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Anomalous x-ray scattering: Relativistic effects in x-ray dispersion analysis
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Rayleigh scattering by bound electrons is reduced from the free-electron Thomson value at x-ray
wavelengths by relativistic effects. To first order this arises from the relativistic increase in mass of
the core electrons. The reduction is overestimated by more than a factor of 2 by the commonly used
dipole approximation. Inclusion of higher multipole and retardation terms in dispersion analysis
resolves reported conflicts between values of the anomalous scattering factor as measured inter-
ferometrically and as calculated from attenuation measurements. These considerations further im-

ply that several scattering-factor tabulations in current use for diffraction studies require revision to
take relativity fully into account. This correction is particularly significant in regions of anomalous
dispersion and at low energies, where the scattering factor is small relative to the atomic number.

I. INTRODUCTION

Anomalous x-ray dispersion' —the deviation of x-ray
scattering by bound electrons from the classical Thomson
free-electron value —has recently become accessible to
measurement with an accuracy not heretofore achievable.
The novel instrumentation responsible for this includes
the x-ray interferometer, ' multilayer interference de-
vices, ' and improved prism-deviation techniques. ' In a
number of important test cases, ' ' the measured
forward-scattering factor, or equivalently the refractive
index, is found to be in conflict with values derived from
attenuation measurements via dispersion theory. This has
raised questions concerning the validity of dispersion
analysis applied to x-rays"' and the accuracy of the
treatment of exchange in calculations of atomic absorp-
tion spectra. '

In this note we show that this apparent conflict may be
resolved. Briefly, the commonly used' ' dipole approxi-
mation for the relativistic contribution to the anomalous
scattering is incomplete to first order in v /c . It overes-
timates the relativistic reduction in scattering at high pho-
ton energies by a factor of approximately 2. If higher
multipole processes and retardation are taken into ac-
count, there is substantial agreement between the interfer-
ence and dispersion-analysis methods of determining
scattering factors.

II. THEORETICAL BACKGROUND

Rayleigh scattering' '' by atomic electrons is the dom-
inant elastic scattering mechanism below approximately 2
MeV, and for the present discussion nuclear Thomson,
nuclear resonance, and low-energy Delbriick (virtual pair)
scattering may be neglected. However, real pair produc-
tion sets in above = 1 MeV and dominates x-ray processes
at high energies. Indeed, since the vacuum is an infinite
source of electron-positron pairs, pair-production and
Delbruck amplitudes diverge in the high-energy limit. '

These processes must, consequently, be subtracted when

considering dispersion integrals which extend to infinite
frequency. '

On this basis Goldberger and Low showed that the
amplitude for Rayleigh scattering of photons by atomic
electrons is to an excellent approximation given by the to-
tal atomic elastic scattering amplitude less that for pair
production in the field of the bare nucleus. The resulting
scattering factor for forward electronic Rayleigh scatter-
ing f (co)=f

&
(co)+if2 (to) has a well-defined, real high-

frequency limit f ~ ( oo ). Moreover, f (co) f ~ ( oo ) is a-
causal, analytic response function square-integrable for
real co, so that the forward electronic scattering factor
obeys subtracted dispersion relations. For the dominant
non-spin-flip component the relation for the real part is20

- ~'f2(~')f ( (co)=f ) ( n) ) ——HJ, , dco' . (I)
Q (~I )2 ~2

Moreover, the imaginary part of the Rayleigh scattering
factor is given by the optical theorem '

f2(co)= o (co),
4m.e

where cr (co) is the atomic cross section for non-spin-flip
electronic excitations.

To apply the dispersion relation for f ~ (co), accurate
values of f &

(ao) are required. These quantities are not
given by dispersion theory per se, but must be obtained
from experiment or estimated from theory. Comparison
with the high-frequency or Thomson scattering cross sec-
tion for classical electrons originally suggested that
f ~ (oo ) should equal the number of scattering electrons,
i.e., Z, the atomic number in the case of a single atom.
However, detailed calculations by Levinger and co-
workers for a Dirac electron in lead revealed a reduction
below the Thomson value as a result of relativistic effects.
Most recently, relativistic second-order S-matrix calcula-
tions have provided reliable numerical estimates of this
reduction and have been used to discuss the high-energy
limit ' and the range of validity of the nonrelativistic
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dipole approximation.
For the present discussion it is convenient to relate

f ~ (oo ) to the integrated absorption spectrum by exploit-
ing the physical requirement that there is no scattering in
the static limit for a bound system in equilibrium, i.e.,
lim Q&(co) =0. When combined with Eq. (1) this yields
the auxiliary condition

f~ (oo)= I cv f2(co)der)

0 co d&.
2&e 0

(3)

That is, f ~ ( oo ) is proportional to the integrated attenua-
tion due to electronic excitations, including transitions to
bound states. Numerically f ~ ( oo ) is just the total elec-
tronic oscillator strength of conventional optics.

Presently, there are neither sufficiently reliable direct
measurements of f ~ ( oo ) nor measurements of the at-R

tenuation over a sufficient range to accurately evaluate

f & ( oo ) via Eq. (3). However, theoretical models offer two
possibilities: (i) direct numerical evaluation of the scatter-
ing amplitude at high frequencies by, for example, S-
matrix theory or (ii) evaluation of the total oscillator
strength using the Thomas-Reiche-Kuhn (TRK) f sum

rule, particularly its relativistic generalization. ' We
treat the latter approach first, since it leads to a simple
physical interpretation.

III. SUM RULE CONSIDERATIONS
AND PHYSICAL INTERPRETATION

The TRK sum rule is one of the fundamentals of non-

relativistic quantum mechanics and yields for nonrela-

tivistic electrons

E„„=e/(mc + (0
~

T
~

0) ) . (6b)

The denominator in the second line of Eq. (6b) is just the
mass energy of the electron with the kinetic term written
out explicitly. Equation (6) may thus be interpreted as a
replacement in the Thomson cross section of the electron's
rest mass by its relativistic mass. Since the latter occurs
in the denominator, there is a decrease in the scattering
amplitude reflecting the greater "sluggishness" of the rela-
tivistic core electrons.

subsequently studied independently by a number of
researchers, and recently numerical evaluations
and generalizations have been investigated. The gen-
eralization to a many-electron system follows in the
independent-particle, local-potential approximation by
summing all single-electron strengths and noting that
terms corresponding to transitions between occupied
states cancel, since they occur in pairs with opposite sign.
The result probably holds more generally, but this does
not seem to have been investigated for less restrictive as-

sumptions.
Levinger et al. ' have provided a simple physical inter-

pretation of the relativistic reduction in scattering ampli-
tude (in lowest order) as a consequence of the mass-
velocity effect for the bound particle. In the high-
frequency or Thomson limit, the electric field scattered by
an electron is proportional to the classical radius

ro ——e /mc times f ~ (oo ). That is, E„„=rof&
(oo), and

for a single electron in state
~

0) we have on combining
Eqs. (5a) and (5b)

E„„=(e/mc )(1—(0~ T ~0)/mc + ) .

To first order in (v/c) this can be rewritten as

co 2 co dc'=
~ oo =Z, (4) IV. COMPARISON OF THEORETICAL VALUES

FOR fi(oo)
where Z is the atomic number. This rule applies
rigorously only to free electrons at rest, a limitation not
often stated. It is the result universally given for f ~ ( oo )

in classic x-ray texts, ' but it does not account for the ef-

fects of binding on electron dynamics. This omission can
be significant even for intermediate-weight elements be-

cause of relativistic effects in the deeper core states. For
relativistic electrons Levinger et al. ' showed that to first
order in (v/c), the dynamical result is

co dco=
~

(x) =Z+6, (5a)

where

b, = —(Oi T
i
0)/mc +. . .

(5b)

Here (0
~

T
~

0) is the total ground-state kinetic energy
and E„, the total ground-state binding energy. The
second form follows in a first approximation using the
virial theorem in zeroth order.

This result was originally derived for a single electron

by Levinger, Rustgi, and Qkamoto ' using results of
Jacobsohn. Relativistic and retardation effects were also

An alternative evaluation of the subtraction constant,
f ~ ( oo ), may be accomplished by directly calculating the
high-frequency scattering. The most detailed formal re-
sults are series expansion for a single Dirac electron in a
Coulomb field. Florescu and Gavrila' give a corrected
version of the Goldberger-Low expression for f, ( oo ) of
an electron bound in the ground state to a nucleus having
atomic number Z. Their result is

f ~ ( oo ) = 1 ——,
' a + —,'4 a +0(a ),

where a =Z(e /Rc). This may be seen to be in agreement
with the first-order result of Levinger et al. ' by using the
leading term for the electronic kinetic energy in the
ground state (Oj T ~0) =mc [Z(e /Ac)] /2. However,
it is not immediately evident how to extend this formal
Florescu-Gavrila result for a Coulomb field to many-
electron systems, where there is screening of the nuclear
field.

Numerical values of f & (oo) for many-electron atoms
are, however, available for a number of relativistic scatter-
ing models. The most ambitious calculations employ
second-order S-matrix theory, but these have been carried
out only for representative cases. Where available these
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S-matrix results are in good agreement with the forward
scattering calculated in the relativistic modified form-
factor (MFF) approximation, which has been evaluated
for all elements. The latter results, together with the
first-order relativistic f sum-rule results are given in Fig.
1. There is a good agreement between the first-order
reduction factor, Eq. (5b), and the MFF approximation up
to intermediate weight elements. Higher-order terms
clearly become important for heavy elements.

For comparison, we also plot in Fig. 1 the non-retarded
electric dipole approximation to 5 calculated' ' to first
order in ( v /c),

5 2
~dipole 3 Etot /m (8)

This approximation has remained in wide use even though
quadrupole and retardation terms have been shown ' to be
of the same order of magnitude. It will be seen from the
figure that the dipole term overestimates the magnitude of
6 by approximately 2.

V. COMPARISON WITH EXPERIMENT

The disagreement of the dipole approximation, Eq. (8),
with experiment was first noted in 1979 by Cxerward
et al. This prompted an independent study of relativistic
effects by Jensen, " who recognized the inadequacy of the
dipole approximation. Jensen evaluated"' a number of
corrections using Dirac theory, but his formalism includes
divergent terms varying as Zoo, which cannot be associat-
ed with the electronic Rayleigh scattering amplitude, a
square-integrable quantity.

For comparison with experiment, it is convenient to in-
troduce the "anomalous" Rayleigh scattering factor

Atomic Number (Z)
0 10 20 30 40 50 60 70 80 90
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~~
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D
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—30
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FIG. 1. The relativistic reduction 6 of the atomic scattering
factor as calculated in various approximations. The first-order
dipole approximation, Eq. (8), overestimates the effects of rela-
tivity by approximately a factor of 2. Inclusion of quadrupole
and retardation terms in perturbation theory reduces the dipole
estimate by a factor of 0.6, while the modified form-factor
(MFF) approximation predicts a slightly smaller effect (see Ref.
40). The MFF results are in excellent agreement with second-
order S-matrix calculations where the latter have been carried
out (see Ref. 54).

f '(cv )+if"(co)=f (cv ) —Z. This is, by definition, the
difference between the actual electronic Rayleigh scatter-
ing and the classical free-electron Thomson value. From
Eqs. (1) and (Sa) the real part of the anomalous forward
scattering is given by

co CO f2 (CO )dt's)
f'(co)=b, ——H fO ( l)2 2

(9)

and consists of a relativistic part 5, in addition to the
more familiar dispersion term. The imaginary part of the
anomalous scattering factor f"(cu) is simply f2 (cv).

For b, =0, Eq. (9) reduces to the commonly quoted non-
relativistic dispersion integral which accounts for the
frequency-dependent polarization of bound electrons. At
high frequencies the anomalous scattering approaches the
constant b (a negative number) corresponding to the rela-
tivistic reduction in scattering by deep core states. At low
frequencies Eq. (9) yields lim Q'(cv)= —Z, reflecting
the complete lack of scattering in the static limit.

The integral or dispersive component of anomalous
scattering —the second term in Eq. (9)—has been well
documented' both by direct measurements of atomic
scattering intensities, and through measurements of the
refractive index as deviations from Bragg's law, total
external reflection, and deviation of x rays by prisms. For
the most part, however, these effects have not been mea-
sured with sufficient precision to establish experimentally
the presence of the relativistic anomaly A.

Measurements of such precision have recently been
made with x-ray interferometers, especially the
"Angstrom ruler. " Elements receiving particular atten-
tion include Si and Ca. In the case of silicon (Z=14)
Gerward et al. evaluated the dispersion integral using
the attenuation data of Gerward and Thuesen, ' Hilde-
brandt et al. , and Storm and Israel. X-ray interferom-
eter measurements of f'(cv) at Cu Kai, Mo Kai, and Ag
Ka~ wavelengths were reported by Cusatis and Hart,
Deutsch and Hart, ' and Creagh. " In addition, indepen-
dent values of f'(cv ) for Mo Ka i and Ag Ka i radiation
have been obtained by Price et al. from a refinement of
the x-ray structure factor. For calcium (Z =20) Creagh
both evaluated the dispersion integral using attenuation
measurements and determined' ' ' f'(cg) interferometri-
cally at Fe Ea&, Cu Ea~, Mo Ka~, and Ag Ee~ wave-
lengths. These results are given in Tables I and II, and by
Figs. 2 and 3, which show f '(co) for energies beyond the K
edge.

In virtually all cases the nonrelativistic [6=0]
dispersion-analysis values of f (co) lie above the directly
measured interferometric values, indicating the expected
relativistic reduction. The effect is, however, clearly
overestimated by the dipole-only approximation-
Lal 3 Et t /mc . However, including higher multi poles
and retardation —6=E, , /mc —yields excellent agree-
ment between interferometric and attenuation values. The
only exception occurs for calcium at the Mo Kn& wave-
length suggesting the need for a remeasurement of this
point. But even here, the relativistic multipole value is in
better agreement with experiment than is the dipole-only
value.
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TABLE I. Anomalous scattering factors for silicon as calculated by dispersion analysis of attenua-
tion cross sections and as measured interferometrically or by scattering-factor refinement. Cross-section
measurements and the nonrelativistic dispersion-analysis results are taken from Gerward et aI. , Ref. 9.

Radiation

Cu Kai
Mo Ka~

Ag Kai

(nonrelativistic)

0.274
0.099

0.070

f
Dispersion analysis'

(relativistic
dipole)

0.248
0.073

0.044

(relativistic
multipole)

0.258
0.083

0.054

Interferometry

0.236+0.012b
0.086+0.002'
0.085+0.007
0.085+0.002'
0.091+0.005'
0.057+0.003'
0.047+0.007'
0.054+0.003'
0 060+0 003b

'Gerward et al. (1979), Ref. 9, with relativistic corrections after Cromer and Liberman, Ref. 15.
Creagh (1984), Ref. 45.

'Cusatis and Hart (1975), Ref. 44.
dPrice et al. (1978), Ref. 46.
'Deutsch and Hart (1984), Ref. 13.

A second experimental indication of the importance of
relativistic effects comes from measurements of the spec-
tral response of multilayer interference stacks ' originally
developed as soft-x-ray mirrors. The spectral response of
these mirrors has generally been modeled using indices of
refraction, or equivalently f (co), as derived by Henke
et al. on the basis of nonrelativistic (A=O) dispersion
analysis of attenuation data. In practice, it is found that
for multilayers of carbon and heavy-metal films, the
observed response deviates from the redictions. The
deviations generally imply values of f, (co) that are less
than the nonrelativistic value by = 1 e/atom for the
heavy-metal component of the multilayer. This is con-
sistent with the relativistic reduction factors for these
metals as given in Fig. 1.

VI DISCUSSION

A point of particular importance is that the relativistic
term b, must be included in f & ( oo ) for a dispersion
analysis based on Eq. (l) euen when calculating scattering
factors for soft x-rays. While relativistic effects are negli-
gible in absorption processes at these low energies, they
contribute to the dispersion, which involves the sum of
virtual processes at all energies, including those involving
relativistic core states. Formally, relativistic effects enter
Eq. (1) in two places: First, in the constant f, ( oo ) which
pins f ~ (oo ) at high frequencies, and second, in the ob-
served absorption spectrum which appears in the disper-
sion integral. Neither can be safely neglected.

As an illustration, consider lead (Z =82) for which

TABLE II. Anomalous scattering factors for calcium as calculated by dispersion analysis of attenua-
tion cross sections and as measured interferometrically. Cross-section measurements and the nonrela-
tivistic dispersion-analysis results are taken from Creagh, Ref. 47, who estimates an uncertainty of
+ 8%%uo.

Radiation

Fe Kai
Cu Kai

Mo Kai

Ag Kai

(nonrelativistic)

0.158
0.320

0.188

0.127

f
Dispersion analysis'

(relativistic
dipole)

0.098
0.260

0.128

0.067

(relativistic
multipole)

0.122
0.284

0.152

0.091

Interferometry

0.155+0.008
0.30+0.015'
0.300+0.015
0.18+0.015'
0.220+0.011
0.11+0.01'
0.106+0.005

'Creagh (1977), Ref. 47, with relativistic corrections after Cromer and Liberman, Ref. 15.
Creagh (1984), Ref. 45. Note that a misprint in the Ag Ka& value has been corrected per private com-

munication from Professor Creagh.
'Creagh (1980), Ref. 10.
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FIG. 2. The real part of the anomalous atomic scattering factor for silicon. The curves give dispersion-analysis results based on
the attenuation coefficient measurements of Gerward et al. , Ref. 9, for various values of the relativistic reduction 5 (see text). Inter-
ferometrically determined experimental values are taken from Cusatis and Hart (1975), Ref. 44, and Creagh (1984), Ref. 45. Theoret-
ical values shown are from the nonrelativistic calculations of Wagenfeld (1975), Ref. 50, and the relativistic results of Cromer and
Liberrnan (1970 and 1976), Refs. 15 and 51.

the relativistic reduction is 5= —0.9 e/atom and
lim f &

(co)=Z —b, =81.1 e/atom. Use of the dipole
approximation b.d;~,&,

——l.86 e/atom would, instead,
give f ~ ( oo ) =80. 1 e/atom, so that for hard x rays neglect
of retardation and higher multipoles causes an error of
—1.25%. While often negligible for x-ray diffraction ap-
plications, ' this is important both in principle and for
precision studies. For example, Kissel has found that
correcting the high-energy limit of the f &

(co) predictions
of Cromer and Liberman, ' who used the dipole ap-
proximation, brings those predictions into much better
agreement with S-matrix calculations near atomic ab-
sorption edges.

In the soft-x-ray regime, and near absorption edges
where anomalous dispersion is large, use of an accurate
value for f I (ao) is crucial in applying dispersion theory,
since f ~ (co) is small [f& ( ao ) is largely canceled by the
dispersion integral in Eq. (1)]. Specifically, for lead in the
energy range 100 (fuo & 500 eV, f &

(co) has values between
10 and 20 e/atom. In contrast, the dipole approximation
overestimates relativistic effects by ——1 e/atom, which

corresponds to errors ranging from —5% to —10 Jo in
the scattering factor as predicted using Eq. (1) for these
energies.

VII. SUMMARY

It has been demonstrated that recent experimental mea-
surements of the electronic Rayleigh scattering factor are
in agreement with values derived from dispersion analysis
of photoabsorption cross sections provided that the rela-
tivistic reduction in oscillator strength of atomic core
states is properly taken into account. In the commonly
used dispersion formulation with a subtraction at infinity,
Eq. (1), this requires that the subtraction constant f ~ ( oo )
include retardation and relativistic-multipole terms. The
widely employed relativistic-dipole correction is incom-
plete in order (U/c) and overestimates the relativistic
reduction in scattering by a factor of approximately 2.

These findings imply that the published tabulation of
scattering factors calculated from experimental or theoret-
ical photoelectric absorption cross sections must be re-
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FKx. 3. The real part of the anomalous atomic scattering factor for calcium. The curves give dispersion-analysis results based on
the attenuation coefficient measurements of Creagh (1977), Ref. 47, for various values of the relativistic reduction 6 (see text). Inter-
ferometrically determined experimental values are taken from the figure given by Creagh (1980), Ref. 10, and from the tabulation of
Creagh (1984), Ref. 45. Theoretical values shown are from the relativistic calculations of Cromer and Liberman (1970 and 1976),
Refs. 15 and 51.

vised in those cases in which relativistic corrections were
either omitted or only the dipole approximation used.
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