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g-Hartree ab initio calculation of ionization energies of Ca (Z=20}

Masahide Ohno
Physikalisches Institut, der Universitat Bonn, Nussa1lee 12, 5300 Bonn 1, 8'est Germany

(Received 22 October 1986)

The main atomic ionization energies of Ca (Z =20) are calculated by the g-Hartree method. The
agreement between theory and experiment is excellent. A detailed comparison of present method
with other approximation schemes is made.

I. INTRODUCTION

During the last decade, the ab initio calculations of ion-
ization energies (potentials) by many-body formalism have
attracted much interest. ' In contrast to conventional
configuration-interaction (CI) and multiconfiguration
self-consistent field (MCSCF) methods by which one ob-
tains the ionization energy as a difference in total ener-
gies, the ionization energy can be obtained directly by
many-body formalism. The results are often more accu-
rate than those obtained by conventional methods. This is
mainly because of a more balanced treatment of both ini-
tial and final states.

Recently the new systematic scheme for the ab initio
calculation of the transition energy was proposed within
the framework of the g-Hartree mean-field method. The
g-Hartree method is a mean-field method derived exactly
from the fully relativistic QED action by using the func-
tional integral method. The g-Hartree mean field allows
for optimization according to the physical quantity of in-
terest: g can be chosen such that correlations (defined by
deviation from the results predicted by the independent-
particle picture) vanish. The determination of optimal
mean field requires the solution of a nonlinear self-
consistency equation and is fully ab initio, parameters are
the fine-structure constant and the electron mass. This
g-Hartree method was extended so that the electron ener-
gy levels in this mean field, i.e., the eigenvalues of the g-
Hartree equation, are equal to the theoretically exact ioni-
zation energies: An exact version of the Koopmans
theorem was derived. The Koopmans theorem original-
ly derived for Hartree-Fock (HF) formalism has no physi-
cal relevance in the sense that the correlations are com-
pletely neglected in the HF theory. This mean field is
determined by a perturbative calculation of g. The major
advantage of g-Hartree transition energy calculations is
that the method is fundamentally based on a renormaliz-
able algorithm derived from the QED action in a rigorous
manner. The computations proceed by a systematic
hierarchy of approximations.

In a previous work, it is shown that the results ob-
tained by the g-Hartree second-order calculations give ex-
cellent agreement with experiment for the atomic levels of
He (Z=2), Li (Z=3), Be (Z=4), Ne (Z=10), Mg
(Z=12), and Ar (Z=18). With an increase in atomic
number, more dramatic many-electron effects are expect-
ed in the photionization spectra from localized core levels

from atoms and solids. Pronounced final (ionic) -state
correlation effects are found for the Ca (Z=20) M-shell
ionization due to a drastic change of the 3d wave function
which is drawn closer to the nucleus by the stronger cen-
tral field experienced when an M-shell electron is ejected.
Many-body calculations using HF basis sets show that in
particular the relative intensity of the 3s main ionic state
is reduced significantly and shifted as much as -4 eV
from the relativistic Hartree-Fock ASCF binding energy
(where b,SCF represents the change in the self-consistent
field) due to strong mixing of the 3s hole with the
3p 3d 4s configuration. ' ' When the experimental
atomic data for the binding energies are not available as in
the case of the 3s level of Ca, it would be very important
to be able to predict accurately the atomic ionization ener-
gy. In the present work the major atomic levels of Ca
(only main ionic states) are calculated by the g-Hartree
method using the g-Hartree computer code recently
developed. The results obtained for the main ionic states
are in excellent agreement with the available experimental
and estimated atomic values. The results for the atomic
level of He (Z=2), Be (Z=4), Ne (Z=10), Mg (Z=12),
and Ar (Z=18) by the new g-Hartree code will be report-
ed elsewhere. '

II. THEORY

E=E~ [n ] (2.3)

We repeat briefly the derivation of the g-Hartree per-
turbative expansion for transition energies in atomic states
(see Ref. 6 for a more detailed account). We note that we
use the full relativistic QED action as the starting point;
however, we present the derivation within the simplified
model defined by the nonrelativistic action. The quantity
to be evaluated is the partition function

z(p, l )= juqe'(~), (2.1)

where p denotes the chemical potential, p is the inverse
temperature (kT) ', and S is the action. The ground-
state energy is given by

E= —lim P 'InZ . (2.2)
P~m

We expand the partition function around a "time"-
independent field which is not assumed to be a stationary
point of the functional integral. We note the total energy
as
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(2.4)

to indicate the dependence on the atomic configuration n

and the field around which we choose to expand perturba-
tively. Note that the total energy does not depend on yo
around which it is expanded but the degree of approxima-
tion by a finite number of terms does indeed depend on

(i) (f)For the transition [n' I~[n I, a transition energy
can be written as

hE =E (I&[n' '] E„—&[n"] .
0'0 (I(('0

Here the reference fields for the perturbative expansion
qo(')(X, X } and qo(I)(x, x) can, in general, be chosen dif-
ferently. Our present choice is the following:

Vo po p H[n"-1(i) (f) (2.5)

where the g-Hartree field is obtained from the g-Hartree
equations for the initial configuration I

n" I, i.e.,

Dk;„+ V,„,(x)+ gn" Jd x'V(x, x')[g
~ g (x')

~

—(1—g)g (x)g*(x)"] fp(x)=zygo(x) .
a

(2.6a)

V(x,x') =
2

/x —x'/
(2.6b)

Here Dk;„ is the relativistic or nonrelativistic kinetic energy of free electrons and V,„,(x) is the nuclear Coulomb poten-
tial.

The graphical representation of the total energy for the initial and final configurations [
n"

I and I n '~
I are

E...-~(~-")=X~-"~-—,f O-O + M) ——'g'() 0+g(( —g)~
——,'(1 —g)2~——,

' + —,
' ~ (2.7)

and

E [nP]=gags, + —,'g ~——,'(1 —g) —g '& + —,'(1 —g) ~——
gog- a a a 2 2 (f) (f) 2 (i)

+ ~ — +g(1 —g) ~— ~——,
'

2 (i) 2 (f) (f) 2 (f) ' (f)
'

(f)

—g(1 —g) ~ 9 —g(1 —g) ~ ~g ~ ) (( —g)
(f) (f) (f) (f)

O-O-O+, (1,) ~ '-g' (:(9
2 (f) (f) 2 (f)

(2.8)

Here the graphical notations are

V(x, x')|)(r—r')
X, T X,T

g (X)X'ir)
l t ((g v. )=—'

X, T X,T

I 4 xt e
l(ca P)tt

bE= g(n'~' —n") +eg E "(g;n "~n'~)), (2.10)

where the index i counts the number of instantaneous
Coulomb interactions. We determine g& such that contri-
butions of correlations to the transition energy vanish,

(2.11)

K(x,x;7 —7 ):=
X, T X,T

x[@r)—n ] I (= (.—.) (29)
We then have

SE = g(n.(I) —n(.")e. (2.12)

g (n I —n'")g (x)it) (x')5l~ —r'),

where a:=b represents a defined by b. Here the crossed
electron propagator in (2.9) in the g-Hartree field
represents the instantaneous propagation of levels which
change in the transition [n" ]~In'I'I. En general the
transition energy hE can be written as

n" =n' ' for a~ao,(i) (f)

n" =n ' '+ 1 for d. =ao .(i) (f) (2.13)

to be prescribed order K of electron-electron interactions;
an exact version of the Koopmans theorem.

For the single-hole ionization energy we take
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Then we obtain

AE =c. (2.14)

For the Auger transition (i '~j 'k 'el) energy, we ob-
tain

AE=c; —c. —c.k .J (2.15)

III. RESULTS AND DISCUSSION

The present results for Ca by the g-Hartree method are
listed in Table I with the theoretical results by other
methods. The agreement of the present results by the g-
Hartree method with the experiment is excellent. First,
we should comment on the experimental data quoted here.
The experimental data for 3p and 4s levels are taken from

Here E„(x=i,j,k ) are the eigenvalues of the singly ionized
(i ) hole state. We determine numerically g~ by solving
the g-Hartree equation (2.6) and Eq. (2.10) alternatively in
an iterative routine. Note that the energy level c are the
eigenvalues of the g-Hartree equation obtained for g =g&.

In the present work we performed the second-order g-
Hartree calculations as in a previous work where we ob-
tained excellent agreement with experiment. The Dirac-
Hartree-Fock computer code by Johnson' was adapted to
the g-Hartree approach. This new g-Hartree code was
used to generate basis sets necessary for the calculations
of diagrams. Numerical accuracy and reliability of virtu-
al (discrete and continuum) orbitals is improved. Further-
more, the new version of computer code for numerical
evaluation of g-Hartree diagrams was developed for the
present work. ' Magnetic contributions to the ionization
energy are computed by using self-consistent g& orbitals.
They turn out to be negligible for the atomic levels con-
sidered. Note that we neglect antiparticle states in the
spectral sums of Eq. (2.10). This is equivalent to neglect-
ing dynamical relativistic corrections which are of great
interest in the study of the quantum structure of the phys-
ical vacuum. '

the atomic data. ' ' However, as the atomic data for
the 2s and 3s levels are not available, they are approxi-
mately obtained from the solid-state data by using the
theoretical atom-solid binding energy calculated by
Johansson and Martensson ' (within the accuracy of -0.5

eV).
Here we comment briefly on the methods used for other

theoretical results listed in Table I ~ Dirac-Hartree-Fock
(DHF) eigenvalues (so-called Koopmans energy) are ob-
tained by solving a DHF equation. DHF ASCF energies
are obtained as the differences of the total energy of the
neutral ground state and ionic state calculated separately.
The DHF ASCF results improve the results; however, the
correlations are completely neglected. The deviation from
the Koopmans energy (corrections to the Koopmans
theorem) is interpreted in terms of relaxation (correla-
tions) and calculated by perturbation theory. The
methods to calculate the corrections to the Koopmans
theorem by using the Hartree-Fock-like basis sets can be
in general categorized into two major approaches. One is
the configuration-interaction (CI) method by which one
expands the fixed one-particle basis set in terms of a large
number of configuration. The other one is the Green's-
function method by which one obtains the ionization ener-

gy and intensities as the pole and its residue of the one-
particle Green's function. (See Ref. 6 for the extensive
compilation of methods employed for the ionization ener-

gy calculations of small atoms. ) Walter and Schirmer'o
used the one-particle Green's-function method within the
framework of the extended two-particle —one-hole (or
two-hole —one-particle) Tamm-Dancoff approximation
[2p-1h (2h-lp) —TDA] method. By employing the self-

energy which is exact up to the third order of perturbation
theory, this method overcomes the major shortcoming of
the 2p-1h —TDA method: neglect of some third-order
contributions of the energy-dependent self-energy which
are related to the ground-state correlation. In other
words, the ground-state correlation is only partly account-
ed for. Their extended 2p-1h —TDA method also gives

TABLE I. Theoretical and experimental ionization energies of Ca ( Z=20) (units of eV).

Level

2s

3s

3p Ir2

3p3r2

4s

g-H (go)

448.8
(g =0.8882)

53.88

(g =0.9324)
34.62

(g =0.9341)
34.26

(g =0.9341)
6.38

(g =0.9493)

DHF
(Koopmans)

461.7

61.55

36.71

36.29

5.34

DHF ASCF

450.0

58.78

34.00

33.62

5.14

2p-1 h —TDA'

53.89

34.43

6.13

2p-1A —CI

52.16
(51.03)
32.88

(32.77)

5.07

RPAE'

54.4

Expt.

448.2

53.89

34.67
34.66'
34 33
34 31'

6.11~

'Reference 10.
Reference 11.

'Reference 12.
Reference 18.

'Reference 9.
Reference 19.
Reference 17.
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excellent agreement with the experiment.
Because of relatively lower accuracy of treatment of

satellite states by the 2p-1h —TDA Green's-function
method, De Alti et al. " have performed 2h-1p space CI
calculations. Their results are in excellent agreement with
the results by the 2h-1p —TDA method for the energies
and intensities of shake-up states due to a more uniform
treatment of all ionic 2h-1p states. However, as shown in
Table I, their results tend to underestimate the main ioni-
zation energies. In these two methods, because of the dif-
ficulties stemming from the incomplete set of virtual HF
orbitals, the double-ionization continuum states are not
properly treated. However, the effects of the coupling to
the continuum results not only in a broadening of the en-
ergy level but also in an energy shift. The one-particle
Green s-function method which explicitly includes the in-
teraction with the continuum has been used extensively by
Wendin and Ohno. The self-energy is calculated
within the framework of RPAE (random-phase approxi-
mation with exchange). This method has been extensively
applied to calculate the x-ray photoemission, x-ray emis-
sion, and Auger-electron spectra of several localized core
levels of a wide range of atomic elements. The results cal-
culated by the author using this method are also listed in
Table I. The detailed account of the method and results
will be published elsewhere. '

In the methods mentioned above one includes the
higher-order corrections by summing up the selected dia-
grams to the infinite order (RPAE), or exactly to the third
order (2p-1 h TDA) for the self-energy, and then by an in-
finite partial summation of the self-energy via the Dyson
equation. However, the present g-Hartree calculation is a
truly second-order determination of the optimal mean
field. Furthermore, none of the other methods is funda-
mentally based on a renormalizable algorithm derived

from the QED action in a rigorous manner. In general,
with the perturbation approaches using Hartree-Fock-like
basis sets, there is no control over (or estimate of) the next
order of approximation. It should be noted that a third-
order calculation does not necessarily improve the
second-order result [e.g., for the Ne ( Z= 10) case see Refs.
26 and 27]. However, the g-Hartree method allows for a
certain control of higher-order contributions (see Ref. 6
for a detailed account). We refer to a previous work for
further detailed discussions on the g-Hartree method in
comparison with other approaches.

IV. CONCLUSIONS

g-Hartree ab initio calculation of main ionization ener-
gies of Ca (Z=20) shows excellent agreement with experi-
ment. The present g-Hartree ab initio calculation is truly
second order in contrast to the other theoretical results
obtained by the methods which include the higher-order
terms.

In the present work we limited ourselves to the calcula-
tion of the ionization energy of main ionic state; however,
the present formalism allows us to calculate the shake-up
satellites and Auger excitation energy. We leave the g-
Hartree ab initio calculation of shake-up satellite and
Auger excitation energy to the future.
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