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Absorption spectroscopy of strongly perturbed bound-continuum transitions
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Absorption properties of a system consisting of two autoionizing states coupled strongly either by
internal interactions or by external fields are investigated. The autoionizing states may themselves
correspond to those induced by laser fields as in resonant multiphoton ionization. The analysis is
based on the density matrices. and incoherent processes like spontaneous emission and radiative
recombination are included. Optical susceptibilities exist in a number of special cases for autoioniz-

ing transitions. Exact results for such optical susceptibilities are obtained. Explicit numerical re-

sults for susceptibilities, corresponding traditionally to strong-field inverse Raman effect, are given
with a view to recent work on dc-field-coupled autoionizing states and on laser-induced autoioniza-
tion. The behavior of both absorptive and dispersive parts is discussed for a range of parameters.

I. INTRODUCTION
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the system. Counter rotating terms have been ignored
from (1.1). The summation in (1.1) is over all the discrete
and continuum states of the system. The susceptibility
can be evaluated from the knowledge of exact eigenfunc-
tions and eigenvalues. Shore has developed a scattering
matrix approach for the calculation of patt. For a single
autoionizing state
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Here I is the rate of autoionization and q is Fano s asym-
metry parameter. For simplicity we have ignored the vec-
torial aspects of the dipole matrix elements. From (1.2)
one has

(1.4)

The physics of bound-continuum transitions has been
studied in a number of ways. In particular, optical ab-
sorption studies' have played a key role in the under-
standing of the autoionizing transitions. The susceptibili-
ty X tt(co), as is well known, yields information on both
line positions and linewidths. According to the linear
response theory, 7 can be written formally in terms of the
eigenfunctions

I g; ) and the eigenvalues E; of the
system's Hamiltonian
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Optical absorption profiles which are proportional to I~
coincide with the Fano profiles which give the pho-
toelectron spectrum. This is expected since in the absence
of any other relaxation effects, the total rate of absorption
of energy from the field must be equal to the rate of pro-
duction of photoelectrons of energy equal to the incident
photon energy. The real part of X gives the dispersive
properties of the bound-continuum transitions. Results
like (1.2) have been extensively used in the study of au-
toionizing transitions. However, in view of the activity
over the last decade, generalizations of (1.2) are warranted
in several directions as detailed below. Some generaliza-
tions, such as to the case of several outgoing channels in
the vicinity of an autoionizing resonance, exist. Spontane-
ous emission opens up additional channels. Line profiles
are also complicated by the fact that electrons in the vi-
cinity of the ion can recombine to yield a neutral atom
and a photon. Furthermore, the autoionizing state can de-
cay via spontaneous emission. It was seen earlier ' that
the radiative recombination process depends on, among
other things, the asymmetry parameter q. Smaller values
of q lead to considerable radiative recombination. It is
not a priori clear if the radiative decay can be accounted
for by replacing the energy E, by the complex energy.
Calculations show that the radiative recombination makes
the situation quite complex as we now have a bound state
interacting with two continua (electron and photon) which
themselves are also interacting. It may be borne in mind
that now I~ and the photoelectron spectrum will be dif-
ferent as part of the absorbed energy is used in creating
the spontaneously emitted photon.

Recently a number of experiments ' have reported
autoionization when some of the autoionizing states are
strongly mixed either by a dc electric field or by the spin-
orbit interaction. The important outcome of these experi-
ments is essentially the inhibition of the autoionization,
i.e., pronounced narrowing of the autoionization line
shapes under certain conditions on the field strengths,
spin-orbit interaction, etc. A theoretical study of these re-
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suits" will require the calculation of the absorption pro-
files for a system of states which are strongly coupled and
which decay by autoionization.

The susceptibility for these situations can be calculated
from the knowledge of the eigenfunctions and eigenvalues
of the system's Hamiltonian in presence of a dc electric
field. We will present simplified models where such sus-
ceptibilities can be calculated in closed form.

Another class of physical phenomena concerns multi-
photon ionization in strong fields. Here an autoionizing-
like structure can be induced by a resonant laser'
field. Such laser-induced structures can considerably
modify the efficiency of a nonlinear optical process such
as harmonic generation. ' The influence of such struc-
tures can be investigated in terms of the susceptibilities.
For example, experimental results' on the rotation of
plane of polarization of light passing through cesium
beam can be understood either in terms of a third-order
susceptibility or equivalently a first-order susceptibili-
ty' ' of an autoionizinglike structure. A study of
resonant two-photon ionization in strong fields using the
autoionizationlike formulation will require the knowledge
of intensity-dependent X. The spontaneous emission
could be quite important for laser-induced continuum
structures.

One can also consider optical mixing of an autoionizing
state and a bound state by a strong field of frequency co.
The strength of such a mixing can be varied by both am-
plitude and frequency of the external field. Such a mixing
has been the subject of many investigations. ' Here we
discuss how such mixing of states can be probed through
an absorption experiment. The probing is to be done by
using a transition starting from a bound state which is
different from the one which is strongly mixed by the
external field. For these problems optical susceptibilities
will depend on the strength of the mixing field in a non-
perturbative manner.

In this paper we calculate intensity-dependent optical
susceptibilities for a model system. The model is general
enough to describe many of the situations mentioned
above. In Sec. II we discuss the model and the dynamical
equations describing the model. Calculations are done in
the density matrix framework as we account for both ra-
diative decay and saturation effects. Exact solutions for
various elements of the density matrix are given. In Sec.
III general expressions for the susceptibilities are given.
Various limiting cases corresponding to weak fields are
discussed in Sec. IV. We also comment on the form of
the Raman susceptibility. In Sec. V we give details of the
susceptibility relevant for probing the behavior of strongly
coupled bound-continuum transitions. Numerical results
for a range of parameters are presented. In the traditional
language of nonlinear optics, Sec. V essentially calculates
the susceptibility for the inverse Raman effect.

Fanodi agonali za tion

Canonica[
Transformation to

Rotating frame
V

possible to think in terms of the eigenvalues and eigen-
functions of a time-dependent Hamiltonian. There are,
however, situations in which, by suitable canonical
transformations, the strong-field part of the Hamiltonian
can be made time independent. Hence we consider the
specific model schematically shown in Fig. 1. The model
is general enough" to handle the very many situations
mentioned in the Introduction. The state

l

a ) is the au-
toionizing state or it can be a laser-induced structure as in
multiphoton-ionization problems. We take the state

l f )
as the state from which the physical phenomena are
probed, i.e., for most problems we will assume that the in-
itial population is in state

l f ). The state
l
i ) is a bound

state outside the continuum which is strongly coupled by
the laser with frequency cot and amplitude si. The cou-
pling of the state

l

i ) with the structured continuum can
be thought of as producing another autoionizing structure
in the continuum and thus the same may also be looked at
from the point of view of probing the two strongly cou-
pled autoionizing states.

The Hamiltonian for the model system of Fig. 1 can be
written as

II. MODEL FOR INTENSITY-DEPENDENT
SUSCEPTIBILITIES

For a system interacting with external fields, the Ham-
iltonian becomes time dependent and in general it is not

FIG. 1. Schematic diagram of the model system.
i
E) is the

unperturbed flat continuum,
i
E) is the structured continuum,

and c;,co; gives the amplitude and the frequency of the ith laser.
After canonical transformation, the state

i
i ) appears as anoth-

er autoionizing state. The wavy lines represent the radiation de-
cay of the structured continuum

i
E ).
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H =E,
I
a)(a

I +fE
I
E)(E

I dE+Ej
I f)(f I

+E;
I

i ) (i
I + f [Vg, I

E)(a
I
+H c ]dE

+ VE; E i e '+H. c. dE+ v„. a I'. e '+H. c. + v,& a e

+ UEf E e ' dE +H.c. +Hz, R=—1

'+H. c. )

(2.1)

The interaction VE, is the configuration interaction and v

is the interaction with the applied fields with amplitudes
c~, c2 and frequencies co&,co2. The field c2 will be a probing
field and need not be laser field. It can, for example, be
the synchrotron radiation ' in the vacuum-uv region.
The part H~ represents the radiative decay of the au-
toionizing states and the radiative recombination.
Without H~ terms some aspects of the above Hamiltoni-
an have been previously considered. For example, Deng
and Eberly investigated the effects of the laser strengths
on the photoelectron spectra. Lami and Rahman used a
similar Hamiltonian in studies of predissociation of mole-
cules. Previous studies ' essentially concentrated on the
population distributions, whereas in the present work we
examine the macroscopic coherences or the induced polar-
ization in the system. This leads to the possibility of the
system giving rise to coherent generation of radiation.
Our work also accounts for, in a systematic manner, the
radiative effects. It may be added that it is the same di-
pole matrix element which governs the strength of the
laser transition and the radiative decay and thus the radia-
tive decay should be important at least for problems in-
volving excitations by weak fields.

Optical susceptibilities can be evaluated from the
knowledge of the off-diagonal density matrix elements
like p„,p,j,pzj, etc For t. he model (2.1), the density ma-
trix elements p,I, etc. , can be calculated to all orders in
the strength of the fields at col and co2. For obtaining the
density matrix elements, we will use the methods used by
Agarwal et al. (Papers I and II) for the case v,I=O. We
work in a representation in which configuration interac-
tion is diagonal, i.e., we work with Fano states

I
E). On

removing the fast time dependence from the Hamiltonian
and treating the radiative-decay terms in the usual
manner, the density matrix equation becomes

b,j Ej———(col —co2), E; =0, b,g E ——ai—i,
VIE ~ V]GABE

BE, b(E——a)

VfE —Vfa CEa

2(E E, )—1+
Iq;

(2.4)

2(E E,)—
CE, b(E, a——) 1+

I qg

Here b(E,a) represents the overlap between Fano state
and the autoionizing level

b(E,a) = (a I
E) . (2.&)

The incoherent terms in (2.2) correspond to the radiative-
decay processes

3
4 2 +J)j Tdaj ~ J l~f .

C
(2.6)

The operators A's are essentially dipole moment operators
connecting the Fano states and the bound states Ii ),

I f), i.e.,

A; = dE i E BE

Af=fdE If)(E IC~,
(2.7)

Thus all the effects of the radiative coupling between the
unperturbed continuum

I
E) and the autoionizing state

I
a ) and the states

I
i ) and

I f ) enter through the opera-
tors A; and A~.

The solution of (2.2) will be obtained by following the
same method as in paper I. The method developed in I
relies on the fact that in the absence of radiative-decay ef-
fects, one can work with the wave functions and this sim-
plifies the problem considerably. We thus introduce auxi-
liary matrix a defined by

= —i [M„h,p] — (A; A;p —2A;pA; +pA; A; )

~f
2

(AIAjp 2AIpA j+pAIA—j) . (2.2)

Here H„h represents the coherent interactions with laser
fields,

lraP Pang ~

i/i ——l fdE VEi PE

1/If = l fdE uz—fQF l Af Qf

lvE/ iiA lvE fyf

dEBE,,BEg

(2.8)

H„„=fbF IE)(E
I
dE+ f (ug; IE)(i

I
+H.c. )dE

+ f (vsj I
E & &f I

+H. c. )dE+b I I f & &f I

fdECF'laCE~fz . (2.9)

Using (2.8) and (2.9), the equation for cr can be written as

(2.3) ci =Lo, (2.10)

where in terms of Fano parameters q;, qI, and the au-
toionization rate one has

where the form of I can be written down from (2.9).
In terms of the operator L and the operators 6" and
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G'f' defined by

G"= dE] dE Bz,BE, E& E +H c. ,

(2.11)
G(f) = fdE, fdECE, CE, I

E) ) (E
I
+H. c. ,

we can write the basic equation (2.2) as

Bp
at

=Lp+ Ii )(i
I

I"(t)+
I f)(f II' '(t),

I' (t)=TrIp(t)G 'I, I f (t)=TrIp(t)G'f'I .

(2.12)

(2.13)

p«)=p" Ii &&i I+p' 'lf &&f
I

.

The solution of (2.12) can be written as

(2.14)

Let cr"(a( ') be the solution of (2.9) subject to the initial
condition g;=1, ff gE ————0 (gf =1, g;=pE ——0) and let
p(0) be the incoherent superposition of the states

I
i ) and

If&,

elements are similarly obtained. In Appendix A we
present the solution of Eqs. (2.9). Solutions for T ma-
trices are given in the Appendix B.

It should be borne in mind that the coherent interaction
(2.3) also describes the autoionization produced by two
strongly coupled autoionizing states. As discussed in Ref.
11, the matrix elements v„gives the strong interaction be-
tween two autoionizing states. Thus this alternate physi-
cal situation should be kept in view while dealing with re-
sults like (2.18) and those in subsequent sections.

III. INDUCED POLARIZATION
AND INTENSITY-DEPENDENT OPTICAL

SUSCEPTIBILITIES

The total induced polarization P for our model system
is given by

P(t) =Tr[p(t)d]

p( t) =a(~)(t)p(i)+a(f)(t)p(f)

+ dr [o"(t r)I"(7 )—
0

= f dE;pE;(t)e 'dE

+ dEfpEf t e 'dE+c. c. (3.1)

+a' '(t —r)I' '(r)] . (2.15)

The unknown terms from the right-hand side of (2.15) can
be eliminated as follows. We introduce matrices T E de-
fined by

T E(t)=Tr[o' '(t)G'E'] . (2.16)

Note that the first (second) superscript a (P) refers to the
initial conditions (the state to which spontaneous emission
takes place). From (2.15) we obtain equations for the La-
place transforms (denoted by carets) of various functions,

—Tf' r "' T"
1 —Tff If T jf

T fj (j)

T~ ff P(f) (2.17)

Thus the calculation of pott( t) involves the following steps:
(1) solution of (2.9) and then the construction of the ma-
trices o"(t),a' '(t); (2) calculation of T E [Eq. (2.16)]; (3)
calculation of I", I' ' [Eq. (2.17)]; (4) calculation of the
Laplace transform of p obtained from (2.15), i.e., from

a(i)(p(i)+I (i))+af(p(f)+I (f)) (2.18)

+[p'f'+I'f'(0)] j'( ) . (2.19)

Here aEE(oo) iS the Steady-State Value Of aEE(t) and
I "(0), I' '(0) are assumed to exist. Off-diagonal matrix

For a steady-state result it is sufficient to know the La-
place transforms. For example the probability of finding
an electron with energy E is given by

p(E)= lim pEE(t)1~00

= lim zpEE(z)z~0

=[p"+I "(0)]oEE(oo )

The matrix elements of p are to be obtained from the solu-
tion of the dynamical equation (2.2). In Eq. (3.1) the first
term gives the response at co& whereas the second term
yields the response at cu2. The steady-state response can
be obtained if

VjE —djE 1 Vj@BEg

VfE — dfE ' 62 —Ufg CEg
(3.2)

Ignoring vectorial properties of the matrix elements, we
can define the transient susceptibilities g"(t, tu) ),X' )(t,co2)

by

X"(t,tu() = —f v~EpE; (t)dE/c),
X' '(t, tu2) = —f vfEpEf(t)dE/e2 .

(3.3)

It should be borne in mind that (u( (cu2) is the field acting
on the transition

I

i )++I E)(
I f )~I E-)). These suscep-

tibilities can be obtained in terms of 1i)'s of Appendix A.
From (2.18) we have

fpE;(z)u;EdE =(p"+I "')fo E,'(z)u;EdE

+(p'f'+I 'f') f o g'(z)u;EdE,

which, on using the relation

foE;(z)v;EdE= f e "dt f v;EcrE;(t)dE

= f e "dt f uiE)t)E(t)itr, '(t)dE

= f e

"dt's&((t)g,

'(t),
simplifies to

(3.4)

(3.5)

lim d~EpE; t dE, lim dfEpEf t dE,
f~ oo t~ (x)

exist, otherwise one can calculate the transient response.
The dipole matrix elements can be expressed in terms of
the functions BE, and CE, given by (2.4)
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fpF;(z)vFdE=(p "+I"')f e "dt's", (t)P,"'(t)

+(p' '+I' ') f e "dt C'('(t)g," '(t) .

(3.6)
On substituting (3.6) in (3.3) we get the expression for the
transient susceptibility

X "'(z,cv, )

A. Linear susceptibility P"(co&) and the element m ~&

Consider the case when the field c2 is absent and initial-
ly the system is in state

~

i ), (p'f'=0, p"=1). We calcu-
late XI' by ignoring the radiative decay of the state

~

E).
Since Uzf ——0 and since the radiative decay is ignored the
matrix m becomes scalar with m»&0. From (A8) and
(A9) we have

dt p'+I ' z Ni t; t
Q 2

~ (.) lm i) ~(.) m»=z 1—
1+m» ' 1+m»

(4.1)

+[p' '+I' '(z)]c' '(t)P; '*(t)I .
To obtain susceptibilities, these are to be used in (3.7), i.e.,
in the equation

Similarly one can derive

X 'f'(z, cv, )

—zt
= —f dt, [[p"+I "(z)]+2'(t)gf'"(t)

(3.7) (4.2)

The linear susceptibility is obtained by evaluating
N&(t)g,*. (t) to second order in E~. From (A10) we see that
m» -O(Q;), i.e., O(c&) and hence we can substitute

+ [p'f'+i 'f'(z)]e ', '(t)q/'*(t) I .

@
&

——im», P;(t)-1(i)

to get

(4.3)

(3.8)

Transient susceptibilities can be explicitly evaluated by us-
ing the solutions given in Appendix A. No approximation
on the strength of either the field c] or c.2 needs to be
made.

The steady-state response denoted by X"(cv~), Y' '(cv2)
can be obtained from (3.7) and (3.8) in the usual manner.
The existence of the steady-state response depends on the
structure of the roots of det(1+ m). Since the time
dependence of P's and 4&'s is governed by the complex
zeros of det(1+ m), we will see that nonzero steady-state
susceptibilities do exist in a number of cases of interest
treated in Secs. IV and V. If the fields c& and c2 pumping
the two transitions are quite strong, then the system is ex-
pected to ionize completely in the long-time limit t~ ~.
In such a case the system is unlikely to show any coher-
ence, i.e., p~;(t)~0 as t~ oo. We will therefore consider
the situation when the field acting, say, on the transition

~

i )~
~

E) is of arbitrary magnitude but the field s2 is
weak. In other words, the behavior of the strongly cou-
pled system of states

~

i ),
~

E ) is probed by a weak field.
This is indeed the way in which most experiments are typ-
ically done. For example, recent experiments ' probe
strongly coupled autoionizing states (coupled either by dc
field or by spin-orbit interaction) by another weak field.
Thus one essentially needs to know X' '(cv2) to all orders
in the field c~ but to zero order in c2. It should be remem-
bered that the field c.

& may be either an external field or an
internal field.

IV. WEAK-FIELD SUSCEPTIBILITIES

In this section we examine the form of the susceptibility
in the limit of weak fields. We present results for the
linear susceptibility and Raman susceptibility. These sus-
ceptibilities enable us to interpret the elements of the ma-
trix m [Eq. (A10)] in a transparent way.

w (.)
lm»

X ' (z,coi)=
Ci

cirz

2
l

1 ——
q;

L

2Z +1—lar

1+ 2
qi

(4.4)

(4.5)

where (A10) has been used. Thus the element m, &
gives

the transient linear susceptibility associated with the tran-
sition

~

i )~
~

E). A number of linear and nonlinear ab-
sorption experiments can be interpreted in terms of the
steady-state susceptibility which has the simpler form

2i
/
d;, .E, /'

x"'(~, ) =
~', r

l
1 ——

qi

2

1+
q;

(4.6)

j''f'(z, ~, ) =
z =z —

iaaf

(4.7)

Note that the usual two-photon ionization to a flat contin-
uum can also be studied' in terms of the susceptibility
P" if we identify the intermediate state with the autoion-
izing state

~

a). Here I is to be identified with the rate
of ionization of the intermediate state.

B. Raman susceptibility and the element rn»

The Raman susceptibility can be obtained by calculat-

ing X ' '(z, co2) to second order in e~ and to zero order in c2

which leads to the well-known absorption profile.
Similarly the element m22 of the matrix m is related to

the transient susceptibility at co2 associated with the tran-
sition

~
f)~

~

E ),
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assuming that initially p"=1, p' '=0. Under these con-
ditions (3.8) reduces to

—zt

X 'I'(z, co2) = —I dt
2

@2'(t)QI"*(t),
Q 2

(4.8)

(i) m
m2 ———l

1+m

—im 2~

( I +m» )(1+m 2z ) —m &2m&i

pI'=(z+ibI) '(1+m) 2'i.
(4 9)

We also see that miq-O(QQ;QI), m»-O(Q;),
m2q —O(QI). Therefore, for the calculation of the Ra-
man susceptibility it is sufficient to use

4&2 — im2—i, fI ——(z+ibI) mb) .(i) ~ (i)

where the product @z'gI'" is to be evaluated to order
0;QI. From (A8) and (A9), g's and N's are known to be

Thus m2& is connected directly with the probability am-
plitude of finding the system in the state

~ f ) given that it
was in the state

~

i ) at t=0. Similarly m, 2 is connected
with the probability amplitude of finding the system in
the state

~

i ) given that it was in the state
~ f ) at t=0.

Elements such as m33 m44 are connected with the radi-
ative decay of the Fano state and this is shown in Appen-
dix C.

C. Effect of radiative decay processes on linear
susceptibility p"(co & )

We next consider how the susceptibility (4.6) is modi-
fied due to spontaneous emission from excited states.
We need to compute 4&i(t)itj; (t) to second order in Ei, zero
order in c2 but keeping the elements m33 etc., nonzero as
y;&0, yI&0. In the limit of weak fields (i.e., to order s&),
recycling effects do not contribute (I"=I' '=0). Using
(4.2) and the results from Appendix A, calculations show
that

2
1
2 (1—ia)

q;

2
1 i+ 1 ——

q;

P(g i a+i b,,)— (4.10)

where

a= —
(cubi E, ), —2

I' =2q;+6, ,

yf qi
Q =q n+—

I qf

(%=a—6, .

2

(4.13)

I q; I qI

g= —1+ + +1 yi yf yiyf 1

I' I I ~ q;

2

(4.1 1)
The absorption profile has the same form as that dis-

cussed by Shore. Parameters of the profile are now expli-
citly given in terms of the system parameters. Similar
considerations yield the modifications in the Raman sus-
ceptibility due to the nonvanishing of y; and yf.

Img "(co,) =— 1+r &; aI+g
Eig g +az (4.12)

where

The expression for X' '(cubi) is obtained from (4.10) by in-
terchanging the indices i and f and by replacing a by
(2/I )(~,+E&—E, ).

In the limit of large q~ao (radiative recombination
now negligible), one has a symmetric profile with a width
(r+y, +yI). For finite qthelinesareasymmetric. Note
also the asymmetry of the line with respect to the decay in
two channels, i.e., with respect to y; and yf. Figures 2
and 3 show the dependence of the imaginary and real
parts of P" on the radiative-decay processes. The struc-
ture of the absorption profiles is similar to Fano profiles
with radiation damping [as computed in I, Eq. (4.8)]
though they are not identical because y s&0. The imagi-
nary part of (4.10) can be expressed in a more instructive
form,

V. EFFECT OF STRONG COUPLING BETWEEN
TWO BOUND STATES

~

i ) AND
~

a )
ON OPTICAL ABSORPTION

rn
p(&) q

i

We now consider the intensity-dependent effects in op-
tical absorption. We will calculate the susceptibility
X' '(co2) which will depend on all powers of the electric
field at cubi, i.e., X'~'(co2) will give the linear response of the
system consisting of two strongly coupled bound states
which decay via either autoionization or field-induced
ionization. In addition we assume that the state can decay
via spontaneous emission. For this purpose one has to
compute quantities such as g; and C&~ to second order in
c2, i.e., to order Af but to all orders in 0;. The calcula-
tions are rather clumsy and hence we will present the re-
sults for various quantities needed in the evaluation of
X '(co2). Introducing the parameters p", p' ' defined by

1/2 1/2
(
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we find that

D)I (f) (f)
) '=D '(z)—det(1+ m

f the matrix m,D' are defined
'
in terms oHere s a

D(z) =(I+m44

(5.2)

(i) (i)Ip p I
m 34m43 ) 1+

2Z
D) ——(m33m44—

n
' ' '

ation D (z) reduces toOn simplification

z —z ),z I 2z .
(D '(z) = +1—ia (5.4)

44 ~ 34 43m ) 1++(m33+m33m44 — m
'

(5.3)
r E . (4.11)] and z~ aredefined earlier [Eq.where has been de ine

f the equationthe roots o

0,;
E —o!+A~ —l 'g +

(e+ —a) .
2

0, 2 yfl

a q;

2

—l CX'g—
2Q

q; =0,
(s.s)

(5.6)

(5.7)

e shown earlier tore known from
aneous-emission pfe structure o

und to beVarious P's antrum. ar an

(f) 3p p +
2 ( +'&f)D( )

LP
o((i 'f')'),

2zD (z)

2
D&PfI

2D(z+iAf
1

(z+i Af )

+o((i 'f~)4),

+o((&'f')') .
2D(. +,~, )

+

(5.8)

(5.9)
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On using (5.4) and (Alo) we find that @z'(t) has the struc-
ture

Q+Q+ Q+Q Q' Q++ ~ + g +
z+ +z+ z+ +z z+ +z* z +z'

C&2'(t)=Ae + +Be (5.10) (5.18)

lim @z'(t)=0 .f~ oo

(5.11)

The roots z+ are known from I where it was shown that
Rez+ &0 as long as y;, yI&0. For a realistic system y's
will never be zero though they may be negligibly small
and hence

2
P+ ———lim (z —z+)P,I z z+

Q+ ———lim (z —z+)Q .
2
I z z+

(5.19)

The steady-state susceptibility can now be obtained by us-

ing (5.11) and (5.13) in (3.8),

i@ f'P'I'1 D(( i hf )—X(f'(~, ) = [p(f'+I 'f'(O)]
2D( —

iaaf

)Ez
(5.14)

The function I'I'(0) now needs to be calculated to zero
order in nf. Equation (2.17) gives the function I (fI Set-
ting Qf =0 leads to (cf. Appendix 8)

T~~=O, TIi=0 (5.15)

and hence

I (f) (i)T if'( 1 T ii) (5.16)

The nonvanishing elements T', T" are obtained from
(82) and (83),

T'f(o) =2 P+P+ P+P+
++ + ++

P*P
+z++z*-

P P*

z +z*

(5.17)

It may be added that the two limits y~O, tab oo do not
commute. Physical ordering of limits obviously should
correspond to lim& olim, . The functions Nz

' and

pf (t) have oscillating contributions in addition to the de-
caying contributions and hence in the stead|i state only the
oscillating terms will contribute. Since N2 (t) is already
of order p' ', it is therefore sufficient to take

q' '(t)=e (5.12)

Using (5.9) and (5.12) we obtain the result

ii (f"rD, ( iaaf)—
lim f *(r)+', '(f) = — +O((p'f')') .

2D(

iaaf

)—
(5.13)

Thus P+ (Q+) are the residues of the function P(Q) at
the poles z+,

rP=
2

1/2 (i jm 43P

zD (z)
(5.20)

1/2 (i)
(M (m33m44 m34m43+m33)Q= (5.21)

2 D(z)

A. Probing of laser-induced continuum
structure —optical mixing of a bound state

and an autoionizing state

Our final expression for the intensity-dependent suscep-
tibility is given by (5.14) with I'f' determined by Eqs.
(5.16)—(5.21). This will now be used for specific applica-
tions. The frequency dependence of X' '(co2) is deter-
mined by the roots of D( iaaf) w—hic.h depend on the
coupling between

~

i ) and
~

E ), i.e., on the strength of
the field one and the frequency coI. The susceptibility
P(f'(co2) acquires a doublet structure, the resolution of the
doublet depends on E&, coI, and the q values of the transi-
tions.

From (5.14) we find that X' '(co2) =0 if p' '=0, p'"= 1,
and if spontaneous emission is negligible. The Raman
susceptibility is zero if the radiative decay of states is
negligible and if the transition

~

i )~
~

E) is strongly
pumped. The susceptibility X(f'(cuz) is nonzero for
p' '=1, p"'=0 even if y;-y~-0. In the conventional
language this situation corresponds to inverse Raman ef-
fect.

In the limit y;=@I——0, we can obtain a much more
transparent expression for the intensity-dependent suscep-
tibility X' '(co2). On simplification Eq. (5.14) leads to

x(f'(~, ) =
i I Qg

2&2

(5—a)(5+ 2qf +iqf ) —q; 0; —1
q;

(5—s+)(5—s )
(5.22)

where

25= (Ef+co2 E, ) . —— (5.23)

%'e now present numerical results for the dependence of
P'~' on the intensity 0; and the radiative-decay parame-

I

ters. The typical dependence on these parameters is
displayed in Figs. 4—8. Figures 4 and 5 give the behavior
of the imaginary and real parts of 7'I' when the radiative
decay is negligible. The real (imaginary) part of X is typi-
cally dispersive (absorptive) in nature. Figures 4 and 5
show the very narrow resonance in optical absorption cor-
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FIG. 4. Absorption profiles (proportional to Imp'I') for two
strongly coupled autoionizing states for y; /I =yf /r =0.00 '.
Different curves are labeled by the values of 0,;. The scale on
the right corresponds to the curves on the right side of the cen-
tral line. The behavior in the region where there is a minimum
is not shown though the minimum values are nonzero.

responding to system parameters such that

(5.24)

This spike is well known' ' in related studies on the
spectrum of photoelectrons obtained by strong field-
induced autoionization. Figure 6 shows the sensitiveness
of the optical absorption on the tuning of the field. For
the problem of two strongly coupled autoionizing levels,
Figs. 4 and 6 show how the absorption can differ depend-
ing on the relative location of the two autoionizing levels.
Note the presence of two interference minima in Fig. 6.
Deng and Eberly have discussed the presence of two
minima in the photoelectron profiles when both the tran-
sitions are strongly driven. Figures 7 and 8 give the
behavior of absorption profiles and dispersion profiles for
nonzero y values.

B. Two strongly coupled autoionizing states either
by dc field or by internal interactions

Recent experiments ' on the inhibition of autoioni-
zation are essentially connected with a real root of the po-
lynomial (5.5) for certain values of the coupHng between
the two autoionizing states and the relative separation be-
tween the two states. We now obtain explicitly the result

FIG. 5. Dispersive properties of the susceptibility g' '(~2) for
two strongly coupled bound states for same parameters as in
Fig. 4.

0;~0, q;~ op, 0;q; =const=Qo (5.26)

in the expression (5.22). The relevant susceptibility is then
found to be

X'f'(co )= iI Elf [(6—a)(5+2qf+iqf ) —Qo]

2E2 (5—e+ )(5—E )

where c.+ are now given by the solution of

c, —[a—ije —Qo —ia=O .

(5.27)

(5.28)

We can now study the behavior of X' '(co2) as a func-
tion of dc field strength Qp. We show some typical results
in Figs. 9 and 10. The general behavior of Imp'I' is in
agreement with the observations reported in Ref. 7. The
imaginary part of the susceptibility (5.27) is identical to
the expression for the photoelectron profiles as calculated

for the situation discussed in Ref. 7. The state ~i ) is a
real autoionizing state. We assume that its autoionization
is negligible, i.e., we take the limit UE;~0. The parameter
a now becomes the relative separation between two au-
toionizing states. The dc field connects the states

~
i)

and
~

a ). Let Qo be the strength of such interaction, i.e.,

4 2

Qp —— (5.25)r'
We can obtain the intensity-dependent susceptibility for
the situation of Ref. 7 by taking the limits"
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K3(E)=
2

1/2

(z +id, ~) 'BE, ,

L3(E)= BE

1/2

Ki(E) =uE;[z(z+ibF)]

Li( E)=vg;= v~,

K2(E)=v~f(z+iA~) '(z+ib, )z+ibf )

L2(E)=vFf,
' 1/2 (A4)

K,(E)=
2

Cg, (z+ih~)
APPENDIX A: EXPLICIT CALCULATION

OF THE AUXILIARY MATRICES o.

In this appendix we resentpresent the solution of Eqs. (2.9)
g p

qs. .9) and on forrnall
th t i)'j (0)=0E ——0, we get the equations

itj; =z 'i';(0) iz ' f dE—ug;i'~, (Al)

itjf =(z+ihf — f) irjf(0) i (z +id—)
' dE *f u+f itjF, (A 2)

4

pE, + g fdE K; (E, )L; (E)g
i=1

i 1 i E

iKi Ei Q;(0) iK2—(Ei)ij'jf(0) . —(A3)

Here the functions E d I.an are defined b

L4(E)=
2

1/2

CE, .

The inhe integral equation (A3) can be solved
l ~ lk o y y ~

defined by
ra e ernel. In terms of 4&4 matrix m

mji =fL j(E)K. ;(E)dE, (A5)

one finds that itjE is given b

j
Kj E)[(1+m)j.i'P;(0)+(1+ )m j2 f(0)] .

As

(A6)

tion also involve th
t e calculations discussed in Sec. III h ons of the polariza-

ve e quantities N defined by
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4; = fL;(E)QFdE .

Using (A3) one finds the solution for @'s,

(A7) a — (co] E ) 0 —
I up]I nf — IUFf I

(A 1 1)

k.= —i g;(0)—iJ 1+ i
g1

We can rewrite f;,gf in terms of @'s as

P; =z '[f;(0)—i4]],
qf =(z +iaaf ) '[ljlf(0) i@—2] .

Pf(0) . (A8)
1+m

(A9)

2 2
m33 I d;, .e]

Viz

The structure of the m matrix depends on the energy
dependence of the matrix elements vE;, i.e., it depends on
the structure of the continuum. For a Aat continuum vE;
can be taken to be energy independent. However, for our
system the continuum described by Fano states

I
E) is

not flat, though the original continuum [described by

I
E)] is flat. Equation (2.4) gives the resonant structure

of the matrix elements. We assume that vE; are approxi-
mately energy independent. Calculations then lead to the
following results for the various elements of m:

I
da. a] I'= rq;

2
n, ,

rqf
f

(A12)

limzm]](z)= lim fz~0 z 0 (z +id p)

The parameter 0;(Qf ) is a measure of the strength of the
transition from the state

I
i ) (

I f ) to the continuuin of
states

I
E) caused by a field with amplitude e] (e2). It is

the rate of ionization (measured in units of I ) of the level

I
i ) due to the applied field with amplitude e;. In Sec. IV

and Appendix C we show how various element of m cor-
respond to the elementary processes among the unper-
turbed states of the system. Note that the elements of m
are already in terms of the matrix elements of various in-
teractions between the Fano continuum

I
E) and the

states
I

i ) and
I f ) . More explicitly, one has the rela-

tions of the form

(d;, .e])m33 m3]zm13 =

2 2
m22 —— m44 I dfa E2 I

yf (z +i i]].f
1/2

2

IuE, I'dE= Iu~; I' iPf—
EX

(A13)

m14 =

m23 =

1/2
2

(df el)m44 —m43(z+ib f )

Vf
' 1/2

2 m34
(d;a.e] )m34 —m4]z

m43

1/2
m43

(dfa' e) lm4 —3 m32(z+lf]]f)
m34

2
m2] =(d;, .E])(df, .e2)

z 1;1f
2

E

1 ——

m43

Fl
m33 ——r + 22z + I —I.ar

2

2
m ]2

——(d;, .e])(df, .e2)
(z +lief

(A 10)

APPENDIX B: CONSTRUCTION OF T MATRICES

We now use solutions from Appendix A to construct T
matrices as defined by (2.16). Let g" (f] ') be the solu-
tion for the functions g corresponding to the initial conc]i-
tion f;(0)=1, ]ijf(0)=0 [gf(0)=1, g;(0)=0]. Thus the
superscript on functions such as g and &5 will indicate the
initial condition. From (2.8) one then has

tJ"p(t) =P"(t)Pp" (t),a p(t)

=@.'f'(t)@'j"(t) .

The T matrices then acquire a factorized form, for exam-
ple,

T"(t)= fdE] fdEBz, aBzaa~s, (t)+c.c.

fdE]BF',ag'F', *(t)fdEBEa@~'(t)+c.c.
2

fdEBpagg'(t) +c.c. ,

Vf
m44 = r +'+1—iar

which on using (A4) becomes

T"(t)=2
I fdEL3(E)P'F'(t)

I

=2
I
@"(t}

I

' (B2)

&);rf
m 34 m43 r 2z

r +1—ia qiqf
T '(t)=2I+'3'(t) I', T' (t)=2I4'4'(t) I'
T (t) = I24 '(4t)

I

' (B3)

where (A7) has been used. Similarly other T matrices are
obtained,
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For completeness sake we record 4I) 's, f~'s as obtained
from Eqs. (A8) and (A9),

(B4)

where

A,
~

= iE—, A~ — BE,~BE~QEdE .

We next introduce the function f ( t) by

f(t)= fdEBE QE(t) ~

(C4)

(C5)

Using (C4) we find the Laplace transform of the function
(t),

APPENDIX C: BUILD UP OF POPULATION
IN THE GROUND STATE AND THE ELEMENT m 33

fBE,a f

f(z)= 1+ fdEi
2 z+iE)

A-(0»E.fdE
(z+iE)

In order to see the physical meaning of the matrix ele-
ments m33 etc. , let us consider the case of only the radia-
tive decay of the Fano state in the absence of any exciting
field, i.e., we set P;(0)=gf(0) 0, f~(0)~0, 0;=Af 0——
For simplicity we also set yf =0. Then using (2.2) we
find that the population in the state

f
i ) builds up accord-

ing to

(C7)

From Eq. (AS) we also have

The rate of change of the population in the ground state
can be expressed in terms off ( t),

P;;=1';1«t) I'.

pj's
= dE& dE2 E& g~E2 gpE2E~ +C.C. (Cl) y, IBEa f'

m„= ' fdE, z+iAE
(C8)

Xl dE +E2a~EaPE& E (C2)

where pE z is to be obtained from the solution of the
I 2

equation

Vl
pE, F., = t(E, E2—)p—E~E2

— dE BF oBF.opEg
2Z 2 Vl= ——E.— 1+

Iq;
1+ 1 ——Xi 2l

I q;

From (C6) and (C8) it is evident that the time dependence
of f ( t) is determined from the zeros of 1+ m», with
m33 computed with co& ——0, i.e., from

Equation (C2) admits a solution of the form

pF. , E,(t) =QF. , (t)QF. (t), (C3)
This thus establishes the importance of m33 in the prob-
lem of the radiative decay of the Fano state

f
E ).
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