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Treating diffraction effects within the paraxial approximation, we solve the initial-value problem
determining the start-up of a single-pass free-electron laser from shot noise in the electron beam.
Linearized Vlasov-Maxwell equations are used to derive an equation for the three-dimensional slow-

ly varying envelope function of the radiated electric field. In the high-gain regime before saturation,
the output power is expressed in terms of Moore's exponentially growing guided modes. For a
cylindrical monoenergetic electron beam with step-function profile, explicit numerical and analytical
calculations have been performed, determining the power in the guided modes. The condition for
the dominance of the fundamental mode is discussed. Our solution of the initial-value problem is
based upon a Green's-function technique, and our results are derived despite the lack of orthogonali-
ty and completeness of the guided modes. The Green's function is expanded in terms of an ortho-
normal set of eigenfunctions of a two-dimensional Schrodinger equation with non-self-adjoint Ham-
iltonian. In the limit of a long wiggler, the asymptotic representation of the Green's function is
found to be dominated by the contribution of the guided modes. The radiated electric field, and
hence the output power, is determined with use of the Green's function.

I. INTRODUCTION

This paper is concerned with the theory of amplified
spontaneous emission in a long wiggler magnet. When
the gain is high enough, the incoherent emission from in-
dividual electrons can be amplified to saturation in a sin-
gle pass. This approach to the generation of high-
intensity coherent radiation at short wavelengths has the
attractive feature that the use of an optical resonator is
avoided. In the theoretical description of the amplifica-
tion of a coherent initial signal in a free-electron laser, it
is reasonable to keep only a single wavelength in the
analysis. On the other hand, in the case of amplified
spontaneous emission the initial signal is neither coherent
nor monochromatic, hence bandwidth must be taken into
account and a single-wavelength analysis is not sufficient.
The evolution of coherent radiation from the incoherent
emission of individual electrons must be described.

This is accomplished by considering the spontaneous
emission in the wiggler as resulting from the shot noise in
the electron beam, and carrying out an average over the
ensemble of initial conditions of the electrons. Such an
analysis was originally performed within a one-
dimensional model, ' in which individual electrons were
treated as charge sheets. Later, three-dimensional effects
were included for the special case of an electron beam of
infinite transverse extent. Here, we treat an electron
beam with finite transverse dimension, extending the ear-
lier work of Moore on mode guidance in the amplifica-
tion of a coherent initial signal. We solve the initial-value
problem describing the start-up of the amplified spontane-
ous emission process from the shot noise in the electron
beam, and we express the output radiation field as a su-
perposition of Moore s exponentially growing self-similar
modes. The output power is computed in the high-gain

regime before saturation.
In a free-electron laser, gain plays an important role in

the mode guidance. Unlike guiding in a system having
purely real index of refraction, Moore's self-similar modes
have power flowing radially away from the electron beam.
Field energy is created inside of the electron beam at a
fast enough rate to maintain the transverse mode distribu-
tion, with maximum field strength at the electron beam
center and exponentially decaying field strength outside of
it.

Consider a cylindrical electron beam with a step-
function transverse profile, the electron density having
constant value no within radius r &ro, and vanishing for
r ~ ro. We denote the period length of the wiggler magnet
by X and the radiation wavelength by ko. The corre-
sponding wave numbers are k =2m/A, and ko ——2~/A, o.
From Moore's work we know that diffraction effects are
important when the Rayleigh range koro (corresponding
to the electron beam radius) is small compared to the gain
length lG(ro) (wiggler length for power multiplication by
e) in the free-electron-laser amplifier. On the other hand,
when the Rayleigh range is long compared to the gain
length, before the radiation has diffracted significantly,
the central core of the radiation has increased enough in
intensity due to the gain, to make the diffraction at the
outskirts of the beam unimportant.

For sufficiently large electron beam radius, diffraction
is negligible and the gain length is well approximated by
the result of the one-dimensional theory, lG ( r o )

=lG o: (2pk ) ', where p is the Pierce parameter de-
pending on the electron beam density no. It is useful to
introduce a dimensionless scaled electron beam radius a
defined up to a multiplicative constant by a ~ koro/I&,
the ratio of the Rayleigh range to the one-dimensional
gain length. To be specific, we define
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pSS= exp(v 34rrN~p),
9np V,

(1.2)

where V, is the coherence volume, S, =(ypmc )npc is the
power per unit area in the electron beam, and 2V is the
number of wiggler periods.

Now suppose we hold the electron density fixed and
reduce a. The degeneracy in the growth rates of the
modes is broken, because diffraction decreases the growth
rates of the higher-order modes more than that of the fun-
damental mode. As the electron beam radius becomes
smaller, fewer modes are needed to describe the output ra-
diation field, and the transverse coherence improves. At
about a =6, the fundamental mode is dominant and its
gain has been reduced only slightly from the one-
dimensional value. In this case, the total power P is close
to the one-dimensional result, '

P =P" '= exp(v'34vrX p),
9N,

(1.3)

where X, is the number of electrons in a coherence length
and P, =S,~rp is the electron beam power.

When the electron beam radius is reduced below a =6,
density still held fixed, the domination of the fundamental
mode becomes more complete, and full transverse coher-
ence is achieved. However, the growth rate of the funda-
mental mode is now significantly reduced due to diffrac-
tion, and the total radiated power becomes less than
predicted by the one-dimensional theory. For a (1, the
radius r, of the fundamental mode of the electromagnet-
ic field is large compared to the radius rp of the electron
beam. Moore's result in the small electron beam size lim-
it can be re-expressed as (see Appendix A)

kpl' lG (rp ) (1.4)

In summary, for a small the fundamental mode dorn-
inates, but the output power is less than the prediction of
one-dimensional theory, because diffraction reduces the
growth rate. For a slightly larger than unity, a single
mode still dominates and its growth rate is only slightly
reduced from the one-dimensional value, so one-
dimensional theory gives a good approximation to the
output power. For a large, many modes are important,
and the output power is larger than predicted by one-
dimensional theory, but full transverse coherence is not
achieved before saturation.

Our paper is organized as follows: In Sec. II, we dis-
cuss the coupled Vlasov-Maxwell equations, and for the
case of an initially monoenergetic electron beam, we
derive a partial differential equation describing the evolu-

a =2p(2kpk„)rp .

For a )&1, the gain is accurately given by the result of
one-dimensional theory. However, as noted by Moore,
there is a large degeneracy of the growth rates of the self-
similar modes, so a single mode does not dominate, and
full transverse coherence is not achieved before saturation.
The total power S per unit cross-sectional area of the elec-
tron beam should be close to the result recently obtained
in the limit a = ao,

A =A (e e +cc )/V2, (2.1)

where e+ ——(e&+ie2)/v'2 and e& and e2 are orthogonal
unit vectors transverse to z. The transverse electron velo-
city is approximated by

vz ————eA /my,
and the longitudinal velocity by

(2.2)

1+E
U)i c 1—

2p
(2.3)

where E =eA /mc is the wiggler magnetic strength pa-
rameter.

The radiation electric field c satisfies the wave equa-
tion, in mks units,

1
V —

2 2 E=pp
c Bt

(2.4)

tion of the radiation field [Eq. (2.39)]. Next, in Sec. III,
we briefly review the exponentially growing self-similar
modes introduced by Moore. In Appendix A, we provide
a correspondence between our notation and that of
Moore. The guided modes are solutions of a two-
dimensional Schrodinger equation with non-self-adjoint
Hamiltonian [Eqs. (3.4)—(3.6)].

We base the solution of the initial-value problem
describing the start-up of the amplified spontaneous emis-
sion process upon Green's theorem (Appendix B). In Sec.
IV, we show that even though the effective Hamiltonian
operator is not self-adjoint, the Green's function of the
two-dimensional Schrodinger equation can still be expand-
ed in terms of an orthonormal set of eigenfunctions [Eqs.
(4.4)—(4.6)]. In the high-gain regime before saturation,
the Green's function can be represented as a superposition
of Moore's self-similar modes [Eq. (4.13)]. This result for
the Green's function is used, in Sec. V, to solve the start-
up problem, and a general expression [Eq. (5.15)] for the
output power expressed in terms of the self-similar modes
is derived. This general result is applied to the special
case of an electron beam having step function profile, in
Sec. VI. We present both a numerical calculation (Fig. 5)
and an analytical approximation [Eq. (6.50), Fig. 5] for
the output power. Certain technical details of the analysis
presented in Sec. VI can be found in Appendixes C and D.

In Sec. VII, it is shown that the formalism developed
for a monoenergetic electron beam, in Sec. IV and V, is
easily generalized to allow the inclusion of initial energy
spread. The results obtained are in agreement with the re-
cent work of Kim, who has applied a different method of
solution, originally introduced by van Kampen. Finally,
in Sec. VIII, we make some concluding remarks.

II. ENVELOPE EQUATION

Using linearized Vlasov-Maxwell equations, we derive
the partial differential equation determining the three-
dimensional slowly varying envelope function of the emit-
ted radiation. We suppose the electron beam to be highly
relativistic and moving in the z direction through a
periodic left-hand circularly polarized helical wiggler,
whose vector potential is given by
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The transverse current density jj is expressed as

jj =enp I vlf dy, (2.5)

with n p being the peak density of the electron beam and
npf(z, r, y, t)dzd rdy being the number of electrons in
element dzd r dy. (Transverse coordinates denoted by
r. )

The electron beam is assumed to be initially monoener-
getic with all electrons having energy yp and longitudinal
velocity Ull(yp)=uo. The spontaneous radiation emitted
by the electrons in the forward direction is left circularly
polarized with wave number kp and frequency cop ——kpc.
The combined action of the static wiggler field and the ra-
diation field produces a ponderomotive potential, which

lkpz l ct)pt lkz
has the dependence e e . Because the electron
beam moves with velocity vp the modulation of the distri-

ik (z —vpt)
bution function should have the form e ' ' . To be in
resonance, these two exponential expressions must be the
same, hence

and f, completing the description of the free-electron
laser. The Vlasov equation can be written as

Bf Bf Bf
+Ull(r)

B
+(vi.VT)f+6

Bat az apz
(2.13)

g=Z —Upt

Eq. (2.13) becomes

Bf Bf . Bf+ [Ull(y) —Uo] +r =0 .
B By

(2.14)

(2.15)

Eq. (2.15) is nonlinear, because y depends on the electric
field, and hence on f, via

2
~w ik, gy= v.e= — (e ' E+c.c. ) .

mc 2mcy
(2.16)

In Eq. (2.13) we have used p~ =0, and in the discussion
which follows we shall neglect the rapidly oscillating term
(v&.VT)f (an explanation of this follows). Taking
p, =me@, and introducing

and

k„=kp+k

kpUp =kpc =Q)p .

(2.6)

(2.7)

In order to linearize Eq. (2.15},we write

f=fo+f»
where fp is a solution of

(2.17)

It follows that

and

kp Up

C —Up

2VO

1+K
(2.8)

k„=
Up C —Vp

(2.9)

where co =k c.
Let us now return to the wave equation (2.4) and intro-

duce the slowly varying envelope function E(r,z, t) by

gkpz —l Q)pt~Ee e++c.c.
&2

(2.10)

The wave equation is simplified by using the paraxial ap-
proximation,

a 1 a . a 1
=2ikp

az , at ' az c at
(2.11)

Since the rapid variation of the distribution f is described
Ik„z —i~pt

by the exponential factor e " ', the time derivative of
f is well approximated by Bf/Bt= itopf. Therefore, us--

ing Eqs. (2.4) and (2.5), together with (2.10) and (2.11), we
derive

Bfo Bf,
+[Ull(r) —Uol

Bat
(2.18)

whose initial value is the ensemble average of the initial
distribution (f(t =0) ). Equation (2.18) describes the
time evolution of the slowly varying component of the
electron distribution in the absence of the radiation field.

The linearized Vlasov equation takes the form

Bf Bf . Bfo
at +[Ull(r) —Uo]

B
+r

BB By

where r is given by Eq. (2.16).
The rapid variation of the perturbed distribution

ik„gfl —e ' . Due to Eq. (2.18),

Bf Bf Bf& Bfi
atB

+[Ull(r) —0]B =
B

+[Ull(y) —'0]
BB Bt

ik, gwhose rapid variation is also e " . Iffp has no rapid den-
sity modulation, then y(Bfp/By) again has the depen-

ik, gdence e ', as seen from Eq. (2.16). The neglected term
ik z ik, g(vq. VT)f has the dependence e e ', because of Eq.

(2.2), hence it is rapidly oscillating for fixed g, and its
contribution is expected to be small.

It is now convenient to introduce dimensionless vari-
ables measuring spatial and temporal variations:

1 a a 1
r=co t, g=k„(z —Upt),

a ax=+2kok r, V~= 2 +
ax ) a&2

(2.20)

2n OPpe C~ w —'k„( —u t) d ye " ' f, (212)
2m y

where V'T is the transverse Laplacian.
Equation (2.12) determines the slowly varying envelope

function E in terms of the electron distribution f. The
Vlasov equation will provide a second relation between E

For an initially monoenergetic electron beam, the unper-
turbed distribution is

fo=u(0 x)~(r —yo) (2.21)

where the smooth function u(g, x) describes the average
properties of the initial electron distribution, neglecting
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the high-frequency shot noise due to the discrete nature of
the individual electrons comprising the beam. The distri-
bution f is determined from Eqs. (2.12) and (2.19), subject
to the initial condition at t =0,

The solution of Eq. (2.32) is
7

f(~,g, y)=h(g q—~,y)+ f d~'P(r', g ri—(~ z—'), y) .

(2.33)

f (t =0)= g 5(z —z;)5(r —r;)5(y —yo) .1

np
(2.22) For an initially monoenergetic electron beam, h and P

have the forms h =h 5(y —yo) and P =$5'(y —yo), so

B B . p g dyf
Br

+
Bg

Bf Bf ; , ; 1 Bfo
+g D2(Ee'~+—E'e '~) — =0,

B~ Bg
'

y By
=

where

(2.23)

(2.24)

The shot noise is taken into account by treating the initial
coordinates z;,r; of the ith electron as stochastic variables
and determining physical quantities as averages over the
ensemble of possible z;,r;.

Let us now turn to the derivation of the partial dif-
ferential equation determining the slowly varying en-

velope function E. To proceed, we first rewrite the wave
equation (2.12) and the linearized Vlasov equation (2.19)
in terms of the dimensionless variables introduced in Eq.
(2.20):

f«P y)=5(y yo—)h(0 n&—)
7

+5'(y y—o) f, «'0«' 0 n«—&'»—y) .

(2.34)

iV'i E=—J,a a - 2

O'T
(2.35)

Equation (2.34) clearly demonstrates the vanishing of the
integral of Eq. (2.31), and this discussion reminds us that
the linearized Vlasov equation does not provide a descrip-
tion of the development of energy spread.

Use of Eqs. (2.23) and (2.24) together with Eqs. (2.30)
and (2.31) shows that for an initially monoenergetic elec-
tron beam the coupled Vlasov-Maxwell equations can be
written in the form

npppe c 2„2 2

Di ——
2m co~

(2.25) 8 J =a + +i (uE),
B7

(2.36)

e 2
D2 ——

2m c co

C —Up

2
rp
r'

(2.26)

(2.27)

In what follows, we shall drop the nonresonant term
E'e '~ in Eq. (2.24).

We define

(2.28)

BI dy Bf= f —g + e'&Eu5'(y yo)—
B~

=
y Bg y

(2.29)

$21

BH , e'& + +~ uZ.
B0' y yo

(2.30)

We shall now show that

f "yq'f=o.
r

(2.31)

To see this, note that the linearized Vlasov equation (2.24)
has the form

, +nB f=4(.0,y) (2.32)

and use the Vlasov equation (2.24) to compute the partial
derivatives of I with respect to ~. In the special case of an
initially monoenergetic electron beam described by the
distribution fo specified in Eq. (2.21), we obtain

with
2 2

npppe c A~ —l f
2m co

(2.37)

n pppe
4 2

a =(2p)'=
2m r~

(2.38)

Now Eqs. (2.35) and (2.36) lead immediately to the en-

velope equation

B' B B . , B B+ —i V'i E=a + +i (uE), (2.39)
B Br B

which provides the basis for the discussion in the follow-
ing sections of this paper.

Because E is a slowly varying function, the terms
a(BE/Br) and a(BE/Bg), in Eq. (2.39), are small com-
pared with IE. If we ignore them and consider only single
frequency 0 ( replace B/B~ by —i II), we obtain an equa-
tion equivalent to Moore's (see Appendix A). However„
for very large electron beam size, a ))1, we found the
term a(BE/Bg) is important, determining the divergence
angle of the radiation field. In the present paper, we are
mostly concerned with only a few lowest-order guiding
modes„and the contribution of the a(BE/Bg) term can be
neglected, it becomes important only for modes of higher
order.

The constant a=2D&D2/yo in Eq. (2.36) is related to the
Pierce parameter p of Bonifacio et al. by
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III. SELF-SIMILAR MODES

We suppose the electron beam to be initially uniform in
the z direction, and rotationally symmetric about the z
axis. The transverse profile u =u (x) is a function only of
the modulus x =

~

x
~

. Following Moore, we seek solu-
tions of the envelope equation (2.39) having the form

E=e ' 'e "P(x). (3.1)

Substituting this expression into Eq. (2.39), one derives

0—q~(+Vg+ (0—
q~(

—1)u(x) g(x)=0 . (3.2)

Br Bg

a a—au(x) + +i g( rg, x, x')
a7

=5(r)5(g)5(x —x') . (4.1)

In order to determine the Green's function, we make use
of the following Fourier-Laplace expansion:

~+is d
g(7, (,x, x )= +" 2mB

This is a generalized eigenvalue problem determining the
eigenfrequencies Q =Q„(q

~ ~

) and the eigenfunctions
P=g„(q~~, x). The self-similar modes are given by

(3.3)

Q q~~PG (4.2)

where s & 0 is chosen so that the integration path is above
all singularities of the integrand. Inserting (4.2) into (4.1)
leads to

The term "self-similar" refers to the fact that the trans-
verse dependence of the mode is independent of the axial
coordinate z. Of greatest interest are those modes with
complex eigenfrequencies having positive imaginary part,
ImQ„& 0, since these correspond to exponential growth in
~=co t =2~N, where N is the number of wiggler
periods.

Equation (3.2), which determines the transverse profile
of the guiding modes, has the form of a two-dimensional
Schrodinger equation with a complex potential, since 0, is
complex. Let us rewrite Eq. (3.2) in the form

[A+ V~+ Vu(x)]$(x) =0 (3.4)

with

A=A, —
q)( (3.5)

CtV= (0—
qadi

—1) . (3.6)

There is, of course, the additional complication that the
potential depends on the eigenvalue.

At the beginning of a long wiggler magnet, the radia-
tion field is certainly not described by a single guided
mode. If the growth rate of one mode is sufficiently
greater than the others, however, that mode can dominate
at the end of the magnet. In the following sections of this
paper, we shall determine the output power in the guided
modes.

0—q~~+Vg+ (II —
q~(

— u x (Q,q(~, x, x

=5(x—x') . (4.3)
The solution of Eq. (4.3) can be expressed in terms of the
eigenfunctions @„(x)and eigenvalues A„of the associated
homogeneous eigenvalue problem:

A„+V, + (fl —
q~~

—l)u(x) 4„(x)=0 . (4.4)

OI

d'xe„n, qadi, x e n, qadi, x =n „,
and assume the validity of the completeness relation

g@„(Q,q~~, x)@„(Q,q~), x') =5(x—x') .

(4.5)

(4.6)

If we were to impose the restriction A„=0„—q~~, then
Eq. (4.4) would reduce to Moore's eigenvalue problem
[Eq. (3.2)] for the guiding modes, having nonorthogonal
eigenfunctions. However, in Eq. (4.4) we have not re-
stricted A„=Q„—q~~, therefore Eq. (4.4) has the form of
a Schrodinger equation with Hamiltonian H =V ~
+(a/II )(0—

q~t
—1)u(x). We consider II to be complex,

so the differential operator H is not self-adjoint, and con-
sequently, the eigenvalues A„are complex. Because H is
not self-adjoint, the solutions of E . (4.4) are not orthogo-
nal relative to the scalar product P„(x)P*(x)d x. How-
ever, according to the bi-orthogonality theorem, for fixed
Q and q~~ the eigenfunctions of H are orthogonal to those
of the adjoint operator H+, which clearly are simply
N„*(x). Therefore, we can normalize the eigenfunctions
according to

f d x 4&„(A,q~~, x)[N* (Q„,q((, x)]*=5 „

IV. GREEN'S FUNCTION

The initial value problem, describing the start-up of the
amplified spontaneous emission process can be solved by
utilizing a Green s-function technique (see Appendix B).
We introduce the Green's function g(r, g, x,x') via

The sum over n may include an integral over the continu-
ous portion of the spectrum, however, we are only in-
terested in a few modes which have the fastest growth
rates. These will dominate at the end of a long wiggler
and are elements of the discrete spectrum. We do not
prove completeness, and subtleties of the spectrum which
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are important only near the beginning of the wiggler are
not addressed.

In this spirit, we expand the Green's function in terms
of the eigenfunctions @„as

(4.7)

and employ this expansion in Eq. (4.3) to obtain

CX
Q —q~[+Vz+ z (Q —

q~~
—1)u(x) G(Q

4„(Q,q~~, x) introduced in Eq. (4.4) have the orthogonality
and completeness properties specified in Eqs. (4.5) and
(4.6). These properties allowed us to derive the represen-
tation of the Green's function given in Eq. (4.10). The
self-similar modes P„(q~~,x) =@„(Q„(q~~),q~~, x) are not
orthogonal, because for each n, the function N„ is
evaluated at a different frequency Q„(q~~), whereas ortho-
gonality and completeness of the N„holds when all N„
are evaluated at the same frequency A.

= QG„(Q,q(~, x')[Q —
q~~

—A„(Q,q~~ )]4„(Q,q~, , x)

= Q &P„(Q,q)(, x')N„(Q, q((, x) . (4.8)

N„(Q, q~~,
x')

G„(Q,q~~,
x') =

Q —
q((

—A„(Q,q() )
(4.9)

Finally, Eqs. (4.2), (4.7), and (4.9) establish the following
representation for the Green's function:

The last equality results from the completeness relation
given in Eq. (4.6). Using the orthonormality condition of
Eq. (4.5), we find

V. START-UP FROM SHOT NOISE

We wish to solve the envelope equation (2.39) subject to
initial conditions specified at t =0. (See Appendix B.) In
particular, we specify E(O, g, x) =Eo(g, x), J(O, g, x)
=Jo(g x), and J(O, g, x) =Jo(g, x), where the dot denotes
8/B~ and the current J was introduced in Eqs.
(2.35)—(2.37). The envelope function is then determined
by

E(r,g, x)

= fdg'd x'[Eo(g', x')g(r, g g', x, x')—

g(7, (,x,x )
+Jo(g', x')g(r, g —g', x,x')

+Jp(g', x')g(r, g —g', x,x')], (5.1)
-in~

277 —~+" 2miA

xg @„(Q,q)(, x)@„(Q,q((, x')

Q q((
—A—„(Q,q(( )

(4.10)

The asymptotic behavior for large r of the Green's
function is determined by the singularities in the complex
Q plane of the integrand appearing in Eq. (4.10). It is
reasonable to assume that the dominant behavior is
described by poles corresponding to the solutions of

Q —
q~~

—A„(Q,q~I) =0 . (4.11)

%'e keep only those solutions with ImA„&0, which will
dominate for large 7, and we denote these solutions by

Q =Q„(q)() . (4.12)

At the end of a long wiggler, the following asymptotic
representation for the Green's function is appropriate:

g(r, g, x,x')

where g(r, g, x) is the Green's function defined in Eq
(4.1). Here, Eo represents an initial electric field possibly
due to an external laser; Jp describes the initial spatial
bunching of the electron beam and Jo corresponds to an
initial energy modulation of the electron beam.

We assume the absence of an external radiation field,
Ep ——0, and describe the shot noise by

2

1f(&=0)= g 5(z —z; )5(r—r; )5(y —yo),
np

(5.2)

(5.3)

where the coordinates z;, r; of the ith electron are treated
as independent random variables. For the purposes of the
present discussion we ignore the spread in energies of the
electrons, hence Jo ——0. Although (E ) =0, averages of
quantities quadratic in E do not vanish.

For Eqs. (5.2) and (5.3) we see that

—&„~e((~

2~ 1 —F„(q(~ )

where g=8 g/Br,

F.(q[()=PA. (»q~~)/~Q]n=«, )
.

(4.13)

(4.14)

(4.15)

Jo(g, x) = g e '5(g —g; )5(x—x; ),
np

where we have defined

b =2k kpk„

and

n Op pe c ~w

2mcow7O

(5.4)

(5.5)

(5.6)

The functions P„(q~~, x) are seen to be the self-similar
modes discussed in Sec. III. The eigenfunctions

Using Eq. (5.1), the correlation function of the electric
field at two different spatial points can be expressed as
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( E(r,g, x)E*(r,g', x') )
=

fdic,

d x,dg2d xpg(r&g —g, &x&x, )

Xg '(r, g —g&, x', x2)

X (Jp(g&, x] )Jp (gp, xp) )

Applying Eq. (5.4) to (5.7) results in

( E(r,g, x)E'( r, g', x') )
K=b

2 g(e ' ' g(r, g g;, x—,x;)
no tJ

(5.7)

Xg "(r,g' —g„x',xi) . (5.10)

To proceed, we shall express g in terms of the eigen-
modes, as discussed in Sec. IV. From Eq. (4.13), it fol-
lows that

the correlation function is finally expressed in terms of
the Green's function by

( E(r,g, x)E*(r,g', x') )

a2 f dg&d x&u(x&)g(r, g —g~, x, x~)
no

Xg '(r, g' —g, ,x', x, ) )

2b'-, gg(r, g —g;, x, ;x)g '(r, g' —g, ,x', x, ) .
no

(5.8)

Now replacing the sum over i by an integral according to

g(r, g, x, x')

e QG„(qii, r)g„(qii, x)f„(qii,x'),qll

2'
where

—'n. (qll)'e
G„(q,i, r) = —z Q„(qii )[ 1 —Q„(qii )]

(5.11)

(5.12)

fdz d r npu(r) =—fdgd x npu(x),
b

(5.9) Inserting the expansion for g given in Eq. (5.11) into
(5.10), we derive

( E(r, g, x)E*(r,g', x') )

b 2 0
l l qll(g —g')

x&u(x&)@ (qli xi) tt'i (qii xi)G «II'r) I ('qii' )@ (qli'x)ttl (qli'x
2

np 2' n, l

The total radiated power P is given by

(5.13)

P= d r Ew, ,xE ~, ,x
Zo

hence

P=gP„(
n, l

with

2~ k, dqll
QG„(qii, r)G~ (qii, r) d xt/i„(qii, x)@q*(qii,x) d x&u(x, )g„(qii, x&)g&*(qii, x&),

n OZO 2m'

(5.14)

(S.ISa)

(5.15b)

where Zp ——Qpp/ep =3770 is the impedance of free
space, and, as is easy to verify, and

A —0—
qll (6.2)

2
= —,'mc yp(2p) c .

npZO
(5.16)

tXV= (n —
qii

—1) .0 (6.3)

VI. OUTPUT POWER FOR ELECTRON
BEAM WITH STEP-FUNCTION PROFILE

Here, we shall consider the special case of a step-function
electron beam profile,

A. Self-similar modes
1, x&a
0, x&a (6.4)

[A+ V'z+ Vu(x) jg(x) =0 (6.1)

In Sec. III, we briefly discussed the guided modes, not-
ing in Eq. (3.4) that they are determined by the eigenvalue
problem (x =

~

x
~

):

which was originally treated by Moore. Our goal is the
determination of the output power in the guided modes,
using the formula of Eq. (5.15).

%'ith the ansatz,

with g(x) =e' R(x), (6.5)
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one easily derives from Eq (6.1) the radial equation

2
R"+—R'+ A+Vu(x) —,R =0.

X X
(6.6)

R(x)= ~

CJ 7—,x (aX

a

DH'" P—,x)a
a

(6.7)

For the step function profile of Eq. (6.4), the radial func-
tion is expressed in terms of Bessel and Hankel functions,

If X remains finite in the limit a ~ oo, then Eq. (6.17) will
reduce to the well-known cubic dispersion relation of the
one-dimensional theory, and X will remain finite and ap-
proach the one-dimensional value. When A. remains finite,
Eq. (6.16) implies that P~ oo in the limit a ~ oo.

These considerations instruct us to search for a solution
of Eqs. (6.14) and (6.15) with the property that as a ~oo,
one has X finite and P divergent. We define

(6.18)
H(1)(y)

and note that if (J)~ oo as a ~ oo, then

where
/=i' (a~oo) . (6.19)

X=a/A+ V, ReX) 0,
P =a ~A, Im(i )0 .

(6.8)

(6.9)

This shows that the right-hand side of Eq. (6.15) is diver-
gent as a ~ oo, hence it follows that J (X) must vanish in
this limit. Therefore,

Matching the radial function and its derivative at x =a,
we derive

CJ (X)=DH'"(P),

CXJ~(X)=&PH"'(P) .

It is convenient to define new scaled variables:

A. =A/2p, A=q„/2p, a=v'2pa .

(6.10)

(6.11)

(6.12)

a =2p(2kpk )rp, (6.13)

in agreement with Eq. (1.1) of the Introduction. The
equations determining X and P can now be written in the
form

P2 X2

a

1 —2p
a

2 (6.14)

Note that since x =+2kpk r [Eq. (2.20)], it follows that
a =+2kpk rp, where r p is the radius of the electron
beam, and

X~p „, (a~~), (6.20)

where p „ is a zero of the Bessel function, J (p „)=0.
In Eq. (6.15), we may use J (X)=J' (p „)(X—p „), to-
gether with (6.19) to derive

x =i P (a ~ oo )
Pmn

(6.21)

or

(6.22)X=p „(a~a)) ."/+i
The solution valid for large a )) 1 can be obtained by

iterating. Begin with X=p „. Then Eq. (6.17) provides a
finite result for X=Ap(h). Employing this value in Eq.
(6.16) leads to the approximation
P=Pp(b, )=a+Ap(b, ) —h. Now inserting this approxi-
mate value of P into Eq. (6.22) yields an improved value
of X =Xp( 6 ) =p Pp( 6 ) /[Pp( 6 ) +i ]. These approxima-
tions, accurate for large a, have been used as starting
values for a numerical calculation of X, P, and A, , for
given 6, p, and a. Results of these numerical calculations
are shown in Figs. 1—4 and are in agreement with the

and

a

J' (X)

J (X) H" (P)
(6.15)

l6—

l4—

l2—

IO—

m=0
n =0

Cxiven a solution of the coupled Eqs. (6.14) and (6.15), one
determines A, via

+b, .
a—2

(6.16)

X2
b, +, A, '+2pk —(1+2ph) =0 .

a
(6.17)

As mentioned in the Introduction, in the large beam
size limit, a~ oo, the growth rates of the guided modes
are expected to approach the result of the one-dimensional
theory. Let us now see how this follows from Eqs.
(6.14)—(6.16). We combine Eqs. (6.14) and (6.16) to ob-
tain

0-
0

I I I I I I I I I I I I

2 4 6 8 l 0 l 2 I4
Re ($)

FICi. 1. Real and imaginary parts of P as functions of a and
6, determined by solving Eqs. (6.14) and (6.15), for fundamental
mode m =0, n =0. In this plot we have taken p=0. 7&10
however, because the term containing p in Eq. (6.14) is negligible
except for very large 6, the results are valid for all p «1. One
can see that P=ae 'i3 for 6 =0 and large a.
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X
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Re (X~

I

2. I
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0.2 0.4 0.6 0.8 I x IO

BEAM SIZE a

FIG. 2. Real and Imaginary parts of J as functions of a and
A. Same conditions as Fig. 1.

FIG. 4. ImQ as function of a =+2kok ro for constant
current: pa =2.5)&10

work of Moore.
Figures 1—3 are calculated for constant p, which is con-

venient from a theoretical point of view. In practical
cases, when we reduce beam size a, electron density will
increase, and it is reasonable to assume constant current
Ip. It is easy to show that

1/2
eZp Io

2mmc Pp 1+K

n, l

P„I= —,'mc yo(2p) ck„

dq(l
X G„( qJI, r)G t(q//, r)N„I(q~t),

277

where

-in„[&t~]~

—iQ„(q~~ )[1—F„(q~~ )]

(6.23a)

(6.23b)

(6.24)

Hence for constant current, pa is a constant too. In
Fig. 4 we plot Im(Q) versus a for constant current
(pa=2. 5X10 ) to show how the gain increases as we

reduce the beam size.

B. Calculation of output power

F„(q(()=[RA„(A qadi)IBA]n=n„(e())

I x ~ (qll'x @I «II'x

d x, u x, „q)),x] l* ql(, x)

(6.25)

(6.26)

For simplicity, we only disucss axial symmetric modes
[m =0 in Eq. (6.5)]. From Eq. (6.7), we can express g„as

Let us now turn to the calculation of the output power
for an electron beam with step function profile. We
rewrite Eq. (5.15) in the form

x
C Jp 7„—,x(ana

(6.27)

D„HO" "a x)a .

0.9

0.8—

0.7—

0.6—

0 5
E

0.4—

D„/C„=Jo(X„)/HO" (P„)

and [see Eq. (4.5) and Appendix C]

(6.28)

The parameters X„and p„are determined as functions of
q~~

——2pb, from Eqs. (6.14) and (6.15), and once P„ is
known, Q„=2pl,„ is determined from Eq. (6.16). The
constants Cn and D„are specified by the conditions

0.3—

0.2—

O. I—

2' dx n =Cn~ p +n n
p

8 n 8 n

(6.29)

1.

0
—4

I

—2

FIG. 3. Imk, as function of a and A. Same conditions as Fig.

When p ~

b,
~

&& 1 and p I
A,„

for F„ is (see Appendix D):

p2 +n
Fn = —

~ 2 1+ 2 (6.30)

I
«1, an explicit expression
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IO P„=aQk„—6 . (6.35)
IO

IO~-

I06-

IO

IO

lo —
p

I

IO 2

100

Pi2

ATION

p7- 27K

&o= I5OO
p =07 x lo
X =350 A0II

p 33
I I I I I I I I

12 I 6 20 24 284 8
BEAM SIZE o

is a zero of the Bessel function,In Eq. (6.34), yon» a zero o
Jo(iMo. )= .=0.

the dominant contribut e o
' tiontothe

d f tllthe neighborhoo o
F . 3. Fo E

11 For a large, thisX /a
I

is sma.this region
I

b, +X„
s 6 is small. We shall move a11 factors except t e

fth t to E.2P'T(

lowldo tofth i t 1 1o6.32). The factors moved out o e
d e evaluate them forvarying an we e

(6.36a)

s P i Eq. (6.23)] calculated by direct
1 tI 1 tion and with the approxima e acomputer ca cu a io

sion of Eq. (6.50).

f N an be evaluated (see. (6.26) for N„i canThe integrals m Eq. . f N an
Appendix C) yielding

[a (X'„—Xi") ]

(6.31)

2' /3
A, =en—

—i ~/3 ~lae ~ n — n~n—

POn

1+—e
a

In this way, we obtain
(0)

2 2 Nnl
P = mc yk, c io)nl —4 (1

i 2pr(A, (* —A,„)
&& J'dae

(6.36b)

(6.36c)

(6.36d)

(6.37)

now be writtenEquation (6.23b) for P„i can now b

Pnl= m~ To r

I 2p7(A 1
Nnl e

A,„i(,i (1 F„)(1—Fi —)
(6.32)

C. Approximation to pto out ut power

„,and A,„as
b d i E . (6.3 )

and (6.15) yields X„,
these results can e u

p p
N expressed by qs.nl

i . 5. The parame ert s in our examp esuits are given in Fig.

e onds to pN =]., i.e., near saturation.
2 v=4m' ko= p—

100A, b diI we ave an eectron beam with
r eriod 3 cm, wigg

h =36 d
'

1we would have these paramete
parameter K =2.

' 'and F„''arero" indicates N„l anw eh re the supersc p
E s. (6.36a)—(6.evaluated using qs.

and (6.31), we derive

1 —F„' =3,(0) (6.38)

4(X„Xi')'(o)
Nnl — —2(X2 X+2)2

4&n &l

2
(6.39)

with
2

Ron
&n-=

a l —i n. /31+—e
a

2 (6.40)

A, —(b+E„)A,„—1=0,n

e ral in Eq. (6.37), we useInor er od t estimate the integra in
Eqs. (6.33) and (6.34) to derive

(6.33)

11—
p„+i (6.34)

an a roxima et exPreSsiOn fOr Pnl,W shall now derive pp
w y po atically correct or arge

I and
I
2p~

I
&&, so
f th bic equation,is seen t atis h A. =A, is a solution o e

x'
+ 2A 10

a

result of Eq. (6.22),n b the approximate resuwhere 7„ is given y e

&n POn

—2ni/3(g+ )22@i/3+ i (g+ )+ (6.41)

in in the integral in Eq. 6.37) is ap-The exponent apearing in
proxoximated by using

~l ~3+ T~ ( E„—8i )

—21Tt/3(Q+ E )2 e21U/3(Q++ —,[e n (6.42)

E (6.40). When b, +E„ is=c. as defined in qwhere Xn a =c.n
~ ~

small we aveh the approximation

and ddle oint determined byWe let 6=4, be the sa e po'
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explicitly

—2wi/3(g+ E ) e2ni/3(g+ &'~ )] 0

(e
—2~i/3 e 2@i/31

(6.43)

(6.44)

dimensional result. The result also shows that when keep-
ing p constant and reducing a below 2, the output power
begins to fall rapidly. When a &6, the higher modes be-
come important. Also we can see that for large beam size
the power cross terms are small because the modes are al-
most orthogonal. For small beam size, they are not
orthogonal, but higher modes drop fast, so cross terms are
always negligible.

Ignoring terms quadratic in c,„,we have

i*=iv, 3+ —,(e„—ei*)— (b. b,,)—9
(6.45)

VII. TREATMENT OF INITIAL ENERGY
SPREAD IN THE ELECTRON BEAM

l
X exp 2pr 3/3 ——(E —Ei )

—(5—b ) /2o~f dAe (6.46)

where
' 1/2

3 3
op=

4p~
(6.47)

and we have used Eq. (6.38) for F„' ' and N„'i' is given in
Eq. (6.39).

The quantity o~ can be related to the bandwidth in
wave number or frequency. The electric field correspond-
ing to mode n has the form

(6.48)

where g=k„(z vot) and ~=—cu t Therefore. , we see that
k& =ko +k, q ll, hence

=o =2pog=
1/2

33/3p
(6.49)

The Gaussian integral in Eq. (6.46) is equal to 3/2mcr~, so
we derive the following approximation for Pnl.

(10jar(o) i ~ n I ]/
Pnl = ~ inl e (6.50)

where N„'i' and E„,Ei are given by Eqs. (6.39)—(6.40), and
P" ' is the output power as calculated in the one-
dimensional model, '

P" i= —,'pmc yo
"

exp(v 32pr) .
277

(6.51)

Equation (6.51) can be seen to be equivalent to the expres-
sion for P'' ' given in Eq. (1.3) of the Introduction, by in-
troducing the correlation length 1, =~2m/irk and the
number of electrons in a correlation length N, =noel, .
(X is the cross-sectional area of the electron beam. )

The result given by (6.50) is plotted in Fig. 5 and com-
pared with the numerical result described in Sec. VIB.
From the diagram we can see that at a =3.6 the second
mode is suppressed by a factor of 10. Cross terms are
suppressed by 100, and output power is still near the one-

The expression given in Eq. (6.37) for P„i now reduces to

Pnl — ~& rok„c 9 Nnl
(2p) 2 i (os

4m

f(r, g, x, y ) =F(r,g, x,y )e'~ . (7.1)

Expressed in terms of E and F, the Vlasov-Maxwell equa-
tions become

iVi E=D—, f F,a a 2 = dy
dl r

(7.2)

a a . 1 ~fo+i F=D2 — E . (7.3)
i31 8 y By

Here, g = 1 —yo/y, where yo is a reference energy near
the center of the energy distribution, and the ensemble
average of the initial distribution fo(x, y) is independent
of g.

We introduce Fourier transforms over g,

E(r, x;q~~)= f dge E(r, g, x),

F(r,x,y;qll)= f dge ~~ (Fgr, , x)y

and Laplace transforms over ~,

E(x;&,q~~)= f «""'E(r,x;q~~),

F(x,y;&,q~~) = f «e'"'F«, x, y;q~~),

(7.4)

(7.5)

(7.6)

(7.7)

where ImQ is positive and large enough to guarantee con-
vergence of the integral over ~. Applying the Fourier-
Laplace transforms to Eqs. (7.2) and (7.3) yields

2
( —i 0+iq~~ i V, )E=D, F—+E(r=0),

r
1 ufo

[ iII+i2)(1+—q~~)]F=D2 — E+F(r=-0)
ll

(7.8)

(7.9)

The discussion in Secs. II—VI has focused upon the
description of amplified spontaneous emission from an
electron beam which initially is monoenergetic. Now we
shall show that the formalism which we have developed is
easily generalized to allow the treatment of an electron
beam having initial energy spread. Our results are in
agreement with the recent work of Kim, who has ap-
proached this problem using a method originally intro-
duced by van Kampen. In a future publication' we shall
further generalize our work to include the effects of angu-
lar spread in the electron beam.

Let us begin by recalling the coupled Vlasov-Maxwell
equations [Eqs. (2.23) and (2.24)] derived in Sec. II. The
slowly varying envelope E of the radiated electric field
was introduced in Eq. (2.10), and we now define the corre-
sponding envelope F of the electron distribution by
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Using Eq. (7.9) to express F in terms of E and F(r=0),
and substituting the result into Eq. (7.8), we derive the fol-
lowing equation determining E:

[Q—q[(+V +U(x;Q, q[[)]E(x;Q,q)[)=S( XQ,qii),

the inhomogeneous equation (7.10) can be solved using the
Green's function G(x, x', Q, q~~), which we define by

qll +~j-+

(7.15)

where

dy ~fo(»y)/~y
U(x;Q, q~~ ) =DiDp

y2 Q —i) y 1+q~~)

and

(7.10)

(7.1 1)

We determine this Green's function by following the ap-
proach developed in Sec. IV. This can be done since Eq.
(7.15) has the same form as Eq. (4.3), except that the po-
tential U now includes the effects of energy spread. It is
easy to see that in the case of a monoenergetic electron
beam, with

S(x;Q,q~() =iE(&=0,x;q~~ )

dy F(r=O, x, y;q(~ )—Di
y Q —r)(y)( 1+q~~ )

(7.12)

fp ——u (x)5(y —yp),

the potential U reduces to

U= (Q —
q~~

—1)u(x)
Q

(7.16)

(7.17)

fo(x y)=u(x)h(y),

the potential U has the form

(7.13)

U(x;Q, q~&)=u(x)DiD2 2
. (7.14)dy h'(y)

y2 Q —
qy y 1+qadi

The height of the potential well is proportional to the
dispersion integral, and the shape is given by the trans-
verse profile u (x) of the electron beam.

Since U(x;Q, q~~) and S(x;Q,q~~) are known functions,

Since Eq. (7.10) has the form of an inhomogeneous
two-dimensional Schrodinger equation, the techniques
developed in Sec. IV and V to treat the monoenergetic
electron beam are applicable to the warm beam. The in-
homogeneous term S(x;Q,q~~) is a known function, deter-
mined by the initial values of the electric field and elec-
tron distribution at r=0. The potential U(x;Q, q~~ ) is also
a known function, expressed in terms of the distribution
fp(x, y). In the special case when fp factorizes,

where a=(2p) =DiDp/yp. In this case, Eq. (7.15) is
identical to Eq. (4.3)

Following the technique of Sec. IV, we express the
Green's function G(x, x';Q, q~~) in terms of the eigenfunc-
tions @„(x)and eigenvalues A„of the associated homo-
geneous eigenvalue problem

[A„+Vi+ U(x; Q, ,q~~ )]@„(x)=0 . (7.18)

Once G(x,x';Q, q~~) is determined, E(x;Q,q~~) can be
found from

E(x;Q,q~~)= fd x'G(x, x', Q, q~~)S(x', Q, q~~) . (7.20)

The inverse Fourier-Laplace transform can now be em-
ployed to obtain E( gr, )xin the form

Using the orthonormality [Eq. (4.5)] and completeness
[Eq. (4.6)] of the eigenfunctions, we find

N„(x;Q, q~~ )N„(x', Q, q~~)G(x,x';Q,
q~~ ) = g . (7.19)

f ~ '~ f e'"'X f2m. —~+~s 2m „Q—
q((

—A„(Q,q(()
(7.21)

As in Sec. IV, we assume that the leading behavior for large ~ is described by the poles in the complex 0 plane corre-
sponding to the solution of

Q —
q~~

—A„(Q, q~~ ) =0 .

We keep only those solutions with ImQ„) 0, and find the asymptotic representation for E( g, r):x
-in„(q(~).

q g e "
0n i(x[~q)E( gr, )=xe " g . - d'x'S(x';Q„(q()), q(()@„(x',q((),2&l

1—

(7.22)

(7.23)

where

(7.24)@„(;q(()=@„(;Q„(q~(),q()) .

Equation (7.23) can be seen to be in agreement with the work of Kim, by expressing the derivative BA„/BQ as follows.
Using Eq. (7.18) and the normalization condition, fd x 4&„=1, we find

A„=—fd x 4„(V'i+ U)4„ (7.25)
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and

an= f "an'
hence

(7.26)

aw„ = —fd' q'„ (7.27)

The use of Eq. (7.27) in Eq. (7.23) yields Kim's result.
Let us now use Eq. (7.12) to explicitly evaluate S(x;n„(q~~ ),q~ I). Since we are considering amplified spontaneous radi-

ation, we assume the electric field vanishes at r=O. We express F(w=O) as
I

F(&=0, x', y; q~~)= fdg'e F(r=0 0»
=

fdic'e

" f( r= 0, (', x'y) . (7.28)

(7.29)

where we have defined

Substituting Eq. (7.28) into the expression for S(x;n„,q~~ ) given in Eq. (7.12), and using the result in Eq. (7.23), we find

E(r, g, x) = fdg'd x'dyj o(g', x', y)g(r, g g', x,x'—, y),

and

G„(r

X .(r y;qll)&. (xqll
dg

/f gq()g

2~
—sn„(q~~)~

e

( —i)[n„(q(~ ) —vy(y)(1+q(~ )] 1—
BA Q=Q„(q(( )

(7.30)

(7.31)

Di
jo(g, x, y)= e '~f(&=O, j,x, y) .

r (7.32)

The treatment of shot noise given earlier for a monochromatic electron beam, in Sec. V, can now be generalized to in-
clude energy spread and energy shot noise. The initial electron distribution is taken to be

f(r=0)= +5(z —z;)5(x—x;)5(y —y;) .
1

no
(7.33)

As in Sec. V, the output power is determined by taking the ensemble average (EE ). The only difference in the deriva-
tion from that given in Sec. V, is that when we replace the sum over individual electrons i by an integral, as in Eq. (5.9),
we now must include an integration over energy y:

g ~ fdzd r dyno fo(r, y)= —f dgd x dy nofo(»y) .
b

(7.34)

When the ensemble average of the intiial distribution fo factorizes according to Eq. (7.13), the result for the output
power corresponding to Eq. (5.15) is

n, l
(7.35a)

P
g
=

~ mc yo(2p) k„c d x 1/l

(x;qadi

)I/Jg

(x;qadi

)2~

X fd'x'u(x')g„(x', q„)pl*(x', q~~) fdy, &(y)G„(r,y;q~~)GI*(r, y;q~~) . (7.35b)

VIII. CONCLUDING REMARKS

In this paper, we have presented a theoretical descrip-
tion of amplified spontaneous emission in a long wiggler

magnet. In the special case when the electron beam is ini-
tially monoenergetic, the envelope of the radiated electric
field is determined by the differential equation of Eq.
(2.39):
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+ i—V~ E —a + +i (uE) =0 .
8'r 8 a~

When the initial energy spread is nonvanishing, the depen-
dence of the envelope of the field on the coordinates r, g, x
is no longer determined by a partial differential equation.
To treat the case of nonvanishing energy spread, one in-
troduces a Laplace transform over the ~ dependence, and
a Fourier transform over the g dependence. The Fourier-
Laplace transform E(x;n, q~~) of the envelope of the radi-
ated electric field is determined by the partial differential
equation of Eq. (7.10):

[n —q[)+ V~+ U(x;n, q)()]E(x;n, q([) =S(x;n, q)~ ) .

This inhomogeneous two-dimensional Schrodinger equa-
tion can be solved by introducing the Green's function
G(x, x', n, q~~) via Eq. (7.15):

[n —q~~+ Vz+ U(x;n, q~~ )]G(x,x';n,
q~~ ) =5(x—x') .

This Green's function is determined by expanding it in
terms of the orthonormal eigenfunctions of the homo-
geneous Schrodinger equation with non-self-adjoint Ham-
iltonian [Eq. (7.18)]:

P= —ik (n —q~~),

Pp kwhr Ii

Employing these relations, we can rewrite Eq. (3.2) as
T

P+ VT —(2p) k u(r) /=0 .
2iko (l3+i p p)2

(A 1)

(A2)

(A3)

Moore's form of the mode equation is obtained by intro-
ducing the pumping parameter,

Cp ——(2p) k X, (A4}

where X =~rp is the electron-beam cross section, and the
normalized transverse profile

u=u/X, J ud r=l . (A5)

Using Eqs. (A4) and (A5} in Eq. (A3) yields Moore's
equation:

dimensioned coordinate r, rather than the dimensionless
x=+2kpk r, and hence the dimensioned Laplacian
VT =2kpk~ Vj . His growth rate parameter P and detun-
ing pp are related to ours via

[A„+Vj+U(x;n, q~~)]N„(x) =0 . P+ . VT —Cpu(r) /=0 .1

2ikp (P+iPo)
(A6)

The Green's function is then given by Eq. (7.19):

@„(x;n,q~~ )c&„(x',n, q~~ )
G(x, x';n,

q~~ ) = g
The dependence of the electric field on the coordinates r
and g is recovered by carrying out the inverse Fourier-
Laplace transformation, as discussed in Sec. VII.

It is our belief that the essential physics of the ampli-
fied spontaneous emission process is elucidated by study
of the monoenergetic electron beam. The detailed numeri-
cal calculations and the analytical approximation of Sec.
VI were carried out for a monoenergetic electron beam,
with the goal of determining the region of validity of the
one-dimensional calculation. ' In order to carry out the
design of a single-pass free-electron laser for the produc-
tion of high peak power pulses of short-wavelength radia-
tion, the inclusion of energy spread and angular spread in
the electron beam is essential. Numerical calculations in-
cluding these effects are now under study.
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A key parameter in Moore's analysis is the characteris-
tic transverse dimension a, defined by

a, =8kpCp/7T . (A7)

Inserting the expression for Cp given in (A4) into Eq. (A7)
yields

ae =(2p2kokw) ro .

Moore defines a scaled electron beam radius a by

a =roia,
and from Eq. (A8) it follows that

a =(2p2kpk )
~ rp ——a

(A8)

(A9)

(A10)

where a is the scaled electron beam radius we defined in
the Introduction in Eq. (1.1).

Moore introduces the characteristic length l, by

l =kp

and writes the gain in the form

gL /I

(A 1 1)

(A12)

where L is the length of the wiggler and g is the scaled
gain. The gain length lG ——I, /g. In Eq. (1.4) of the Intro-
duction, we noted that Moore's result for the gain in the
limit of small electron-beam size could be written in the
form

APPENDIX A: MOORE'S NOTATION

To aid the reader, we provide a correspondence between
our notation and that of Moore. Refer back to the mode
Eq. (3.2). Let us neglect the small term n —

q~~ relative to
unity in the coefficient of u (x). Moore uses the original

2
kp~em —Ig

To see this, we rewrite (A13) as
2l, kpa,

k r0 em=
g

(A13)

(A14)
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hence
~ —1/2

Fern —g ~c

which is the result derived by Moore.

(A15)

Ep ——E(r'=O, g', x'),

Ep ——
, E(r', g', x')

B7'

go=g(r 0—0' x x'»
APPENDIX B. GREEN'S THEOREM

AND THE INITIAL VALUE PROBLEM

The Green's function g =g(r r', g —g', x,x—') satisfies
the equations:

a' a a . , a a
i V—i g —au(x) + +i gar ag ar a

=6(r—r') 6( g —g') 6(x —x')

Bgp Bggo=
'B7 'B7 &

Q

K(f)= fd x'dg' f dr'f,
L(f)= f d x'dg'f .

Employing integration by parts and noting that the
Green's function g vanishes for r'~ oo and g'~+ co, due
to causality, one derives

and

B B

B7'2 B7'
—EVi g

Bg BEK E +g = —L (Epgp +Epgp+Epgp )
B7' B7

B—au(x')
B7

B
ay+' g ar'ag + ar'ag

BEp BEp
go +

aug go

=6(r—r')6(( —g')6(x —x') .

Let E =E(r', g', x') be a solution of

a +ay

B B—au(x'), +, +i E=O .
B7'

We introduce the notation:

B2 B2
Vi g g— , Vi E =L(goVi Eo+goVi Eo)B.' —

B.'
K E, +g, = —L(Epgp),

BE
B7' B7'

Bg BEK E,+g, =O.

The initial value problem can now be solved in terms of
the Green's function by using Green's theorem:

B' . ,2i Vig+au(x'), +, ig-ag ag
B72 B7'

B g
ar'ag

E(r, g, x) = fd'x'dg' f dr'E(r', g', x')6(r —r')6lg —g')6(x —x')

=E E B g
B7'3

BE() .- BEp=L Epgp+ Ep+, —iVg Ep gp+ Ep+ —i Vz Ep —auEQ gp
ag ag

(B1)

The right-hand side of Eq. (Bl) can be simplified, be-
cause of the wave equation [Eq. (2.35)]:

—iVi E=J,B B 2

B7

J D —Eg r

Jp ——D )e '~ 7=0
r

We also see that

BE 2.
Ep+ i ViEp —— —

B7 ~=0+
where

(B3)

(B4)

Recall that the constant Di was defined in Eq. (2.25). It
follows that

BJ
B7 ,=p+

;gf dy af
B7 w=o+

(B5)

BEQ
Eo+ —&ViEQ= Jo

ag

with

(B2)
In Eqs. (B4) and (B5) we employ a one-sided derivative
since we consider the interaction of the electron beam
with the radiation field to begin at 7=0. Using the linear-
ized Vlasov equation (2.24), we find
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87 &=p+

yo

ag .=.

+D&Epe'~u (x)—5'(y —yo),
y

(B6)

R„(x)=

X
C Jp 7„—,x(a"a

D Ho" P„—,x&a
a

and inserting (B6) into Eq. (B5) yields

BJ
=o+ Jp+ &~Eo

Br '='+

with

2

g f dy
1

yo Bf
'Y y'

Finally, from Eqs. (B4) and (B7), we conclude
0

~ ~Eo
Ep+ —I', Vj Ep —cxQEp =Jp

ag

(B7)

(B8)

(B9)

C„Jp(X„)=D„Hp '(P, ),
Jp(X„) Hp" (P„)
Jp(X„) Hp" (P„)

2 2

p„—X„= 2 1 —2p
n a

a
2

This follows from the formulas

(1) Normalization integral [Eq. (6.29)]:
2

R.'-d-= ' R.'

The desired expression for the field E(r, g, x) in terms
of the initial conditions is derived by using Eqs. (B2) and
(B9) in Eq. (Bl):

E(r, g, x)

x d Ep ~x g 7, —,I I

2

f [Jo(x)] x dx =
I [Jo(u)] +[Jo(u)] ),

Hp x xdx= — Hp Q

+[H(1)( )]2 I

+Jo(0 x )g(r~k —g ~x~x )

+J p(g', x)g(r, g —g', x,x')] . (B10)

Let Jp =Jp(X„) and Hp =Hp' '(P„). Then

R„x dx =C„Jp
Here, Ep E(r=0,$——',x') is the initial electric field, and

Jp as defined in Eq. (B3), describes the initial spatial
bunching of the electron beam. The quantity Jp [Eq.
(B8)] is a measure of the initial energy modulation exist-

ing at ~=0. Our motivation for using the notation Jp can
be seen as follows: Suppose the initial state f(x=0) re-
sulted from an evolution during ~ &0 described by the un-
perturbed Vlasov equation,

+D„Hp"
2

C„Jp +Jp —
2 (H p +Hp)

C„(Jp +Jp) — D„(Hp +Hp)

"r)f yo df
1 — =0 (r &0),

87 y 8

then it would follow that

2

C J 1—
n p

Jp Hp

Jp Hp

87 g=p

yo df
y' g ~=o

(B1 1)

a C2J2 2 1 1
2

~ ok.

(2) Overlap integrals:

In this case, Jo as defined in Eq. (B8) is given by

.
gf dy df BJ

y a -=.-=a

APPENDIX C: NORMALIZATION AND OVERLAP
INTEGRAL S

Consider the radial wave function

f R„R~ x dx =a R„(a)R~ (a)
2 2

k* —k.
p +n +I

R„RI*xdx = —a R„(a)R~'(a)

f R„RI*xdx

=a R„(a)RI*(a)(g)*—g„)

(C2)

(C3)

(C4)
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a 1f R„— BR*
x + 2 RI xdx=0,

BX a

from which one easily sees that

Equation (C2) is derived from

f BR„
Rl

~
x + 2 Rn xdx=0,

x c)x ()x a

The eigenvalue A is determined by

A=
a

$2 X2 a 2 V

J' (X) H' '(Q)

J (X) H'"(P)

(D5)

(D6)

a

~
(X„—Xt* ) f R„Rt*x dx

a 0

RI*'
= aR„RI*

R„'

R n X =Q

Differentiating Eqs. (D6) and (D7) yields

adX= +dP+ dV,
X 2X

(D8)

(J'H+XJ"H PH'J—')dX =(H'J+ttpH"J XJ'H—')dQ,

which becomes the desired result once one notes that

R„'

(D9)

where we use the shorthand notation J=J (X) and
H =H "(t()). Using Eqs. (D8) and (D9) together with
(D4), we derive

Equation (C3) is derived in an analogous manner, and
(C4) follows immediately as the sum of (C2) and (C3).

QO a
(3) N„t —— R„Rt*2~x dx f R„Rt*27rx dx [Eq.

(6.26)]. The wave function is normalized by

R„2+x dx =1,

2P dP 1

a2 dV X(H'J+PH"J XJ'H')——1P(J'H+XJ"H tt J'H')—

From Bessel's equation, it follows that

(D10)

so using Eq. (Cl) we find

rra R„(ag'„
X„

(C5)

ttt H" +H' = —P
2

1 — H,

2

7J"+J'= —7 1 — J,
X2

N„I ——

(C6)

Now N„t can be evaluated from Eqs. (C2), (C4), and (C5),

4(gt* —g„) (P„gt*) (X„Xt*)
(A, t* —A,„),

so Eq. (D10) can be written in the simpler form

dA P X
d V X' —y' g' —m' (Dl 1)

where we have used P„—X„=a /A, „. We now specialize to the axially symmetric modes
( m =0), for which

APPENDIX D: EVALUATION OF BA( 0,q
~ I

) /BQ

We consider the eigenvalue problem of Eq. (4.4):

[V'g+ A+ Vu (x)]C&(x)=0,
(2p)V= (II—

q~~
—1) .0

(Dl)

(D2)

dA P X1+
X2 y2 g2

Differentiating Eq. (D2), we find

t) V 2(1+q~~ ) —0, 2+4pb, 2pg
BQ

(D12)

(D13)

R(x)=

XJ g—,x&a
a

In the special case when u(x) is the step function profile
of Eq. (6.4).

@=R(x)e' (D3) c)V 2
BO

Combining Eqs. (D12) and (D14), it follows that

(D14)

whe~e q~~
——2pb, and 0=2pA, . We s~ppos~

~

2pb,
~

&&1
and

~
2pi,

~
« I, so

H( )

a
x)a . a~ av

av an
X 21+

X2 P2 g2 g3
(D15)
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