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Treating diffraction effects within the paraxial approximation, we solve the initial-value problem
determining the start-up of a single-pass free-electron laser from shot noise in the electron beam.
Linearized Vlasov-Maxwell equations are used to derive an equation for the three-dimensional slow-
ly varying envelope function of the radiated electric field. In the high-gain regime before saturation,
the output power is expressed in terms of Moore’s exponentially growing guided modes. For a
cylindrical monoenergetic electron beam with step-function profile, explicit numerical and analytical
calculations have been performed, determining the power in the guided modes. The condition for
the dominance of the fundamental mode is discussed. Our solution of the initial-value problem is
based upon a Green’s-function technique, and our results are derived despite the lack of orthogonali-
ty and completeness of the guided modes. The Green’s function is expanded in terms of an ortho-
normal set of eigenfunctions of a two-dimensional Schrédinger equation with non-self-adjoint Ham-
iltonian. In the limit of a long wiggler, the asymptotic representation of the Green’s function is
found to be dominated by the contribution of the guided modes. The radiated electric field, and
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hence the output power, is determined with use of the Green’s function.

I. INTRODUCTION

This paper is concerned with the theory of amplified
spontaneous emission in a long wiggler magnet. When
the gain is high enough, the incoherent emission from in-
dividual electrons can be amplified to saturation in a sin-
gle pass. This approach to the generation of high-
intensity coherent radiation at short wavelengths has the
attractive feature that the use of an optical resonator is
avoided.! In the theoretical description of the amplifica-
tion of a coherent initial signal in a free-electron laser, it
is reasonable to keep only a single wavelength in the
analysis. On the other hand, in the case of amplified
spontaneous emission the initial signal is neither coherent
nor monochromatic, hence bandwidth must be taken into
account and a single-wavelength analysis is not sufficient.
The evolution of coherent radiation from the incoherent
emission of individual electrons must be described.

This is accomplished by considering the spontaneous
emission in the wiggler as resulting from the shot noise in
the electron beam, and carrying out an average over the
ensemble of initial conditions of the electrons. Such an
analysis was originally performed within a one-
dimensional model,>? in which individual electrons were
treated as charge sheets. Later, three-dimensional effects
were included for the special case of an electron beam of
infinite transverse extent.* Here, we treat an electron
beam with finite transverse dimension, extending the ear-
lier work of Moore® on mode guidance in the amplifica-
tion of a coherent initial signal. We solve the initial-value
problem describing the start-up of the amplified spontane-
ous emission process from the shot noise in the electron
beam, and we express the output radiation field as a su-
perposition of Moore’s exponentially growing self-similar
modes.® The output power is computed in the high-gain
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regime before saturation.

In a free-electron laser, gain plays an important role in
the mode guidance. Unlike guiding in a system having
purely real index of refraction, Moore’s self-similar modes
have power flowing radially away from the electron beam.
Field energy is created inside of the electron beam at a
fast enough rate to maintain the transverse mode distribu-
tion, with maximum field strength at the electron beam
center and exponentially decaying field strength outside of
it.

Consider a cylindrical electron beam with a step-
function transverse profile, the electron density having
constant value n, within radius r <rg, and vanishing for
r >rg. We denote the period length of the wiggler magnet
by A, and the radiation wavelength by Ay,. The corre-
sponding wave numbers are k,,=27/A, and kq=27/A,.
From Moore’s work® we know that diffraction effects are
important when the Rayleigh range kor(z) (corresponding
to the electron beam radius) is small compared to the gain
length I5(ry) (wiggler length for power multiplication by
e) in the free-electron-laser amplifier. On the other hand,
when the Rayleigh range is long compared to the gain
length, before the radiation has diffracted significantly,
the central core of the radiation has increased enough in
intensity due to the gain, to make the diffraction at the
outskirts of the beam unimportant.

For sufficiently large electron beam radius, diffraction
is negligible and the gain length is well approximated by
the result of the one-dimensional theory, I;(rg)
zl(’;Do:(Zpkw)“l, where p is the Pierce’ parameter de-
pending on the electron beam density ny. It is useful to
introduce a dimensionless scaled electron beam radius @
defined up to a multiplicative constant by @ > < korg /1P,
the ratio of the Rayleigh range to the one-dimensional
gain length. To be specific, we define
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a@?=2p(2kok,)rs . (1.1

For @ >>1, the gain is accurately given by the result of
one-dimensional theory. However, as noted by Moore,’
there is a large degeneracy of the growth rates of the self-
similar modes, so a single mode does not dominate, and
full transverse coherence is not achieved before saturation.
The total power S per unit cross-sectional area of the elec-
tron beam should be close to the result* recently obtained
in the limit @ = w0,

__PS.
T 9nyV.

exp(\/§41erp) , (1.2)

where V, is the coherence volume, S, =(yomc?)nyc is the
power per unit area in the electron beam, and N, is the
number of wiggler periods.

Now suppose we hold the electron density fixed and
reduce a@. The degeneracy in the growth rates of the
modes is broken, because diffraction decreases the growth
rates of the higher-order modes more than that of the fun-
damental mode. As the electron beam radius becomes
smaller, fewer modes are needed to describe the output ra-
diation field, and the transverse coherence improves. At
about @ ~6, the fundamental mode is dominant and its
gain has been reduced only slightly from the one-
dimensional value. In this case, the total power P is close
to the one-dimensional result,>?

pP.

P=p''D= oN exp(V'347N,p) , (1.3)
c

where N, is the number of electrons in a coherence length
and P, =S,7rd is the electron beam power.

When the electron beam radius is reduced below @ =6,
density still held fixed, the domination of the fundamental
mode becomes more complete, and full transverse coher-
ence is achieved. However, the growth rate of the funda-
mental mode is now significantly reduced due to diffrac-
tion, and the total radiated power becomes less than
predicted by the one-dimensional theory. For @ <1, the
radius r.,, of the fundamental mode of the electromagnet-
ic field is large compared to the radius r( of the electron
beam. Moore’s” result in the small electron beam size lim-
it can be re-expressed as (see Appendix A)

korin=~Ilg(ro) . (1.4)

In summary, for @ small the fundamental mode dom-
inates, but the output power is less than the prediction of
one-dimensional theory, because diffraction reduces the
growth rate. For & slightly larger than unity, a single
mode still dominates and its growth rate is only slightly
reduced from the one-dimensional value, so one-
dimensional theory gives a good approximation to the
output power. For 4 large, many modes are important,
and the output power is larger than predicted by one-
dimensional theory, but full transverse coherence is not
achieved before saturation.

Our paper is organized as follows: In Sec. II, we dis-
cuss the coupled Vlasov-Maxwell equations, and for the
case of an initially monoenergetic electron beam, we
derive a partial differential equation describing the evolu-

tion of the radiation field [Eq. (2.39)]. Next, in Sec. III,
we briefly review the exponentially growing self-similar
modes introduced by Moore. In Appendix A, we provide
a correspondence between our notation and that of
Moore.®> The guided modes are solutions of a two-
dimensional Schrodinger equation with non-self-adjoint
Hamiltonian [Egs. (3.4)—(3.6)].

We base the solution of the initial-value problem
describing the start-up of the amplified spontaneous emis-
sion process upon Green’s theorem (Appendix B). In Sec.
IV, we show that even though the effective Hamiltonian
operator is not self-adjoint, the Green’s function of the
two-dimensional Schrodinger equation can still be expand-
ed in terms of an orthonormal set of eigenfunctions [Egs.
(4.4)—(4.6)]. In the high-gain regime before saturation,
the Green’s function can be represented as a superposition
of Moore’s self-similar modes [Eq. (4.13)]. This result for
the Green’s function is used, in Sec. V, to solve the start-
up problem, and a general expression [Eq. (5.15)] for the
output power expressed in terms of the self-similar modes
is derived. This general result is applied to the special
case of an electron beam having step function profile, in
Sec. VI. We present both a numerical calculation (Fig. 5)
and an analytical approximation [Eq. (6.50), Fig. 5] for
the output power. Certain technical details of the analysis
presented in Sec. VI can be found in Appendixes C and D.

In Sec. VII, it is shown that the formalism developed
for a monoenergetic electron beam, in Sec. IV and V, is
easily generalized to allow the inclusion of initial energy
spread. The results obtained are in agreement with the re-
cent work of Kim,® who has applied a different method of
solution, originally introduced by van Kampen.? Finally,
in Sec. VIII, we make some concluding remarks.

II. ENVELOPE EQUATION

Using linearized Vlasov-Maxwell equations, we derive
the partial differential equation determining the three-
dimensional slowly varying envelope function of the emit-
ted radiation. We suppose the electron beam to be highly
relativistic and moving in the z direction through a
periodic left-hand circularly polarized helical wiggler,
whose vector potential is given by

A,=A,E_ e fec)V3, 2.1)

where €4+ =(€,%i€,)/V2 and ¢, and &, are orthogonal
unit vectors transverse to Z. The transverse electron velo-
city is approximated by

Vi~=—eA,/my, (2.2)
and the longitudinal velocity by
2
v =~c |1— 1+12< s (2.3)
2y

where K =eA,, /mc is the wiggler magnetic strength pa-
rameter.

The radiation electric field € satisfies the wave equa-
tion, in mks units,

1 3?2
Vi —-
l c? 3r?

i
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The transverse current density j, is expressed as
jJ_:enofVlfd'}/ N (2.5)

with ng being the peak density of the electron beam and
nof(z,1,y,t)dz d*r dy being the number of electrons in
element dzd?rdy. (Transverse coordinates denoted by
r.)

The electron beam is assumed to be initially monoener-
getic with all electrons having energy y, and longitudinal
velocity v, (yo)=vo. The spontaneous radiation emitted
by the electrons in the forward direction is left circularly
polarized with wave number k, and frequency wy=kc.
The combined action of the static wiggler field and the ra-
diation field produces a ponderomotive potential, which

tkoz—iogt ik, z
has the dependence e e Because the electron
beam moves with velocity vy the modulation of the distri-
bution function should have the form e""* ™" To be in
resonance, these two exponential expressions must be the
same, hence

k,=ko+k, (2.6)
and
k,.l)o =k0C =g - (27)
1t follows that
k v 23
U A 2.8)
ky c —vy 1+K
and
) o
ky=—=—2 (2.9)
Vo ¢ —Vp

where 0, =k,c.
Let us now return to the wave equation (2.4) and intro-
duce the slowly varying envelope function E(r,z,t) by
1 ikoz —i
el OZ Ilz)ol

e=_ €, +c.c.

The wave equation is simplified by using the paraxial ap-
proximation,
9’ 1 92 .
— — — —5~2ik
3z2  ¢? at? 0

(2.10)

2,1

32 (2.11)

9
at

Since the rapid variation of the distribution f is described
by the exponential factor e’ it , the time derivative of
f is well approximated by 3f /at:—iwof. Therefore, us-
ing Egs. (2.4) and (2.5), together with (2.10) and (2.11), we
derive

139 d 2
cartam T 2lk0 \%3
2
notoe “cAy —ik(z—vyn d
= f—ly f, (.12

where V% is the transverse Laplacian.

Equation (2.12) determines the slowly varying envelope
function E in terms of the electron distribution f. The
Vlasov equation will provide a second relation between E

and f, completing the description of the free-electron
laser. The Vlasov equation can be written as

af af _,
dt dp, ’

+0, L v r 45, 2.13)
In Eq. (2.13) we have used p, =0, and in the discussion
which follows we shall neglect the rapidly oscillating term

(vi*V7)f (an explanation of this follows). Taking
~mcYy, and introducing
§=z—vot , (2.14)
Eq. (2.13) becomes
of of ., df
at +[UH('}’ Uo] aé_ +'}’ a’)/ =0. (215)

Eq. (2.15) is nonlinear, because ¥ depends on the electric
field, and hence on f, via

Y= v-e:—iAw—( “EE e . (2.16)
mc? 2m?c?y
In order to linearize Eq. (2.15), we write
f=fo+f1, (2.17)
where f is a solution of
(,3ft°+[uH uo]% 0, (2.18)

whose initial value is the ensemble average of the initial

distribution (f(¢t=0)). Equation (2.18) describes the

time evolution of the slowly varying component of the

electron distribution in the absence of the radiation field.
The linearized Vlasov equation takes the form

i) 9 3fo
5{-’-[0”( Uo] a'g+'}’ a =0,

where 7 is given by Eq. (2.16).
The rapid variation of the perturbed distribution

(2.19)

f1~e"*. Due to Eq. (2.18),
3f 3f _9f1 fy
a3t +lu(y)—vol =2 3~ o — +[v(¥)—vo] 3

k&

whose rapid variation is also e’ "°. If f, has no rapid den-
sity modulation, then y(3f,/dy) again has the depen-
dence e¢""°, as seen from Eq. (2.16). The neglected term
(v,-V7)f has the dependence e “" * , because of Eq.
(2.2), hence it is rapidly oscillating for fixed &, and its
contribution is expected to be small.

It is now convenient to introduce dimensionless vari-
ables measuring spatial and temporal variations:

Ky

T=wy,t, =k (z—vpt),
(2.20)
¥
=V2kok,t, Vi=—5+—5 .

ax ax 2

For an initially monoenergetic electron beam, the unper-
turbed distribution is

fo=u(§,x)8(y —vo) ,

where the smooth function u(§,x) describes the average
properties of the initial electron distribution, neglecting

(2.21)
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the high-frequency shot noise due to the discrete nature of
the individual electrons comprising the beam. The distri-
bution f is determined from Eqgs. (2.12) and (2.19), subject
to the initial condition at ¢t =0,
1
f(t=0)=;—-28(z —2z;)8(r—1;)8(y — ) . (2.22)
(U
The shot noise is taken into account by treating the initial
coordinates z;,r; of the ith electron as stochastic variables
and determining physical quantities as averages over the
ensemble of possible z;,r;.

Let us now turn to the derivation of the partial dif-
ferential equation determining the slowly varying en-
velope function E. To proceed, we first rewrite the wave
equation (2.12) and the linearized Vlasov equation (2.19)

in terms of the dimensionless variables introduced in Eq.
(2.20):

d . i d
[—+—az iV} |E=D,e §f—l’— (2.23)
§L af it gre—it)L 9fo
+7] —D,(Ee'>+E"*e =0, (2.24)
ag y 3
where
notoe 2c A,
D = oHEC T (2.25)
2mow,,
T (2.26)
2 2m?*clw, ’ ’
(y)— $
T A R 2.27)
¢ —Vg Y

In what follows, we shall drop the nonresonant term
E*e~in Eq. (2.24).
We define
= [ %y, 2.28)
14
and use the Vlasov equation (2.24) to compute the partial
derivatives of I with respect to 7. In the special case of an

initially monoenergetic electron beam described by the
distribution f specified in Eq. (2.21), we obtain

oI _ d_V _ af 2 i 2

= f ag+ 2 e Eus' (y—70) | (2.29)
oI _ _}’_ 2 it |9
— —+—+ (uE) .
81'2 aé_z f f aé_ i u

(2.30)

We shall now show that

fiiylnzf=o. (2.31)

To see this, note that the linearized Vlasov equation (2.24)
has the form

)

d
ar +7 a¢ ]f—¢(7,§,’}/) . (2.32)

The solution of Eq. (2.32) is
e =hG—nmy)+ [ dr gt g—nir—1)7) .
(2.33)

For an initially monoenergetic electron beam, h and ¢
have the forms h=h8(y —y() and ¢ =¢5'(y — o), so

F(r,&7) =8y —yo)h(E—mT)

+8'(y—yo) [ dr' BlrE—nlr—7),7) .
(2.34)

Equation (2.34) clearly demonstrates the vanishing of the
integral of Eq. (2.31), and this discussion reminds us that
the linearized Vlasov equation does not provide a descrip-
tion of the development of energy spread.

Use of Egs. (2.23) and (2.24) together with Egs. (2.30)
and (2.31) shows that for an initially monoenergetic elec-
tron beam the coupled Vlasov-Maxwell equations can be
written in the form

Jd
+BE—1VL , (2.35)
LA a
= —+ (uE) , (2.36)
o *lartar
with
2,2
A .
nge—ngﬂf X (2.37)
2maw,, Y

The constant a=2D;D, /vy in Eq. (2.36) is related to the
Pierce parameter p of Bonifacio et al.” by
nolto€ 4A3;
2m y 50y

Now Egs. (2.35) and (2.36) lead immediately to the en-
velope equation

a=(2p)= (2.38)

E—a §—+—+z (uE), (2.39)

? |3 9
g

9 |12, 92 ;v
872 T+a§ lvl

which provides the basis for the discussion in the follow-
ing sections of this paper.

Because E is a slowly varying function, the terms
a(3E /97) and a(dE /3§), in Eq. (2.39), are small com-
pared with iE. If we ignore them and consider only single
frequency Q ( replace /97 by —i{)), we obtain an equa-
tion equivalent to Moore’s (see Appendix A). However,
for very large electron beam size, @ >>1, we found the
term a(dE /9¢) is important, determining the divergence
angle of the radiation field.* In the present paper, we are
mostly concerned with only a few lowest-order guiding
modes, and the contribution of the a(dE /9¢) term can be
neglected, it becomes important only for modes of higher
order.
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II1. SELF-SIMILAR MODES

We suppose the electron beam to be initially uniform in
the z direction, and rotationally symmetric about the z
axis. The transverse profile ¥ =u (x) is a function only of
the modulus x = | x|. Following Moore,” we seek solu-
tions of the envelope equation (2.39) having the form

E —e 107 ¢ y(x) . 3.1)

Substituting this expression into Eq. (2.39), one derives
Qg +Vi+- 5 (Q—g—Dulx) [40=0. (32

This is a generalized eigenvalue problem determining the
eigenfrequencies Q=0,(q,) and the -eigenfunctions
Y=1,(q),x). The self-similar modes are given by

E=e_m"(q”)Teiq”glbn(qn,X) ) (3.3)

The term “‘self-similar” refers to the fact that the trans-
verse dependence of the mode is independent of the axial
coordinate z. Of greatest interest are those modes with
complex eigenfrequencies having positive imaginary part,
ImQ, > 0, since these correspond to exponential growth in
T=w,t =27N,, where N, is the number of wiggler
periods.

Equation (3.2), which determines the transverse profile
of the guiding modes, has the form of a two-dimensional
Schrodinger equation with a complex potential, since (Q is
complex. Let us rewrite Eq. (3.2) in the form

[A+VE+Vu(x)](x)=0 (3.4)
with
and

V=£7(0—~q“-—1). (3.6)

There is, of course, the additional complication that the
potential depends on the eigenvalue.

At the beginning of a long wiggler magnet, the radia-
tion field is certainly not described by a single guided
mode. If the growth rate of one mode is sufficiently
greater than the others, however, that mode can dominate
at the end of the magnet. In the following sections of this
paper, we shall determine the output power in the guided
modes.

IV. GREEN’S FUNCTION

The initial value problem, describing the start-up of the
amplified spontaneous emission process can be solved by
utilizing a Green’s-function technique (see Appendix B).
We introduce the Green’s function g(7,§,x,x’) via
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32 | 3 9 o2
1
l ar |ar Tac VA
a a . ’
—au(x) ar + a¢ +i||g(r,6,x,x")

=8(7)8(£)d8(x—x") . (4.1)

In order to determine the Green’s function, we make use
of the following Fourier-Laplace expansion:

o +is dQ
—w+is 277j )2
dq

X f—zfe‘iﬂre'q"gG(Q,q“,x,x’) , 4.2)

where s >0 is chosen so that the integration path is above
all singularities of the integrand. Inserting (4.2) into (4.1)
leads to

g(1,6,x,x")= f

[Q—q,+vi+§<ﬂ—q,—1)u<x) G(Q,q,,%,x)

=8(x—x"). (4.3)

The solution of Eq. (4.3) can be expressed in terms of the
eigenfunctions ®,(x) and eigenvalues A, of the associated
homogeneous eigenvalue problem:

O, (x)=0. (4.4

An+vi+§(n—q,|—1>u(x)

If we were to impose the restriction A, =Q, —gq,, then
Eq. (4.4) would reduce to Moore’s eigenvalue problem
[Eq. (3.2)] for the guiding modes, having nonorthogonal
eigenfunctions. However, in Eq. (4.4) we have not re-
stricted A, =Q, —q;, therefore Eq. (4.4) has the form of
a Schrodinger equation with Hamiltonian H =V?
+(a/02)(Q—qH —1Du(x). We consider 2 to be complex,
so the differential operator H is not self-adjoint, and con-
sequently, the eigenvalues A, are complex. Because H is
not self-adjoint, the solutions of Eg. (4.4) are not orthogo-
nal relative to the scalar product [ ¢,(x)é5 (x)d*x. How-
ever, according to the bi-orthogonality theorem,’ for fixed
Q and g, the eigenfunctions of H are orthogonal to those
of the adjoint operator H ™, which clearly are simply
@, (x). Therefore, we can normalize the eigenfunctions
according to

[ d* @,(Q,q,, 0[P} (Q,q,,x)]* =5,
or (4.5)
[ d* @,(2,q,0P,,(Q,q,,x) =5, ,
and assume the validity of the completeness relation
>,(Q,q,,x)P,(Q,q,,x)=8(x—x) . (4.6)
n
The sum over n may include an integral over the continu-
ous portion of the spectrum, however, we are only in-
terested in a few modes which have the fastest growth
rates. These will dominate at the end of a long wiggler

and are elements of the discrete spectrum. We do not
prove completeness, and subtleties of the spectrum which
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are important only near the beginning of the wiggler are
not addressed.

In this spirit, we expand the Green’s function in terms
of the eigenfunctions ®,, as

G(Q,q”,XaX‘):EGn(Q,qH,X’)‘Dn(quH,X) s 4.7
n
and employ this expansion in Eq. (4.3) to obtain

Q- q”+Vl—i—Q (Q—gq,—Dulx) |G(Q,q,,x,x")

= 26,(Q,9,,x)[Q—q; —A,(Q,q,)]D,(Q,q,,x)
n

=3 ©,(0,q,,x)P,(Q,9,x) . (4.8)

The last equality results from the completeness relation
given in Eq. (4.6). Using the orthonormality condition of
Eq. (4.5), we find

(I)n(Q,qH,x’)

Finally, Eqgs. (4.2), (4.7), and (4.9) establish the following
representation for the Green’s function:

Gn(Q,qH,X’):

4.9)

g(r,6,x,x")

f dlIH qu§f°°+m _da
— oo tis 217'1Q2

X2 ©,(2,q),%)P,(2,g,x")
Q—q” —A"(Q,q“)

(4.10)

—iQT

The asymptotic behavior for large 7 of the Green’s
function is determined by the singularities in the complex
Q plane of the integrand appearing in Eq. (4.10). It is
reasonable to assume that the dominant behavior is
described by poles corresponding to the solutions of

We keep only those solutions with ImQ, >0, which will
dominate for large 7, and we denote these solutions by

(4.11)

At the end of a long wiggler, the following asymptotic
representation for the Green’s function is appropriate:

g(1,6,x,x")
“f qu lq”§ —m,,(q“)f¢n(‘1|1’3)¢n(¢ln’xl)
1—F,(q) ’
(4.13)
where g =9%g /372,
Yn(q),x)=P,(Q,(q)),q,,%x) , (4.14)
F,(q))=[3A,(Q,q,)/8Q]a-gq,q) - (4.15)

The functions 1,(g;,x) are seen to be the self-similar
modes discussed in Sec. III. The -eigenfunctions

®,(9,q),,x) introduced in Eq. (4.4) have the orthogonality
and completeness properties specified in Egs. (4.5) and
(4.6). These properties allowed us to derive the represen-
tation of the Green’s function given in Eq. (4.10). The
self-similar modes ¢,(q,,x)=®,(Q,(q,),q,,x) are not
orthogonal, because for each n, the function ®, is
evaluated at a different frequency ,(q| ), whereas ortho-
gonality and completeness of the ®, holds when all @,
are evaluated at the same frequency Q.

V. START-UP FROM SHOT NOISE

We wish to solve the envelope equation (2.39) subject to
initial conditions specified at t=0. (See Appendix B.) In
particular, we specify E(0,§,x)=Eq(§,x), J(0,§,x)
=Jy(£,x), and J(O,g‘,x):jo(g,x), where the dot denotes

d/07 and the current J was introduced in Egs.
(2.35)—(2.37). The envelope function is then determined
by

E(7,6,x)

= [dg X ENL X6~ %X
+Jo(&,x")g (1,6 —&',x,x)

+Jo(& x")g(r,6—&',x,x")], (5.1)
where g(7,§,x) is the Green’s function defined in Eq.
(4.1). Here, E, represents an initial electric field possibly
due to an external laser; J, describes the initial spatial
bunching of the electron beam and Jo corresponds to an
initial energy modulation of the electron beam.

We assume the absence of an external radiation field,
Ey =0, and describe the shot noise by

noptoe’c A
Jo= JOHC € oHo ng Ff(r=0),

5.2
2mo,, -2

flr= 0)=——28(z—z )8(r — (5.3)

)8(y —7vo) »

where the coordinates z;,r; of the ith electron are treated
as independent random variables. For the purposes of the
present discussion we ignore the spread in energies of the
electrons, hence J,=0. Although (E)=0, averages of
quantities quadratic in E do not vanish.

For Egs. (5.2) and (5.3) we see that

Jol&,x)= -”’Z—'i S e bis(e—£)8(x—x,) (5.4)
0

where we have defined

b =2k, kok, (5.5)
and

2.2
A
oo JOME € Fw (5.6)
mewYo

Using Eq. (5.1), the correlation function of the electric
field at two different spatial points can be expressed as
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(E(1,{,x)E*(1,{',x'))
= [did?x,dEd xg(r,6— 51 x,x)
X g *(1,6'— 62X, X3)
X (Jo(E1,x )3 (E0,Xp) ) . (5.7)
Applying Eq. (5.4) to (5.7) results in

(E(1,(,x)E*(1,L,x"))
—b25 (e

nO ij

gj)g.('r,g—gi?x’xi)
Xg *(Tygl_gj)xlyxj)>

=b K_Zz (T’g gnx x;)g *(T,é"—é',-,x',x,-).
ho

(5.8)
Now replacing the sum over i by an integral according to
z_, [ dzd* nou(r)

== fdgde nou(x),  (5.9)

(E(1,§,x)E*(7,£',x"))

dqy g ¢ . L *
=L [ S [ e ue a2 (0,506 (0,16 (g, 7000, 5007 (g5
o] nl

The total radiated power P is given by

P=“Z'l; Jdr(E(r,6,0E*(1,6,%) ,
hence
P= %Pnl
with
dg) o . ,
Pry=— Zo f %Gn(qH,T)Gl (q),7) [ d ¥,(q,,x

where Zy=v"1y/€p=377Q0 is the impedance of free
space, and, as is easy to verify,

KZ

=+mc2yy(2p)c (5.16)

noZo

VI. OUTPUT POWER FOR ELECTRON
BEAM WITH STEP-FUNCTION PROFILE

A. Self-similar modes

In Sec. III, we briefly discussed the guided modes, not-
ing in Eq. (3.4) that they are determined by the eigenvalue
problem (x= | x| ):

[A+VI+Vu(x)]p(x)=0
with

(6.1)
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the correlation function is finally expressed in terms of
the Green’s function by

(E(1,t,x)E*(1,£',x'))

=_b‘K2 fd§1d2x1U(x1)g(T,g"gbxyxl)
no

xXg*(r,& —&,L,x, %)) . (5.10)

To proceed, we shall express g in terms of the eigen-
modes, as discussed in Sec. IV. From Eq. (4.13), it fol-
lows that

g(r,6,x,x)
49, ot . -
- f%e NS Go(gyy (g, X)W X) 5 (5.11)

where
—iﬂn(qu T

G,(q),m)= (5.12)

—lQ q” [1—— qH)] )

Inserting the expansion for g given in Eq. (5.11) into
(5.10), we derive

(5.13)
(5.14)
(5.15a)
Wi (q,x) [ dP u(x ), (g, x)vF(g,,x) (5.15b)
[

A:Q—qH (6.2)

and
v="(Q—g,—1. (6.3)

Q
Here, we shall consider the special case of a step-function
electron beam profile,

1, x<a

u(x)= (6.4)

0, x>a
which was originally treated by Moore.> Our goal is the
determination of the output power in the guided modes,
using the formula of Eq. (5.15).

With the ansatz,

P(x)=e™R(x) , (6.5)
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one easily derives from Eq (6.1) the radial equation

” 1 ’ m2
R"+—R'+ |A+Vux)— 25 |R=0. (6.6)
P X

For the step function profile of Eq. (6.4), the radial func-
tion is expressed in terms of Bessel and Hankel functions,

cJ, X—;i , xX<a
R(x)= 6.7)
DHV (/% , x>a
where
X=aVA+V, ReX>0, (6.8)
¢=aV'A, Im¢>0. (6.9)

Matching the radial function and its derivative at x =a,
we derive

CJ,,(X)=DH,\(¢) , (6.10)

CxJ,,(X)=DoHV () . 6.11)
It is convenient to define new scaled variables:

A=0Q/2p, A=gq,/2p, @=V2pa . (6.12)

Note that since x =1"2kok,r [Eq. (2.20)], it follows that
a=v"2kgk,ry, where ry is the radius of the electron
beam, and

ar=2p(2kok,)r} , (6.13)

in agreement with Eq. (1.1) of the Introduction. The
equations determining X and ¢ can now be written in the
form

2
2 X2 1—2p"—;iL2
e (6.14)
a
9;—2+A]
a .
and
Jnx)  HY(@)
X ¢ (6.15)

JmX) T HD(g)

Given a solution of the coupled Egs. (6.14) and (6.15), one
determines A via

2
=2 ia. (6.16)
a

As mentioned in the Introduction, in the large beam

size limit, @— o, the growth rates of the guided modes

are expected to approach the result of the one-dimensional

theory. Let us now see how this follows from Egs.

(6.14)—(6.16). We combine Egs. (6.14) and (6.16) to ob-
tain

3 X2

A — |A+ 5 [A2+42pA—(1+2pA)=0 . (6.17)

If X remains finite in the limit @ — oo, then Eq. (6.17) will
reduce to the well-known cubic dispersion relation of the
one-dimensional theory, and A will remain finite and ap-
proach the one-dimensional value. When A remains finite,
Eq. (6.16) implies that ¢ — oo in the limit @— oo.

These considerations instruct us to search for a solution
of Egs. (6.14) and (6.15) with the property that as @ — o,
one has X finite and ¢ divergent. We define

H ()
§=¢—M , (6.18)
and note that if ¢— o« as @— o, then
E~i¢p (@— ). (6.19)

This shows that the right-hand side of Eq. (6.15) is diver-
gent as @ — oo, hence it follows that J,,, (X) must vanish in
this limit. Therefore,

(6.20)
where u,,, is a zero of the Bessel function, J,, (i, )=0.

In Eq. (6.15), we may use J,,(X)=~J,, (tpmn )X —thmn), to-
gether with (6.19) to derive

X—lmn, (@— ),

X i () 6.21)
X—,u'mn
or
X:ﬂm"—¢—, (@—>o0) . (6.22)
d+i

The solution valid for large @ >>1 can be obtained by
iterating. Begin with X~u,,,. Then Eq. (6.17) provides a
finite result for A=Ay(A). Employing this value in Eq.
(6.16) leads to the approximation
d=do(A)=aV Ay(A)—A. Now inserting this approxi-
mate value of ¢ into Eq. (6.22) yields an improved value
of X=Xo(A)=p,pnbo(A)/[do(A)+i]. These approxima-
tions, accurate for large @, have been used as starting
values for a numerical calculation of X, ¢, and A, for
given A, p, and @. Results of these numerical calculations
are shown in Figs. 1—4 and are in agreement with the

16

14~

]
won

[eXe)

12

10

Im (¢)

FIG. 1. Real and imaginary parts of ¢ as functions of @ and
A, determined by solving Egs. (6.14) and (6.15), for fundamental
mode m =0, n =0. In this plot we have taken p=0.7 X 1073
however, because the term containing p in Eq. (6.14) is negligible
except for very large A, the results are valid for all p << 1. One
can see that ¢~ae ™’ for A=0 and large a.
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Re (x)

FIG. 2. Real and Imaginary parts of X as functions of @ and
A. Same conditions as Fig. 1.

work of Moore.’

Figures 1—3 are calculated for constant p, which is con-
venient from a theoretical point of view. In practical
cases, when we reduce beam size @, electron density will
increase, and it is reasonable to assume constant current
Iy. It is easy to show that

= —=
P 27me? Yo 1+K?

eZy Iy K2 |1/2

Hence for constant current, p@ is a constant too. In
Fig. 4 we plot Im(Q) versus a for constant current
(p@=2.5x107%) to show how the gain increases as we
reduce the beam size.

B. Calculation of output power

Let us now turn to the calculation of the output power
for an electron beam with step function profile. We
rewrite Eq. (5.15) in the form

Im(X)

FIG. 3. ImA as function of @ and A. Same conditions as Fig.

0.007

0.006 CONSTANT CURRENT

pd=25x 103
0.005+

0.004

Im (22)

0.003

0.002

0.001

0 T T T T T T T T T 3
(o] 0.2 0.4 0.6 0.8 Ix10

BEAM SIZE a

FIG. 4. ImQ as function of a =V 2kok,r, for constant
current: p@=2.5x10"2.

P=2Pu. (6.232)
n,l
Py =3mc?yo(20)ck,
dq, . . *
X f 27 Gn(q),7)G (q,7INulqy) (6.23b)
where
. e—iﬂn(q”)r
Gulan =" ; (6.24)
(g7 —iQ,(g))[1—F,(g)]
F,.(qﬂ)z[aA,,(Q,qH)/aQ]nzﬂn(qH) , (6.25)
N"I(q“): fdzx ¢n(4||,x)1/17(q”,x)
X fdleu(xl)l[l,,(q“,xl)g[}f(qu,xl) . (6.26)

For simplicity, we only disucss axial symmetric modes
[m =0in Eq. (6.5)]. From Eq. (6.7), we can express i, as

Cudo Xn% , Xx<La
Y, = (6.27)
D,H |6,> |, x>a.

The parameters X, and ¢, are determined as functions of
q,=2pA from Egs. (6.14) and (6.15), and once ¢, is
known, Q,=2pA, is determined from Eq. (6.16). The
constants C, and D,, are specified by the conditions

D, /Cy=Jo(X,)/H ($,) (6.28)
and [see Eq. (4.5) and Appendix C]
S 2mx dx 4 = Clra 3008 | 5 — -5 | =1
X’l ¢n
(6.29)

When p|A| <<1 and p|A, | <<1, an explicit expression
for F, is (see Appendix D):
¢n X

2
F,=— =
I & ]Ai

1+ (6.30)
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10° —
8 v
108
— 107 A
i
$ 108
= 10°+
& joa
° o COMPUTER
£ 03 — ANALYTICAL APPROXIMATION
it CONSTANT CURRENT DENSITY
102 3
o p=07x10 pr=2m
109 Aq=330R = 1500
P B3 0 Yo
o 22
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BEAM SIZE &

FIG. 5. Power terms P, [Eq. (6.23)] calculated by direct
computer calculation and with the approximate analytic expres-
sion of Eq. (6.50).

The integrals in Eq. (6.26) for N,; can be evaluated (see
Appendix C) yielding

CME—ED XD (4.97)

= (AT* =A%) .

B C s R R T Th

(6.31)
Equation (6.23b) for P,; can now be written
ilpf(kf—ln)
(2 )2 ane
P, =P 2 k.c | dA .
=", me’rokee | M AF(1—Fy)(1—F})

(6.32)

Solving Eqgs. (6.14) and (6.15) yields X, ¢,, &,, and A, as
functions of A, and these results can be used in Eq. (6.32)
to calculate the output power numerically, with F, and
N, expressed by Eqgs. (6.30) and (6.31), respectively. Re-
sults are given in Fig. 5. The parameters in our example
are p=0.7x1073, 2pr=4m, Ay=330 A, y,=1500 (750
MeV). This corresponds to pN, =1, i.e,, near saturation.
If we have an electron beam with 100 A, beam diameter
2ry=0.68 mm, wigger period 3 cm, wiggler length 43 m,
we would have these parameters, with @ =3.6 and wiggler
parameter K =2.

C. Approximation to output power

We shall now derive an approximate expression for P,,
which is asymptomatically correct for large @. We con-
sider |2pA, | <<1 and |2pA| <1, so from Eq. (6.17) it
is seen that A=A, is a solution of the cubic equation,

2
n

Ad— Al—1=0,

A+ (6.33)

52

where X, is given by the approximate result of Eq. (6.22),
i

Xn Hon | i
o bn+i

a a

1 , (6.34)

and
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dp=aV'A,—A . (6.35)

In Eq. (6.34), po, is a zero of the Bessel function,
Jolton)=0.

In Eq. (6.32) for P,;, the dominant contribution to the
integral comes from the neighborhood of the maximum of
Im(A, —A]), see Fig. 3. From Eq. (6.33) we see that in
this region |A+X;/@?| is small. For @ large, this

means A is small.* We shall move all factors except the
. i2pr(Af —1,,) . . L
exponential e T T outside of the integration in Eq.

(6.32). The factors moved out of the integral are slowly
varying and we evaluate them for

A=0, (6.36a)
Ape?mi/3 (6.36b)
bp~ae'™?, E,~id, , (6.36¢)
X, e ——0m . (6.36d)
1+—l—e —in/3
a
In this way, we obtain
(0)
(20 Nni
Py~—P. k
M=y MV I EO (1 FO%)
e
x [dne' ™ M (6.37)

where the superscript “zero” indicates N and F\ are

evaluated using Eqgs. (6.36a)—(6.36d). From Egs. (6.30)
and (6.31), we derive

1—F9~3, (6.38)
NO 4(X X1 )? _ 4, 6.39)
T a —x ) e, —ef)? '
with

2
£, = “j’;’ ———1———7 ) (6.40)

a 1+Le—iﬂ/3

a

In order to estimate the integral in Eq. (6.37), we use
Egs. (6.33) and (6.34) to derive

Ay —(A+g,)A2 —1=0,

where X2 /@ 2~¢, as defined in Eq (6.40). When A +¢, is
small, we have the approximation
Ape®™ B L L(A+e,)+5e 23 (A+e,)? . (6.41)

The exponent apearing in the integral in Eq. (6.37) is ap-
proximated by using

Ap—Af =~iV3++(e, —¢€])

+%[e~21ri/3(A_+_En )2_e277i/3(A+£7)2] . (6.42)

We let A=A, be the saddle point determined by
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d *
—— (A, —A -
A M )| a=a,
=2[e /N A+e,)—e’™(A+e[)]=0, (6.43)
explicitly
1 i i
=75 (e =23, —e2™/3e}) | (6.44)
Ignoring terms quadratic in €,, we have
V73
A,,—xfzi\/§+%(en—£7)—Ts(A—As)2. (6.45)

The expression given in Eq. (6.37) for P,; now reduces to

2
P,,,z%P)—mc Yok, c+ N
T

X exp | 2pT \/g—é(s,,—ef) ]
A A 2902
X [ane 0T (6.46)
where
172
opA= 3;_‘;3 (6.47)

and we have used Eq. (6.38) for F.> and N, is given in
q. (6.39).
The quantity o, can be related to the bandwidth in
wave number or frequency. The electric field correspond-
ing to mode n has the form

ikyz —iwgt iq &E—iQ, T
o o’ "I

Aye " (6.48)

where {=k,(z —vyt) and 7=w,t. Therefore, we see that
k,=ko+k,q,, hence

172

g
Tk g, —2pas= |20 (6.49)
k, Il T

The Gaussian integral in Eq. (6.46) is equal to V2704, so
we derive the following approximation for P,;:

)y —2iprie, —ef)/3

P,y =P'"P'N e " , (6.50)
where N,(,?) and €,,¢; are given by Egs. (6.39)—(6.40), and
PUD) is the output power as calculated in the one-

dimensional model, >3

PP — 4 exp(V'32p7) . (6.51)

spme’yo—— ‘/——
Equation (6.51) can be seen to be equivalent to the expres-
sion for P'®) given in Eq. (1.3) of the Introduction, by in-
troducing the correlation length I.=Vv27/0y and the
number of electrons in a correlation length N,=nyXl,.
(= is the cross-sectional area of the electron beam.)

The result given by (6.50) is plotted in Fig. S and com-
pared with the numerical result described in Sec. VIB.
From the diagram we can see that at @=3.6 the second
mode is suppressed by a factor of 10. Cross terms are
suppressed by 100, and output power is still near the one-

dimensional result. The result also shows that when keep-
ing p constant and reducing @ below 2, the output power
begins to fall rapidly. When @ > 6, the higher modes be-
come important. Also we can see that for large beam size
the power cross terms are small because the modes are al-
most orthogonal. For small beam size, they are not
orthogonal, but higher modes drop fast, so cross terms are
always negligible.

VII. TREATMENT OF INITIAL ENERGY
SPREAD IN THE ELECTRON BEAM

The discussion in Secs. II—-VI has focused upon the
description of amplified spontaneous emission from an
electron beam which initially is monoenergetic. Now we
shall show that the formalism which we have developed is
easily generalized to allow the treatment of an electron
beam having initial energy spread. Our results are in
agreement with the recent work of Kim,® who has ap-
proached this problem using a method originally intro-
duced by van Kampen.? In a future publication'® we shall
further generalize our work to include the effects of angu-
lar spread in the electron beam.

Let us begin by recalling the coupled Vlasov-Maxwell
equations [Eqgs. (2.23) and (2.24)] derived in Sec. II. The
slowly varying envelope E of the radiated electric field
was introduced in Eq. (2.10), and we now define the corre-
sponding envelope F of the electron distribution by

f(r,8x,7)=F(1,6,x,7)e’¢ . (7.1)

Expressed in terms of E and F, the Vlasov-Maxwell equa-
tions become

0 08 .o2|p_ dy
{ +a§ —iVi{ |E=D, f " F, (7.2)

d 1 9o
2o+ 9. =D,——E . .
3¢ i||F= 27/ 3y (7.3)

Here, n=1—1y3/7? where v, is a reference energy near
the center of the energy distribution, and the ensemble
average of the initial distribution f,(x,y) is independent

of %/e introduce Fourier transforms over &,
Etrxgp= [ dce B LX), (7.4)
Flr,x,y3q,)= f _dge IPF(r.Lx,y) (7.5)
and Laplace transforms over 7,
E(x;Q.q))= [ “dre'™E(r,xq,) , (7.6)
F(x,y;9,q,)= fowdreiﬂff(r,x,y;q||) , (1.7)

where Im{Q is positive and large enough to guarantee con-
vergence of the integral over 7. Applying the Fourier-
Laplace transforms to Eqgs. (7.2) and (7.3) yields

(—iQ+ig,—iVI)E=D, fﬂF+E(T=0), (7.8)
3fo =
[—iQ+in(1+q)) 1F= D27—‘}’E+F(T 0), (7.9)
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Using Eq. (7.9) to express F in terms of E and F(7=0),
and substituting the result into Eq. (7.8), we derive the fol-
lowing equation determining E:

(7.10)
where
d afo(x,y)/3y
Ulx:Q,q,)=D,D, [ &Y _HJoBVI¥ (5,
(x;0,q)) 1 zf y? Q—nly)Nl+gq,) ( )
and
S(X,Q,ql,)=iE(T=0,X§Q1r)
F( =0y Y )
—D, fiiI___T_ﬂ (7.12)

Yy Q—n(y)l+q))

Since Eq. (7.10) has the form of an inhomogeneous
two-dimensional Schrodinger equation, the techniques
developed in Sec. IV and V to treat the monoenergetic
electron beam are applicable to the warm beam. The in-
homogeneous term S(x;(},q) is a known function, deter-
mined by the initial values of the electric field and elec-
tron distribution at 7=0. The potential U(x;(,q ) is also
a known function, expressed in terms of the distribution
fo(x,7). In the special case when f, factorizes,

folx,¥)=u(x)h(y), (7.13)
the potential U has the form
U(x;Q,q9,)=u(x)D D;,_f —h(L (7.14)

The height of the potentlal well is proportional to the
dispersion integral, and the shape is given by the trans-
verse profile u (x) of the electron beam.

Since U(x;Q,q) and S(x;Q,q,) are known functions,

|
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the inhomogeneous equation (7.10) can be solved using the
Green’s function G(x,x’;,q),), which we define by

[Q—g,+VI+U(x;Q,9,)]G(x,x3Q,q,)=8(x—x') .
(7.15)

We determine this Green’s function by following the ap-
proach developed in Sec. IV. This can be done since Eq.
(7.15) has the same form as Eq. (4.3), except that the po-
tential U now includes the effects of energy spread. It is
easy to see that in the case of a monoenergetic electron
beam, with

f()— x)8(y ’}/0) (7.16)
the potential U reduces to
U=§(Q—q”——1)u(x) (7.17)

where a=(2p)3=D,D2/1/(3).
identical to Eq. (4.3)

Following the technique of Sec. IV, we express the
Green’s function G(x,x’;Q,q,) in terms of the eigenfunc-
tions ®,(x) and eigenvalues A, of the associated homo-
geneous eigenvalue problem

[A,+Vi+U(X;0Q,g,)]®,(x)=0.

In this case, Eq. (7.15) is

(7.18)
Using the orthonormality [Eq. (4.5)] and completeness
[Eqg. (4.6)] of the eigenfunctions, we find
P,(x;Q,q)P,(x";Q,q))
Q—q,—A,(Q,q)

G(x,x’;ﬂ,q“).= > (7.19)

n
Once G(x,x’;(,q,) is determined, Ti‘(x;Q,q”) can be
found from

E(x;Q,q))= [d*'G(x,x;0,q,)S(x3Q,q,) . (7.20)

The inverse Fourier-Laplace transform can now be em-
ployed to obtain E(7,§,x) in the form

(7.21)

d i oo +Is
Birgm— [ S s [= 40

—oo+is 2T

e—iQ‘rZ
. - qn

A (Q q)

fd x' S(x'30,q)9,(x3Q,q)) -

As in Sec. IV, we assume that the leading behavior for large 7 is described by the poles in the complex  plane corre-

sponding to the solution of

Q——q” -—An(ﬂ,q” )=O (7.22)

We keep only those solutions with ImQ,, >0, and find the asymptotic representation for E(7,§,x):
d ) e—iﬂn(qH)‘r (X; )
E(1,6,x)= f;q'i,e“'ﬂgz Unxiqy [ d%x’ S(x';9,(q,),9, Wa(x'3q)) (7.23)
i " dA,
RN Q=20,()

where

1/1 (X'q“):@ (K'Q (q” q”) . (7.24)

Equation (7.23) can be seen to be in agreement with the work of Kim,® by expressing the derivative A, /8Q as follows.

Using Eq. (7.18) and the normalization condition,

A=~ [d* ®,(Vi+U)D,

fd xd) =1, we find

(7.25)
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and
JdA U
o 2, p2 &Y 7.26
EY) Jaxegg 720
hence
dA, U
aQ |o=0,4q)) f xy 0 ja=q,(q)

The use of Eq. (7.27) in Eq. (7.23) yields Kim’s result.®
Let us now use Eq. (7.12) to explicitly evaluate S(x;Q,(q),q|). Since we are considering amplified spontaneous radi-
ation, we assume the electric field vanishes at 7=0. We express F(7=0) as

F(r:O,x’,y;qH)z fdg’e_iq”;lF(T=O,§',x’;y)

= fage TN pr=0,6'xy) . (7.28)

Substituting Eq. (7.28) into the expression for S(x';Q,,q),) given in Eq. (7.12), and using the result in Eq. (7.23), we find

E(rgx)= [dgd dy jol&',x,v)g(rE—E %X,y , (7.29)
where we have defined

b dq iq) € . . .
g(T,g,X,X,’}/)— f 2 e 2Gn(T,V,‘InW’n(X»‘In)‘/’n(X,qH) ’ (7.30)
n
eviﬂ"(qH)T
Gy(1,759))= oA , (7.31)
—[Q — 1 1— <
(=D[Qu(q) =y )N14q)] 30 ﬂ=ﬂn(q”)]

and

. D, .

]0(§,X,7’)=7€_'gf(TZO,é',X,Y) . (7.32)

The treatment of shot noise given earlier for a monochromatic electron beam, in Sec. V, can now be generalized to in-
clude energy spread and energy shot noise. The initial electron distribution is taken to be

f(¢=o>=;1-25<z —Z)8(x—x)8(y — 1) - (7.33)
0

As in Sec. V, the output power is determined by taking the ensemble average ( EE* ). The only difference in the deriva-
tion from that given in Sec. V, is that when we replace the sum over individual electrons i by an integral, as in Eq. (5.9),
we now must include an integration over energy y:

> — fdzdzrdynofo(r,y):% fdg‘dzx dy nofo(x,y) . (7.34)

When the ensemble average of the intiial distribution f,, factorizes according to Eq. (7.13), the result for the output
power corresponding to Eq. (5.15) is

P= 2 Pnl , (7.35a)
n,l

dq "
Pn,=%mc27/o(2p)3k,c f2—7TH fdzx U, (X;9)¢7 (x;49)))

2
X fdzx’u(x')l/i,,(x’;qH)¢f(x’;q”) fdyy—gh(y)G,,(T,y;q”)G}"(T,y;qH) . (7.35b)
Y
T
VIII. CONCLUDING REMARKS magnet. In the special case when the electron beam is ini-
tially monoenergetic, the envelope of the radiated electric
In this paper, we have presented a theoretical descrip- field is determined by the differential equation of Eq.

tion of amplified spontaneous emission in a long wiggler (2.39):
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K 8 d 8 0

3 72 + ac iv? It + ac +i
When the initial energy spread is nonvanishing, the depen-
dence of the envelope of the field on the coordinates 7,&,x
is no longer determined by a partial differential equation.
To treat the case of nonvanishing energy spread, one in-
troduces a Laplace transform over the 7 dependence, and
a Fourier transform over the £ dependence. The Fourier-
Laplace transform E(x;ﬂ,q”) of the envelope of the radi-
ated electric field is determined by the partial differential
equation of Eq. (7.10):

[Q—q” +Vi+U(X;Q,q”)]E(X;Q,q”)

E —a (uE)=0.

=S8(x;Q,q,) .

This inhomogeneous two-dimensional Schrodinger equa-
tion can be solved by introducing the Green’s function

G(x,x';Q,q,) via Eq. (7.15):
[Q—q +Vf—+-U(x;Q,q” )IG(x,x";9,q,)=06(x—x) .

This Green’s function is determined by expanding it in
terms of the orthonormal eigenfunctions of the homo-
geneous Schrodinger equation with non-self-adjoint Ham-
iltonian [Eq. (7.18)]:

[A,+Vi4+U(x;0Q,9,)]®,(x)=0
The Green’s function is then given by Eq. (7.19):
P,(x;Q,q,)P,(x';Q,q))
Q—q,,—A,(Q,q))

G(x,x;,Q,q,)= 2

n

The dependence of the electric field on the coordinates 7
and § is recovered by carrying out the inverse Fourier-
Laplace transformation, as discussed in Sec. VII.

It is our belief that the essential physics of the ampli-
fied spontaneous emission process is elucidated by study
of the monoenergetic electron beam. The detailed numeri-
cal calculations and the analytical approximation of Sec.
VI were carried out for a monoenergetic electron beam,
with the goal of determining the region of validity of the
one-dimensional calculation.?? In order to carry out the
design of a single-pass free-electron laser for the produc-
tion of high peak power pulses of short-wavelength radia-
tion, the inclusion of energy spread and angular spread in
the electron beam is essential. Numerical calculations in-
cluding these effects are now under study.
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APPENDIX A: MOORE’S NOTATION

To aid the reader, we provide a correspondence between
our notation and that of Moore.’ Refer back to the mode
Eq. (3.2). Let us neglect the small term {}—gq, relative to
unity in the coefficient of u(x). Moore uses the original

dimensioned coordinate r, rather than the dimensionless
x—v 2koky, r, and hence the dimensioned Laplacian
VT-Zkok v? 1. His growth rate parameter 8 and detun-
ing pq are related to ours via

B=—ik,(Q—q),
Ho=—kyq .

Employing these relations, we can rewrite Eq. (3.2) as

(A1)
(A2)

——i—)zu(r) Y=0.

—(2p)%k,>
P B i

(A3)

Moore’s form of the mode equation is obtained by intro-
ducing the pumping parameter,

Co=(2p)kp% , (A4)

where 2=7Tr(2) is the electron-beam cross section, and the
normalized transverse profile

g=u/3, [adr=1. (A5)

Using Eqs. (A4) and (AS) in Eq. (A3) yields Moore’s
equation:
1 o2 ~ i
+ Vr—Coti(r)—— |¢=0. (A6)
Bt kg VT o ey |

A key parameter in Moore’s analysis is the characteris-

tic transverse dimension a, defined by
~4=8k3Co /T . (A7)

Inserting the expression for C, given in (A4) into Eq. (A7)
yields
4 =(2p2koky, )’rd . (A8)
Moore defines a scaled electron beam radius @ by
a=ry/a, (A9)
and from Eq. (A8) it follows that
8’ =(2p2kok, ) i =a?, (A10)

where d is the scaled electron beam radius we defined in
the Introduction in Eq. (1.1).
Moore introduces the characteristic length /. by

l.=koal, (A11)
and writes the gain in the form
G =G (A12)

where L is the length of the wiggler and g is the scaled
gain. The gain length I;=1./8. In Eq. (1.4) of the Intro-
duction, we noted that Moore’s result for the gain in the
limit of small electron-beam size could be written in the
form

korln=~lg . (A13)
To see this, we rewrite (A13) as
l koal?
korin=—=—""C, (A14)
g g
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hence

A—1/2

Fem =8 > (A15)

which is the result derived by Moore.

APPENDIX B: GREEN’S THEOREM
AND THE INITIAL VALUE PROBLEM

The Green’s function g=g(r—7,§—&',x,x’) satisfies

the equations:

aa; 9 —+ ag —iV? |g —au(x) aag
=8(1—7)8(5—&")d(x—
and
—au(x') |— 9 —L—H g
ar’  a¢’

=8(r—7")8(5 —&§")6(x —

Let E=E(7,§',x') be a solution of

92 a 3 .2
— |+ 55 —IiVI |E
a2 |ar T ac ’l]
N I N
—au(x’) aT,+aé_,+z]E_O.
We introduce the notation:
|
E(1,£,x) = fdzx’dgf dr E(r,&,x)8(1—7)8(E—&)S
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Ey=E(r"=0,{,x"),

Eo= | -2 E(,¢x) ,
or =0
gozg(7';§_§'7x7x,) ’
ago ag
go= 5 T ar reo
K(f)= [dxdg [“dr' s,

L= [dx'ds'f.

Employing integration by parts and noting that the
Green’s function g vanishes for 7'— « and {'— + «, due
to causality, one derives

d° d’E .. - .
K|E& g | = —L(Eogo+Eogo+Eogo) ,

o or

d’g ’E dE, . OE,

K |E -+ + ,

aTIZagl gaT;Zagl a;; s 80 é_, 7 8o

9’ R 27
K|E ar ,2V1g ga S VI'E | =L(goVI'Eo+8oViEo) ,
K|EE 198 | LEugo) .

a7 ar

ag oE
K |[E—= — |=0.

ac” T8¢

The initial value problem can now be solved in terms of
the Green’s function by using Green’s theorem:

d’g g 3% .. og .
=Ki{E|— — - iVig+au(x’ -——+—
| o’ arrag  ar? 'E ac ¢
oE, ok,
=L E0g0+ E0+ aé_ —lv Eo g0+ E0+ aé_ IVlEo—aqu (Bl)
r
The right-hand side of Eq. (B1) can be simplified, be- _ —ic QY o _ B3
cause of the wave equation [Eq. (2.35)]: Jo=De f y flr=0). (B3)
We also see that
a
lvl =J ’ aE
ag Bot 20 _iv2Eg,= 9 , (B4)
» dy il A7 |10+
J=De ig f Tf . where
. : oJ _ie rdy Of
Recall that the constant D; was defined in Eq. (2.25). It heLA =D,e ¢ f <7 . (B5)
follows that o7 |r=0+ Y OT |r—o0+

OE
O _iViE,=J,, (B2)

Eo+?

with

In Egs. (B4) and (B5) we employ a one-sided derivative
since we consider the interaction of the electron beam
with the radiation field to begin at 7=0. Using the linear-
ized Vlasov equation (2.24), we find
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of | lar
o7 |r=0+ y* | 3¢ |r=0
+D,Epe’tu (x)—;—rS’(y—yo) , (B6)
and inserting (B6) into Eq. (BS) yields
aJ :
3y lr=0+ =Jo+auk,, (B7)
with
2
: _ic rd Yo | of
Jo=—Dje—i [EX |12 | SL1 (B8)
0 1€ f y 72 | 3¢ |r=o0
Finally, from Egs. (B4) and (B7), we conclude
. 3E, _,. :
E0+——lleo—auE0:JO . (B9)

95

The desired expression for the field E(7,{,x) in terms
of the initial conditions is derived by using Egs. (B2) and
(B9) in Eq. (B1):

E(7,6,x)
= [ @' dE1ENE xE(r6 ¢ x.x)
+Jo(&',x" g (7,6 -8, %,X)

+Jo(& x"g(r,6 &', x,x")] . (B10)

Here, Eq=E(7=0,’,x’) is the initial electric field, and
Jo as defined in Eq. (B3), describes the initial spatial
bunching of the electron beam. The quantity J, [Eq.
(B8)] is a measure of the initial energy modulation exist-
ing at 7=0. Our motivation for using the notation Jo can
be seen as follows: Suppose the initial state f(7=0) re-
sulted from an evolution during 7 <0 described by the un-
perturbed Vlasov equation,

2
of _’}’_(2) ﬂ—o (r<0),
or y

1 Y

then it would follow that

of
ar

1—

7=0— 7=0

7
,}/2

4

In this case, J, as defined in Eq. (B8) is given by

_9J
7=0— - or

y —i d 3]
Jo=De gf —yt—é{_:

r=0—

APPENDIX C: NORMALIZATION AND OVERLAP
INTEGRALS

Consider the radial wave function

of
3 (B11)

C,Jo X, Z
a

R,(x)=
X

DnHé)]) ¢n;

CuJo(X,)=D,H"(9,) ,
Jo(Xp) H (¢,)

Xn =@n = ’
Jo(Xy) H{(¢,) n
~2 ¢2 ~2
2 2 a n a
S —Xn= )Vi 1‘2p5,2 _}»3, .

(1) Normalization integral [Eq. (6.29)]:

2
“p2 a n2 2
Jo Raxdx = Ri@Es | 3= 5

1 1
- - ] . (C1)
This follows from the formulas

u 2

Jy Do Px dx = £ {75 P+ o)},
o0 2 ’

f., [HL (x)]?x dx = _”7{[11‘0” (u))?

+[H ()17} .

Let Jo=Jo(X,) and Ho=H{"(¢,). Then

2
0 a b
fo Rixdx=C; fo Jo X; xdx

2
x dx

X
¢n';

ot 7 |

(12

2

2
CHIE+J2)— EZ—D,,Z(H()Z +H32)

Il

2 2 2 J(Z) 2 2
Jo +JO—H—(H0 +Hg)

2
C, 3
0

Il
MIQ

N~

Jo
Jo

a-
2

I

ClZ|1—

2 gy |2
H,

2
a 2.2 | 1 1
—C,J ——— .
) nognlxﬁ d’i}

(2) Overlap integrals:
“R.R?x dx —a’R, ()R (@)L — 5"
fo JRix dx=a’R,(a) ,(a)m, (C2)
*
fa R,R/'x dx:—azR,,(a)Rf(a)f—zl—% , (C3)
n— @1
waR,,R,*xdx
11
Xa—Xi? én—ol?

(C4)

=a’R,(a)R* (a)(&f —&,)



3422 S. KRINSKY AND L. H. YU 35

Equation (C2) is derived from

2
aps |1 | OR | X _
foRl <3 x ax L2 R xdx=0,
a 13 | oR? x,”
fOR" ;5; X ax R[ de—O,
from which one easily sees that
L o2 L2, [° *
— G =X [ R,R}x dx
R*l RI
=aR,R} |~ " :
Rl R" x=a
which becomes the desired result once one notes that
R, | _4n
R, |,_, a

Equation (C3) is derived in an analogous manner, and
(C4) follows 1mmed1ately as the sum of (C2) and (C3).

(3) Ny= f R, R} 2mx dx f R,R2mxdx [Eq.
(6.26)]. The wave function is normallzed by

fo R2mxdx=1,
so using Eq. (C1) we find

1
- (C5)
6 %%
Now N, can be evaluated from Egs. (C2), (C4), and (C5),
4 —§,) (¢n 72X, X[ )
Ny=—"m5——— 32 S (A=A,
] gn a (Xn_XI ¢n_¢l )
(C6)
where we have used ¢2 —Xf, ~a2/Ax.
APPENDIX D: EVALUATION OF dA(Q,q,/)/3Q
We consider the eigenvalue problem of Eq. (4.4):
[VI+A+Vu(x)]P(x)= (D1
3
=120 4 -1 (D2)

In the special case when u(x) is the step function profile
of Eq. (6.4).

®d=R(x)e™?, (D3)
I xx , X<a
a
R(x)= (D4)
HP 6= |, x>a
a

The eigenvalue A is determined by

¢2
- (D5)
$*—X*=—a’V, (D6)
J (X HY(¢)
) “ ¢ =£, . (D7)
Jn(X) H ()

Differentiating Eqs (D6) and (D7) yields

% a”
dx = d¢+ X dV

(J'JH+XJ"H—¢H'J')dX=(H'J+¢H"J —-XJ'H')d¢ ,
(D9)

(D8)

where we use the shorthand notation J=J,,(X) and
H=H"(¢). Using Egs. (D8) and (D9) together with
(D4), we derive

dA 29 d _ 1

= = D10
dV  q?>dV  XH'J+¢H"J—XJ'H') 1 ( )
&(J'H+XJ'H—¢J'H')
From Bessel’s equation, it follows that
2
”n ! m
oH'+H'=—¢ 1—? H,
m?
XJ"'+J' =—-X 1—? J,
so Eq. (D10) can be written in the simpler form
dA #? X2
1 .
Vo B +§2__m2 (D11)

We now specialize to the axially symmetric modes
(m =0), for which

dA _ §? X2
I+=1. D12
v PE ‘ + £ ( )
Differentiating Eq. (D2), we find
av 32004+¢)—Q  244pA—2pA
30 (2p) o 3 , (D13)

where g, =2pA and Q=2pA. We suppose |2pA| <<1
and |2pA| << 1, so

oV 2

- . D14
30 = ( )
Combining Egs. (D12) and (D14), it follows that
9A - OA V¥V _ _L i . (D15)
aQ 3V 3Q —¢? §2
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