. (829) reduces to

p, [cos(3$, )ln(p, ) —f,sin(3$, )]=0,
p, [sin(3$, )ln(p, ) +P,cos(3$, ) ]= nT, , —(831)

and the angle of the path of steepest descent at z, is given
by

a, = ——,
' tan '[3g, /[1+31n(p, )]]

= —, ( —1 ) tan '
[ 3m.[T, —18m k sk l( 1+9m. k )] )

which also implies that
( I )k+ ly (836)

p, P, = —nT, cos(3$, ) . (832)

If T, =k then it is seen that P, =(—1)"+'nk, p, = 1 are
The asymptotic expression for D, (t) is now found to be
given by

D, (t) = ia" /2
~

a
~ g exp( ——

~

a
~

+k, )(1+9~ T2)

&&([1+[3&ksk/(I+9m. k )]]sin(
(
a

~
@k,+Pk, ) —[ask/(I+9m. k ))cos(

(
a

( @k,+Pk, )),

(837)

where

Vk, ——6w sk/(1+9m. k ),
@k,=2n [3k +2sk —(9m ksk )/(1+ 9n k ) ] .

(838)

I =1/n g [n/(I+n)]"c s(o2gt~n) .
n=0

(C2)

By replacing the summation with an integral we find that
for n »1

P(t) =( —,
' )[(n —1)in+I],

where

(C 1)

APPENDIX C: ASYMPTOTIC PROPERTIES OF P (t)
FOR AN ATOM DRIVEN BY A THERMAL FIELD

In this appendix we evaluate the asymptotic expression
for P(t) in the case of the atom in a strong chaotic field
in an ideal cavity. In this case we have

I= 1ln Re f dn exp[ n ln(i+ 1 /—n)+2igtv n ],0

(C3)

(C4)

= lln Re f dn exp[ —(nln 2igtv n )] . —
0

Now let z =n/n so that

I=Re f dz exp( —z)exp( 2igtV nz ),—

(2n )!
( —I )"(2gtMn )

"
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This result is the same as that of Riti and Vetri who have
derived it by a direct summation of the series. Note that
in Eq. (C4) the n dependence comes only as a scaling fac-
tor for time. Also, the replacement of the sum by an in-
tegral results in the loss of phase information and hence
the integral representation is valid only within the time
range when the first collapse occurs. This is in contrast
with the case of the coherent field where the loss of the
phase information in going over to the integral representa-
tion somehow seems to be regained in the subsequent sad-
dle point analysis.

APPENDIX D: SQUEEZING PROPERTIES
OF THE CAVITY FIELD

In this appendix we present the calculations for squeez-
ing in the case when the atom is in a coherent state and is
interacting with the vacuum of the cavity field.

so that S(t) &0 signifies squeezing. Since the field is ini-
tially empty and since there is at the most one atomic ex-

citation we get (a ) =((a ) ) =0. Hence, in terms of the
elements of the density matrix p(t), we may write

S(t)=[2(1,——, ip(t) i 1, ——, )

—[(1,——,
l
p(t)

l
0, ——,

' )+c.c. (D2)

All the calculations are being done in a frame rotating
with the frequency of the cavity field. Now, using the re-
sults of Ref. 13 with the initial atomic state given by Eq.
(5.1), we find that

In the context of the squeezed states of the field, we
need to evaluate the function defined by

S(t)=(:(a +a)'. ) —(a +a)'

(1,——,
'

~

p(t)
~

1, ——,
' ) =g exp( —vt)sinh(I t)sinh(I t)l[(1+

~ p ~

2)
~

I
~

2],

(1,——,
~

p(t) (0, ——, ) = ip g e—xp( —vt/2)sinh(I *t)exp( —iht/2)/[(I+
~ p )

)I "],
where

[ [F+ (F2+4+2&2)1/2]1/2+ 7 [ F+ (F2+ —4+2K2)1/2]1/2] /(2~2)

=x +iy,
Q =K —6 —4g, A=cop —co .= 2 2 2

It can be now shown that

(1,——,
~

p(t)
~

0, ——, )+c.c. =2g exp( zt/2)(AC+—BD)/[(I+
~ p )(x +y )],

(D3)

(D4)

(D5)

(D6)

(D7)

with

A =
~ p ~

[x cos(ht/2+y)+y sin(ht/2+y)],
B =

~ p ~ [y cos(At/2+y) —x sin(ht/2+y)],
C = —cosh(xt)sin(yt),

D =sinh(xt)cos(yt),

(D8)

tained if q&=~/2 and
~
p,

~

=v 3, i.e., if the probability of
finding the atom in the ground state is three times than
that in the excited state. Also, for ~=0 it follows from
Eq. (D9) that the minimum attainable value of S(t) is
—0.25.

We can also investigate the effects of detuning on
squeezing in the case of an ideal cavity (x.=0). In this
case it follows that

and p=
~ p ~

exp(iy). S(t) can now be calculated by sub-
stituting Eq. (D3) and (D7) in Eq. (D2). In particular, if
6=0, we find ' that for ~ & 2g

S(t)= 2g exp( —~t)sin (yt)

X [1+
~ p ~

cos(2y)]/[y (1+
~ p ~

) ], (D9)

where y =(4g —a' )' /2 and for v & 2g

S(t)= 2g exp( —~t)sinh (xt)

X [I+ I p I
'cos(2V»]/[x'(1+

I p I

')']

where x =(v —4g )' /2. In either case there is squeez-
ing for all times if cos(2p) &0 and

~ p ~
& 1. It is readily

found that at any time t, the maximum squeezing is ob-

S(t)= 4g sin (ht/2)

X [1+
( p (

'cos(b t +29') ]/(1+
) p, )

)' . (D12)

For g=0 and m, it is readily seen that the maximum
squeezing occurs when b, t =(2n +1)upwith

~ p ~

& 1. .The
squeezing at each such times is maximum if

~ p ~

=!/3
with S(t)= —g /(2h ). However, since b, is assumed to
be much larger than g, the amount of squeezing obtain-
able is not large in this case.

S(t)= g sin (yt)

X[1+
~ p ~'cos(&t+2q)]/[y'(I+

~ p ~')'], (Dll)

with y =(b, +4g )'/ /2. In particular, for b, »2g, we
have
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