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Photodissociation cross sections for both H2 and D2 above the H(n =1)+H(n =2) threshold are
presented. The partial cross sections into H(1s)+H(2s) and H(1s)+H(2p), obtained by full numeri-
cal integration of coupled Schrodinger equations, show pronounced oscillations as a function of the
excitation energy. These oscillations are the result of a quantum interference effect between two dis-
sociation paths leading to the same final state. The condition for this interference to occur is the ex-
istence in the Franck-Condon region of two dissociative states (B and B in the case considered in
this work) which can be excited at the same energy and which are coupled to each other by some
nonadiabatic or other electronic interactions. The relationship between the full numerical calcula-
tion and the "half-collision" approximation is analyzed in detail. In addition, the predissociation of
the D state, which occurs in the same spectral region, has also been studied. The line shapes ob-
tained by solving the appropriate coupled Schrodinger equations are compared with those calculated
by the use of perturbation theory. It is shown that, in order to have good agreement with the exact
results, it is important to take into account contributions which are usually neglected, namely the
contributions from the discrete spectrum of the final dissociative channel. Finally, the branching ra-
tio Q=o(H2~H(1s)+H(2p))/cr(H2~H(1s)+H(2s)) in the case of predissociation has been calcu-
lated and compared with other published calculations.

I. INTRODUCTION
H(n=3) + H{»)

The hydrogen molecule provides an ideal test case for
the theory of photofragmentation. Since the potential en-

ergy curves, ' adiabatic corrections, electronic cou-
plings, and transition dipole moments' ' are well
known, accurate calculations of photodissociation cross
sections, ' line shapes, ' ' electronic branching ra-
tios, ' angular distributions, ' as well as polarization of
the photofragments fluorescence, ' can be performed and
compared to experiments. With the development of syn-
chrotron radiation sources and vacuum uv (vuv) lasers, it
is now becoming possible to measure those quantities in
great detail.

Although many experiments and calculations have been
conducted for Hz, there are still several questions which
remain open. Consider, for example, the photon excita-
tion in the range around 14.5 eV (A, -845 A). In Fig. 1

the relevant potential energy curves, as calculated
by Kolos et al. , ' are represented. If the molecule is ini-
tially in its ground state, several excited electronic states
can be populated through electric dipole transitions which
lead to dissociation of Hz into H(ls)+H(2s, 2p) frag-
ments: B, B', C, and D.

The B, B', and C states dissociate directly while the D
states, which is bound in this energy region, predissociates
through Coriolis coupling to the B' state. Interference be-
tween direct dissociation into the B' continuum and

) + H{ls)
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FIG. 1. Relevant potential energy curves for the lowest sin-

glet states of H2 from Refs. 1—4.
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predissociation of the D state leads to a unique example of
Fano-Beutler resonance line shapes in molecular dissocia-
tion. Detailed studies of the linewidth, line shift, and
asymmetry parameter of those resonances are important
by themselves in order to test the applicability of pertur-
bation theory in the continuum. In addition to the cou-
pling between the D and 8' states, the 8 and 8' states are
coupled by the radial nonadiabatic interaction (d/dR) at
large internuclear distances ( —15ao). ' One may
wonder whether this coupling affects the photodissocia-
tion cross sections and the absorption line shapes.

It is well know that the branching ratio

II =o (H2~H( ls) +H(2p) ) /o (H2~H( ls) +H(2s) ),
of the fragments is strongly modified by the nonadiabatic
coupling between the 8 and B' states. ' ' ' In the adia-
batic approximation the 8' state is correlated to
H(2s)+H(ls) fragments while the B state correlates to
H(2p)+ H(ls) fragments. As the D state is coupled to the
B' state, its predissociation should produce only H(2s)
fragments if the adiabatic correlation applies. The
predicted value for 0 would then be zero in contradiction
with the measured value of 0.75. In the energy regions
between resonances, where only direct photodissociation
exists, the two continua 8 and 8' are populated. We
show in this paper that in this case new interference ef-
fects occur which lead to drastic changes in the branching
ratio Q. It is suggested that these effects can eventually
be seen in experiments.

Another interesting question concerns polarization of
the Lyman-a fluorescence from the fragments, i.e., the

transition H(2p)~H(ls) of the excited H fragments. In
this case one has to consider in addition to the 8 and 8'
states the C state which also correlates to H(2p) frag-
ments. In this paper we shall concentrate on the photo-
dissociation cross sections, the calculation of fluorescence
polarization will be presented elsewhere. ' ' '

We have utilized the "artificial channel" method
developed by Shapiro, to obtain the photodissociation
cross sections and branching ratios. The problem is writ-
ten in terms of coupled channel Schrodinger equations

which are solved by standard scattering techniques. Since
the latter are usually designed for second-order differen-
tial equations without first-order derivatives, we have
used Smith's rotation in order to transform the nonadia-
batic couplings between 8 and 8' into potential couplings
between "diabatic" 8 and 8 ' states. Calculations were
performed for both H2 and D2.

The paper is organized as follows. In Sec. II we present
the general equations and the methodology. In Sec. III
the results for photodissociation of H2 and D2 in the
845—820-A excitation region are presented and discussed.
Finally, Sec. IV is devoted to the conclusions, comparison
with the existing measurements, as well as a discussion of
some further experiments to test our predictions.

II. GENERAL THEORY

We consider a general one-photon dissociation process
from an initial bound state

I g; ) with energy E; to a set
of final linear independent continuum states

I pfE) with
total energy E. For low-intensity fields, the partial disso-
ciation cross section into channel f for a photon energy~ is given by

f(~)=
I &4 ls elffE) I' &=& +~4' (fuu)

Ac

where p is the electronic dipole moment and e the light
polarization vector. In writing Eq. (1) we have assumed
that the continuum wave function

I gfE) is energy nor-
malized. We shall now specify the wave functions fur-
ther. Here, Hund's case (b) wave functions are appropri-
ate. We thus have quantum numbers X, A, and M corre-
sponding to the total angular momentum without the spin
(N=J —S), its projection onto the internuclear axis and
projection onto the laboratory Z axis, respectively. For
H2 the initial state has A; =0 and S=O. In usual experi-
mental conditions all initial M" sublevels of the initial
levels are equally probable, and if we are not interested in
angular distribution we sum over all final X' and M' final
states. We thus have for linearly polarized light

Oiu "N"~fA'E g ~iu"N" ~fA'N'E
N'

4ir (iri~) (2N + 1)
N' 1 N"

oiu"N" fA'N'E gA' A' A' p I &+iu"N"
I
O'A'

I ~fEN ) I
A'c 3

(2)

where g~ ——1 for a X final state and 2 otherwise. In Eq.
(2) iMA (R) is the A' tensorial component of the transition
dipole moment (i.e., A'=p and for a X-X transition and
A'=1 for a Il-X transition), X;„-N (R) is the bound vibra-
tional wave function for the initial state and XfEN (R) is
the continuum wave function for the final dissociative
state f with total energy E and angular momentum N'.
For a finite temperature T, the partial photodissociation
cross section into channel f is the Boltzmann sum of Eq.

(2) over the initial distribution of U" and N". Finally, the
total photodissociation cross section will be the sum over
all final electronic open channels f.

Two different methods have been used recently to cal-
culate the matrix elements of the transition moment be-
tween an initial bound and final coupled dissociative wave
functions. One can, for example, calculate independently
the bound wave functions and solve the coupled equations
for the continuum with the appropriate boundary condi-



35 INTERFERENCE EFFECTS ON THE H(2p) TO H(2s ). . . 3341

d 2$

where the P are adiabatic electronic wave functions, the
transformation which is required is such that

dM
dR

If the coupled equations in the adiabatic basis set were

(4)

tions. The matrix elements are then calculated by direct
integration. The integrator used for solving the coupled
equations needs to provide explicitly the continuum wave

29-31 Another alternative procedure, developed
1 a set ofby Shapiro, consists in solving simultaneously a set o

coupled equations including the initial and the final states
together with an artificial open channel which simulates a
feeding channel. With this method the wave functions do

d t be calculated explicitly and the boundary con-
1 of theditions are automatically fulfilled. For detai s o e

method see Ref. 32.
Actually, all these methods are usually designed to han-

dle coupled channel equations in which the couplings are
all given by potential functions. When nonadiabatic cou-
plings of d/dR type have to be considered, it is necessary
to perform a transformation to a new basis set in whic

~ ~

those couplings become potential-like. This is the case for
the coupling between the B and B' states in Hz (see Fig.
2). Defining

d
r ff ' (R ) — r f'f (R ) —Ijkf()) (i) f

+ V(R) —r'" — r"' E—X(R)=0,d
2p dR2 2p p dR

then in the new basis

X =MX

the coupled equations become [using (4)]

2 2

2p dR'

d~"'
M ~~']-

2p dR
—(r'") M ' E+—=0,

(7)

and the first derivative operator has been eliminated. In
order to find M, Eq. (4) has to be solved. Since it is a
first-order differential equation, the solution is determined
up to a constant matrix which can be fixed by choosing
one point R * where the two bases, adiabatic and diabatic,
are made identical. In the calculations presented in this
work this point has been chosen far in the asymptotic re-

ion Thus the two bases are the same at R ~ ao.
~ ~

1-Two approximations have been implemented in our ca-
culations. First, only the B and B' states have been con-
sidered to be coupled by nonadiabatic interaction, while
the B" state has been decoupled (see Fig. 1). This is
reasonable for energies just above the threshold like those
considered here since the B"channel state is energetically
closed and lies well above. For a two-state case, the ma-
trix M is

0

D

0

-0.2

cos[y(R)] sin[y(R)]
—sin[y(R)] cos[y(R)]

and integration of Eq. (4) with the condition that the two
bases being equal at R ~ oo, gives

y(R) = f r2, '(R')dR'= f i')'i'(R')dR' .

-2- -0.1
Secondly, we have neglected the terms in parentheses in
E . (7). Estimation of their contribution yields in our
case very small corrections. Notice that if the closure re-
lation is used:

-0 d~'"
+(r" ')'

dR
(10)

-4
5 10 15 20 R(a. )

FIG. 2. Asymptotic behavior of the B and 8' potential ener-

gy curves (from Refs. 1 and 3) and nonadiabatic coupling (in
a.u. ) from Ref. 9.

the term in parentheses in Eq. (7) vanishes identically.
Thus, our approximation is consistent with the fact that
we have neglected all nonadiabatic couplings with ot er
states.

With the approximation above, the coupled equations
for the B and B' states become
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fi d +( V&cos y+ Vzsin y) E—X~
2p

= —[( Vz —V& )siny cosy]Xz,
(1 1)

d 2+(V, sin y+ Vzcos y) EX—z
2p dR

= —[(Vz —Vt)sinycosy]X~ .

In addition to the B and B' states, two other excited
states have to be considered in the same energy region.
These are the C and D states. For the energies considered
here the C state is excited above its dissociation limit
while the D state is excited below its own dissociation lim-
it. However, the H+ component of the D state can be
coupled by nonadiabatic interactions to the lower-lying
states and undergo predissociation. Inspection of dif-
ferent couplings reveals that the D(II+) state is coupled
efficiently only to the B' state by Coriolis coupling. This
can be seen as follows. Since D is a II state, radial non-
adiabatic coupling will only exist between D and C states
(AA =0), while Coriolis coupling will exist between
D(11+) and both B and B' states (bA=+1). Inspection
of Fig. 1 shows that only the B' state lies close enough in
energy to the D state to have non-negligible vibrational
wave function overlap. In addition, there is an electronic
propensity rule. The D state can be approximately
described by a 3p~ orbital. On the other hand, the B and
B' states can be described by 2po. and 3po. orbitals,
respectively. Therefore, only the D(II+) and B' states
will be coupled by the Coriolis interaction at this level of
approximation. These conclusions have been born out by
the measurements on the predissociation lifetimes of the
D(11 ) levels ' which are only coupled to the C contin-
uum. The results show clearly that this coupling is very
weak and thus, it can be neglected for both H+ and H
components.

There are still two other interactions which have not
been considered yet. These are the Coriolis coupling be-
tween C and the B and B' states, and the radial nonadia-
batic coupling between the B and B' states. The former
can only be efficient between the C and B states, both
from electronic configuration and overlap reasons, while
the latter will be important at large internuclear distances
where the B and B' states come close together. In our
calculations we have checked that the Coriolis coupling
between the C and B states has a negligible effect on the
results. On the other hand, the radial nonadiabatic cou-
plings between the B and B' states at large internuclear
distances has a pronounced effect on the final states of the
fragments.

Therefore, the calculations presented in this paper in-
clude the ground state X and the four excited states B, B',
C, and D potential energy curves' and their adiabatic
corrections, the transition dipole moments between X
and the B, B', C, and D states, ' ' and the two most im-
portant couplings discussed above, namely, the Coriolis
coupling between the D and B' states, ' and the radial

I 9nonadiabatic coupling between the B and B states.
Concerning the Coriolis coupling,

(A
~
H,

~

A+1& =—,&L (L +1)—A(A+1)
2pR

&& V N(N +1)—A(A+1), (12)

where we have assumed that the electronic orbital angular
momentum L is meaningful. This is a reasonable approx-
imation for a Rydberg state in H2. The D state is
predominantly 3pvr (L= 1) and the B' state 3pcr (L= 1).
Thus, we have for the

~

'll+)=(2) '
(

~

A=i)+
~

A
= —1) ) parity component

(13)

A. Direct dissociation of H2

It is particularly interesting to discuss the P(1) transi-
tions (N"=1~N'=0) which do not exhibit resonance
peaks (the D levels cannot be excited since N'=0 does not
exist for a II state). For the P(1) transition the effect of
the radial nonadiabatic coupling between the B and B'
states can thus be easily analyzed.

In Fig. 3 we present the photodissociation spectrum for
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FIG. 3. Partial and total photodissociation cross sections in
—1the excitation range corresponding to 40—4000 cm of excess

energy for the P(1) transition. The solid lines correspond to the
full calculation. The dotted lines correspond to a simple Born-
Oppenheimer approach without any coupling. The dashed lines
are the results obtained from the excitation of the single B' state
and taking into account the coupling with B (see text).

and 0 for the D 'H
We notice at this point that the C state is uncoupled

from the others and can thus be studied separately. Its
contribution will be important, however, in a following
paper when polarization of the fluorescence from the
fragments will be considered. '

The integrator used in the artifical channel code is the
"amplitude density" algorithm developed by Johnson and
Secrest. The integration was performed from 0.4 to 35.0
a.u. with 8000 steps. The potentials were interpolated be-

35tween the ab initio points with a natural spline fitting.

III. RESULTS AND DISCUSSION
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that particular transition in the excitation range from 845
to 820 A (corresponding to 40—4000 cm ' of energy
above the dissociation threshold). The most remarkable
feature is the oscillating behavior of the partial cross sec-
tions, the maxima for the channel B' giving H(2s)+H(ls)
fragments occurring at the minima for the channel 8 giv-
ing H(2p)+H(ls) fragments. On the other hand, the sum
of the two partial cross sections is equal to the sum of the
previously calculated cross sections ignoring the coupling
between the two channels 8 and B', ' except for tiny os-
cillations ( & 2%) around the maxima of the H(2p)-to-
H(2s) branching ratio (see Fig. 3).

The rationalization of these results is the following.
Consider the final state H(2s)+H(ls). There are two
paths which both lead to this same final state: path 1, ex-
citation of the 8' state by photon absorption and adiabat-
ic dissociation; path 2, excitation of the 8 state by photon
absorption and nonadiabatic transition to the 8' state,
For the final state H(2p)+H(ls) there are also two paths
which are the symmetrical of the above. Since the region
of the nonadiabatic transitions is far ( —15ao) from the
Franck-Condon region ( —1.6ao), we can separate to a
good approximation the photon excitation from the non-
adiabatic transition.

The quantum-mechanism amplitude for dissociation
into a particular channel [H(2s)+H(is), for instance] will
then be the sum of the amplitudes through paths 1 and 2
discussed above. Since the photodissociation cross section
will be given by the square of this sum, we expect quan-
tum interference effects. This is what is seen in Fig. 3. It
is striking that this interference leads to such a dramatic
effect on the partial cross section in spite of the fact that
in the case considered here the cross section for the 8'
channel is almost ten times larger than the 8 cross section
if the nonadiabatic coupling is neglected. On the other
hand, if both 8 and 8' channels are observed together the
interference effect cancels and this is exactly the behavior
shown by the sum o.z+oz (see Fig. 3).

More interestingly perhaps is the results obtained when
the transition dipole moment p&B is neglected, i.e., artifi-
cially set to zero. The oscillations in the partial cross sec-
tions disappear but it remains an appreciable probability
for feeding the B channel. No interference effect can
occur in this case since only path 1 remains, but the 8
channel can still be populated through a nonadiabatic
transition.

More precisely, let 7B ' and XB
' be the vibrational func-

tions, solution of the uncoupled problem at total energy
E. In the asymptotic region (R~oo) these functions
behave as

, &z
sin(k~R +5+ )

Ix, inR ~ ao kB

sin(k&R+6z )
+(1 &) imp IB )

I 1/2

(16)

where P, 5B, and 5B are provided by the integration of the
coupled equations in the region of the interaction. Their
interpretation is the following: P is the probability to
have a transition from one state to the other in a single
passage through the interaction region, while 5B and 5B
are two phase shifts.

The solutions
I X~ ) and

I
Xz ) in Eq. (16) do not have

the appropriate boundary asymptotic behavior for photo-
dissociation problems. The wave functions we want are of
the form

—ikBR

I
&a & imp I

B &+~@a
I 1/2 I 1/2

—ika, R

+~BB'
1 /2

kB

ik~.R

I
&8'& imp I

B &+~as'
g 1/2

(17a)

we have taken the two states to be degenerate at infinity.
In any case, the arguments which follow are independent
of whether the two states are degenerate or not. The im-
portant assumption is the following: the nonadiabatic
coupling induces transitions between the two states in a
region of R-R, very far from the Franck-Condon re-
gion. This is exactly the situation in our problem.

With the assumption above we can now write a general
solution for the coupled problem. In the region of the
Franck-Condon transition we can write the two linearly
independent solutions as

Ix~)=+~'(R) IB);
(15)

I
gz ) =+Ii '(R)

I

B') for R «R„,
with Xz and X~' being the solutions of the uncoupled
problem.

In the region R -R~ we cannot give an analytical exact
solution of the coupled problem, but in the asymptotic re-
gion two linearly independent solutions would be

sin(k&R +5~)
IX, &

— (1—~)'" „, IB
R —+oo kB

sin(k~ R +5~ )

I 1/2

XIi '(R )
sin(k~R +qr~)

g 1/2
B

(14a)

—ik~ R

+Sg g imp I
B )

kB
(17b)

Xg (R)(0) sin(k~ R +y~. )

I 1/2
B'

(14b)

where the proportionality constant is equal to (2p/m. iri )'~
for energy-normalized wave functions. The wave vec-
tors k~ ——I2iM[E —V~( oo )]]' /A' and k~ = I2p[E—Vz ( oo )] I

' /fi are identical in our calculations since

Equation (17a), for example, means that the dissociative
H(2p)+H(ls) channel corresponds to a unit flux outgoing

I

B ) wave and a superposition of ingoing
I

B ) and
I

B')
waves with coefficients related to the usual scattering ma-
trix S.

We thus need to take linear combinations of Eq. (16) in
order to obtain the appropriate functions (17):
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I
&a &

=
I
&a )Saa+

I
&a &Sa a

I
Xa')

I
+a )Saa'+

I &a &Sa a
(18)

04-
3 E =230 cm-1

where the coefficients of the transformation have been
denoted by S;J meaning "half-collision S matrix" for
reasons which will become clear shortly. Their explicit
expressions are [from Eqs. (16), (17), and (18)]

1/2 '5B H 1/2 '5B' (19)
Saa =P e, Saa =(1 P) —e

0-

0 4-

0-

3 E =470 cm-1

and we also get from this calculation

Saa ——( 1 P)e —+Pe
2i 5B 2i5B,

Sa a Pe ——+(1 P)e— (2O)

10 15
I

R(a )
20

2I5B 2i5B
Saa ——Sa a ——V P(1 P)(e ——e ) .

Now the photodissociation cross sections into B and B'
channels are given by

(21)
~a ~

I &&x I p I &a &
I

=
I pxaSaa +pxa'Sa'a

I

~a ~
I & &x I p I

&a & I
=

I
pxaSaa +s xa Sa a I

',
where we have denoted by pxa ——(Xx

I p I Xa ) and

pxa ——(Xx
I p I

Xa ) the transition matrix elements from
the ground state X to the excited states which behave
asymptotically as in Eq. (14). But those states are equal
to the unperturbed ones in the Franck-Condon region, so
that pxB and pxB are essentially identical to those calcu-
lated in the uncoupled problem. Now it is clear why we
have denoted by S;J the coefficients of the transformation
(18). According to (21) the amplitude for photodissocia-
tion into channel 8 is the sum of two amplitudes: one
corresponds to excitation of the uncoupled channel B
multiplied by the half-collision probability amplitude to
stay in that state, while the other corresponds to excita-
tion to the unperturbed B' state multiplied by the proba-
bility amplitude to jump to the state B from the B' in the
half collision following the photon excitation. This is in
agreement with our qualitative description we gave at the
beginning of this section.

Using Eqs. (19), we finally get

~x-a ~ pxa(1 —P)+pxa P2 2

FIG. 4. Unperturbed vibrational wave functions of the B and
B' states in the coupling region for two different excess energy
values. The vertical arrow indicates the position of the max-
imum of the nonadiabatic coupling (see Fig. 2). DE=230 cm
of excess energy corresponds to a minimum of the interference
effect between the two channels, while DE=470 cm ' corre-
sponds to a maximum (see Fig. 3).

possible to obtain P in a different way. We have per-
formed calculations by setting artificially pxB ——0. If this
is the case, no interference exists and the cross sections are
given by

2ox a ~pxa(1 P), —
2~X~B ~I XB'P ~

(23)

from which P can be determined. Both calculations give
similar results. The probability P varies smoothly from
0.1 to 0.2 in the energy range between 10 to 500 cm
above threshold (see Fig. 5).

2pxapxa V P(1 —P)c—os(5a —5a ),
2 2o'x a ~ pxaP+pxa (1—P)'

+2pxa pxa. VP (1 P)cos(5a —5a ),—

(22)

and of course cra+cra ~ pxa+pxa. Equations (22)2 2

reproduces exactly the behavior observed in Fig. 3.
The phase difference (5a —5a ) can be related to the

difference between the "local" phases of the unperturbed
wave functions at the transition point R „—15ao (see Fig.
4). This difference would be ya —pa [Eq. (14)] if the
asymptotic forms of the wave functions were reached,
which is not fully the case in our problem in particular for
the B state (see Figs. 2 and 4).

From Fig. 3, it is possible to obtain approximate values
for P at the points where cos(5a —5a )=+ 1. It is also

200 4QQ Q E(cm-~J

FIG. 5. Partial photodissociation cross sections into the B
and B' channels for H2 (dotted lines) in the 40—500 cm ' excess
energy range, single passage transition probability P for H2 and
D2 (dashed lines), and collisional transition probability PB
for H2 (solid line). The points are the results of an approximate
calculation using the half collision transition probability P (see
text). Note that the vertical scale is the same for P and o. in
Mb.



35 INTERFERENCE EFFECTS ON THE H(2p) TO H(2s). . . 3345

A further check of our analysis of the photodissociation
cross section can be performed. The probability for a
nonadiabatic transition from B to B to a "full" collision
isgivenby Pz ~ ~Sz~

~

. Using (20) weget

Pg g 4P(——1 —P)sin (5g —5g ), (24)

which, when sin (5z —5z ) is replaced by its mean value
—,', gives the well-known expression PB
the nonadiabatic transition probability in a full collision in
terms of the probability P to jump from one state to the

36other in a single passage.
I F' 5 e have plotted the full collision probability

f thePB B, as calculated by full numerical integration o t e
coupled equations, together with the partial photodissoci-
ation cross sections into the B and B' channels, in the en-
ergy range between 10 and 500 cm ' above threshold.
Indeed, the behavior of PB B is in perfect agreement
with Eq. (24). For instance, at 240 cm ' there is max-
imum interference. P is -0.17 at this energy. Substitut-
ing that value into Eq. (22) and using p~~ and p,zz calcu-
lated without couplings we get o.B ——0.752&&10 ' cm
and oB ——0.692 & 10 ' cm . These points are also
represented in Fig. 5. The more precise values calculated
with the artificial channel method are oz ——0.747 X 10
cm2 and ~B =0.691X10-18 cm2 a remarkable agreement.

There is one additional counterintuitive result from
Eqs. (22) and (24) which can be noticed in Fig. 5: the
points for which there is maximum interference in t e
photodissociation cross sections corresponu in fact to zero
pro arobability for the nonadiabatic transition PB B in a sin-
gle collision.

Finally, it is worth noting that from Eqs. (19) and (20)
we can write

(gH)T(gH) (25)

which relates the full collision S matrix to the product of
the half collision matrix S by its transpose.

In Fig. 6 we present the branching ratio

0=o{Hq~H(1s)+H(2p) )/o(Hz~H(1s)+H(2s))

=rr(&)/o(B')

C4

E

00

Io

1-
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l
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3E(c m-1)

FIG. 7. Comparison between the total photodissociation
cross sections and branching ratios o.(Hq~H(1s)+ H(2p) )/
o.(Hq~H(1s)+H(2s)) as functions of the excess energy for Hp

(solid line) and D& (dotted line). Note that the vertical scale is
the same for Q and o T in Mb.

1as a function of the excess energy for different rotationa
transitions. xcepE t in the vicinity of the predissociation
peaks discussed below (see Sec. III C), the oscillations are
very simi ar.'1 . This is expected since the only difference is
the small change in the effective potential for low N.

B. Direct photodissociation in Dq

In Fig. 7 we have plotted the total photodissociation
cross sections for the P(1) transition, for both Hz and Dz
together with the branching ratio 0=o g /o g .

The small difference (-7%%uo) between the total cross
sections for H2 and D2 at the same final total energy is

1 t the difference in spatial extension o t e
ground vibrational wave function. The same is true or
the average value of the branching ratio Q although in
this case the isotope effect is larger ( —1.8).

There are two other, probably more significant, differ-
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FIG. 6. Branching ratio o.(Hz~ H(1 s) +H(2p ) )/
o.(Hz —+H(1s)+H(2s)) as a function of the excess energy for
different rotational transitions in Hz. The points represent the
Q values at the maximum of the predissociation peaks.

0 850 950
gE( cm-))

FICx. 8. Predissociation profiles and branching ratios
o(Hq~H(1s)+H(2p))/cr(Hq~H(1s)+H(2s)) for different ro-
tational Hq (D~X) transitions. Note that the vertical scales are

—16 2the same for Q and o. in 10 cm .
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since the relative velocity of the fragments is slower im-
plying that the passage through the critical region is more
"adiabatic. " This is seen in Fig. 5 where we have plotted
P for both isotopes. Indeed, PH is larger than PD by a
factor of —1.2.

340 360 380 440 460 480

C. Predissociation profiles

R (01

200 220 240 260 2/0 300
gE (cm-1)

FIG. 9. Same as Fig. 8 for D2.

ences between the results for H2 and D2. The amplitude
of the oscillations in the partial cross sections (and there-
fore in the branching ratio) is smaller in the case of Dz
while the frequency is higher. Qualitatively this can be
understood as follows. The frequency of the oscillations
depends on the variation of the phases 6~ and 6z with en-

ergy. This variation is faster for Dz than for H2 due to
the difference of the reduced masses, as can be easily
shown for simple square well potentials. For instance, let
us replace the two potentials Vz and V~ by two square
wells with ranges R~ and R~, and depths Dz and Dz. If
the kinetic energy E is much smaller than Dz and Dz,
the phase difference at the transition point R, ~ Rz and
R~ will be of the form

&2pE
6~ —6z ——cte+ (Rs —Rg) . (26)

We expect, thus, a v'pE dependence of the frequency of
the oscillations. This is already clear for H2 itself. The
positions of maxima and minima of 0 in Fig. 7 follow a
~E law. Since pD -AH the frequency of the oscilla-

tions for Dz is roughly v 2 that of Hz.
The amplitudes, on the other hand, depend on the value

of P, the transition probability in a single passage through
the critical region R, . For D2 this probability is smaller,

One other outcome of our calculations is that we obtain
directly the predissociation profiles corresponding to
bound levels of the D('ll+„) state (see Figs. 8 and 9).
Since direct dissociation and predissociation occur simul-
taneously in this energy region, Fano-Beutler profiles are
seen in the experiments. ' In fact, they were among the
first asymmetric absorption profiles observed. Their gen-
eral form is '

0(E)=oo+o i(e+q)'/( i+8'),
E=2(E —Eo)/l

(27)

where Eo is the resonance position, I the total width, and

q the asymmetry parameter of the resonance. We have
fitted our calculated profiles to the form given by Eq.
(27). The values of I and q for a number of profiles are
given in Tables I and II, together with the available exper-
imental values. The agreement between the calculated
and experimental values is reasonably good, the difference
being of the order of 10%%uo. A much better agreement was
obtained by Jungen using multichannel quantum-defect
theory (MQDT). ' The reason for this can only come
from the inclusion in the MQDT treatment of the interac-
tion with all other Rydberg states, while we have limited
our calculations to a subset of the whole manifold of
states. It would be interesting in the framework of our
treatment, to study this effect by including the B"and the
D' state, for instance, which are probably the states cou-
pled most strongly to D. We are planning to perform this
calculation in the future.

Another way of calculating I and q is by the use of
perturbation theory. ' Since these parameters are deter-
mined by the wave functions in the region of R —1.5ao
where the nonadiabatic couplings may be neglected, and
we are interested in the total width, we may work to a
very good approximation with the unperturbed wave
functions.

TABLE I. Profile parameters I (cm ') and q for the R lines of the D(v =3)~X transition in H2
and D ( v =4)~X in D2. I ~ and q~ refer to the perturbative approach neglecting the modification of
the discrete state while I y and qI are the values from the full calculation. I,„~t and q,„„,are the experi-
mental values from Ref. 20.

(H2)
v=3

J=1
J=2
J=3
J=4

4.3
13
26
43 ~ 5

4.3
13
26
45

14.5+0.7
22
11
7.3
5.5

21
10.4
7.6
5.1

qexpt

18+2
9+1

D2
v=4

J=1
J=2
J=3
J—4

1.1
3.2
6.5

11

1.1
3.3
6.5

11

44
22
14.5
11

39
19
12.5
9
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TABLE II. Same as Table I for the R(1) lines of the D (u=4 and 5)+—X transitions in H2.

I expt (I(I expt

u=4
u=5

13.2
13.1

13.2
13

14.5 +0.7
13.8+0.9

10.7
10.5

10.1

9.8
9+1
911

1&@x le
.e

I fa & I',4m (fico)

Ac

I =2@V

(28)

(29)

where V is the matrix element between D and B' states of
the Coriolis coupling defined in Eq. (12)

&WD lv elf+&
ls. IW &

We have computed I and q, Eqs. (29) and (30), utiliz-
ing the Numerov integration technique. The results are
presented in Table I. There is perfect agreement between
the values calculated by the two methods, perturbation
and artificial channel, for the linewidth I . It is less so for
the asymmetry parameter q and this makes a noticeable
effect on the line strength. In Fig. 10 we present the re-
sults of both calculations for a particular transition
[3= O, R (1),D~X] in Hi. In addition to the difference in
the calculated line strength there is a small shift (of the
order of the linewidth) between the two profiles.

Both effects can be understood by the influence of two
factors: (a) the variation of the matrix elements with en-
ergy which was neglected above; (b) the couplings to the
bound levels of the dissociative state. Both contribute to a
modification of the discrete state

I gD & to

CV

E
O

00

0 2

Neglecting the variation with energy of the discrete-
continuum couplings and of the transition dipole moment
matrix elements, one obtains '

I WD &
I WD &+P f «' „,I

WB'&
ED —E'

+ g, „ IA' (31)

where the contribution of the continuum and discrete lev-
els of the B' state are included to first order.

The modified resonance position is

ED ED+P——f dE', + gv, .
I

'
I
v„.

ED —E' v' ED —EB
(32)

D. Branching ratio cr(H(2p) )/cr(H(2s) )
in the case of predissociation

while q will be given by Eq. (30) in which gD is replaced
by l(D. On the other hand, V in Eqs. (29) and (30) is not
modified in this first-order treatment.

When Eqs. (31) and (32) are used the agreement be-
tween the two calculations becomes excellent (see Fig. 10).
It is interesting to note that the level shift due to the con-
tinuum is only 1.0 cm, while the contribution of the
discrete levels of B' located at 2000 or 3000 cm ' below
accounts for the 6.5 cm ' remaining shift. This is due to
the fact that although the energy difference between the
B' and the D bound levels is large the overlaps of their vi-
brational wave functions are very favorable.

For the asymmetry parameter q, the effect is very simi-
lar. The artificial channel calculated value is —10.4. Per-
turbation calculation with the unmodified discrete state

I
itjD & gives —11.06. The contribution of the continuum

term in Eq. (31) still lowers the q value by —0.10 while
the discrete contribution raises q by + 0.77. The final re-
sult is —10.39 in very good agreement with the artificial
channel value. This comparison stresses the importance
of contributions which are usually neglected, namely the
existence of a discrete spectrum in dissociative channels.

935 945 955 965
g E (cm-&)

When predissociation occurs the B' state is predom-
inantly populated in the small-R region where it is popu-
lated directly from the bound levels of the D state by
Coriolis coupling. Therefore, in predissociation the situa-
tion is very much similar to the case when pxB was artifi-
cially set to zero. We expect a smooth variation of the
branching ratio as a function of the initially D bound lev-
el excited. Explicitly, we should have for the fraction of
H(2s) atoms, according to Eq. (23),

FICx. 10. Calculated predissociation profiles for the R(1),
D 'H+„, u'=3~X'Xg, u"=0 transition in H2. Solid line: full
calculation. Dotted line: result of the calculation using the
Fano's perturbation approach not including the modification of
the discrete state. The solid circles correspond to a similar cal-
culation but take this modification into account.

f(H(2s) )

f(H(2s))+ f(H(2p))
~X~B'

X~8'+ ~X~B
=1—P.

(33)

Let us turn now to our calculated values. We present in
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TABLE III. Fraction of H(2s) atoms produced in the photopredissociation of Hi and Dz [R (1) lines
of the D~X transition]. The first column presents the results from the full calculation. The second
column is the approximate value using the half collision transition probability P (see text).

Calculations

H2 (D, v'=3)
E=950 cm

Op+Op'

0.79

n)=1 —P

0.78

Expt.

0.57+0.03
0.7

Ref.

25
26

H2 (D, v'=4)
E=2800 cm

0.72 0.75

D2 (D, v'=4)
E=274 cm

0.86 0.86

H& {hypothetical)
E=274 cm

0.82

Table III some of the results obtained using either the par-
tial cross sections crz ~ and ox z, or Eq. (33) with P
calculated at the energy of the resonance. It is clear that
re=1 —P reproduces quite well the more accurate results
using the calculated values of the partial cross sections.
The variation of co with energy is illustrated by the com-
parison between v=3 and v=4 in Hq. The fraction of
H(2s) atoms produced diminishes slowly reflecting merely
the behavior of P. For D2 we expect a larger value at the
same energy due to a smaller value of P. Since there is no
accidental coincidence between vibrational levels of H2
and Dq we compare the values of ai for V=4, R(1) of D2
with a hypothetical H2 level at the same total energy (see
Table III). We notice that indeed coD, & AH, .

Some other calculations of co have been presented in the
literature. Komarov and Ostrovsky' have studied the
problem using covalent and ionic wave functions which
cross in the region —15 a.u. However, Borondo et al.
have found that those states are not diabatic and the radi-
al coupling between them is far from negligible. Borondo
et al. ' have calculated co using ab initio adiabatic states
and radial coupling. Their calculations were conducted as
follows. They assume the 8' state to be populated at
short distances by predissociation from the D state and
the nonadiabatic transitions at larger distances are calcu-
lated by solving the appropriate quantum-mechanical
close coupling equations. They obtained co=0.70 practi-
cally independent of the energy in the region between
0.1—0.2 eV (800—1600 cm '). We have found 0.79 at
E=950 cm ' and 0.72 at E=2800 cm ' (see Table III).
Thus our co value is somewhat larger than the one calcu-
lated by Borondo et al. ' In addition, our co changes
smoothly but quite significantly with energy. The radial
coupling is the same in both calculations, and the adiabat-
ic curves are very similar. However, small changes in the
energy difference between the adiabatic curves can affect
significantly the branching ratio.

IV. CONCLUSIONS

In this paper we have shown some new effects in the
photodissociation of Hz and D2 in the 845—820-A excita-

tion region. The branching ratio Q=o(H(2p))/ir(H(2s))
between the two dissociative channels producing
H(n =2) + H(l s) is dramatically changed by the influence
of nonadiabatic couplings in the asymptotic region. In
particular, we predict an oscillating behavior which is due
to quantum interference between two different dissocia-
tive paths leading to the same final state. These oscilla-
tions could eventually be seen in experiments utilizing the
same technique which has been used in the case of predis-
sociation. The total cross section, on the other hand, is
not changed significantly from those calculated without
including the nonadiabatic couplings and which have been
compared favorably with experiments. ' ' '

Recently Nesbitt and Hynes have also considered
theoretically the possibility of oscillations in single pass
curve crossings. They suggest that they could be proved
experimentally via a direct photodissociation process. In
their case the oscillations would not come from a quan-
tum interference effect, such as that considered in this
work, but from the particular form of the curve crossing
and coupling.

In our calculations this would imply that P (the proba-
bility for a transition in a single pass) plotted in Fig. 5 is
an oscillating function itself. In our case P is smooth and
the oscillations come from the quantum interference of
two different dissociation paths leading to the same final
state of the fragments. They have the same origin as the
Stuckelberg oscillations in low-energy atom-atom col-
lisions.

Another interesting outcome of our calculations is the
prediction of similar oscillations in D2 but with different
amplitudes and periods. The period is essentially
governed by phase differences between the vibrational
wave functions of the two interacting states in the transi-
tion region, while the amplitude depends on the transition
probability. Both change with isotopic substitution and
therefore provide a direct handle on the nonadiabatic in-
teraction.

Although this interference seems to be particularly
dramatic in H2, it may also occur in other systems. What
is only needed is two absorbing continua which are cou-
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pled at large internuclear distance. On the other hand,
their degeneracy at infinity is not necessary. In particular
for the alkali-metal systems, in which nonadiabatic in-
teractions between dissociative states affect the fine-
structure branching ratio, constitute good candidates for
these interference effects. From the theoretical point
of view we have shown that the full close-coupling results
using the artificial channel method can be very well
analyzed in terms of the half collision model which in
turn can be deduced from a full collision treatment.

We have also studied the predissociation profiles corre-
sponding to excitation of the D('II„+). They can be very
well accounted for in terms of Fano's perturbation treat-
ment if the influence of discrete as well as the continuous
spectrum of the dissociative state is properly included.
We confirm the rotational dependence of the various pa-
rameters (linewidth, asymmetry, etc.) of the profiles previ-

ously predicted in Ref. 33.
Concerning the branching ratios cr(H(2p) }/o(H(2p)) on

a predissociation peak, we have found a large discrepancy
between calculated and experimental values (see Table
III}. This was already observed by Borondo et al. in
their calculations. The reason for it is not fully under-
stood. More experimental data, in particular as a function
of energy, is needed in order to settle this problem. An
experiment on D2 would also be very instructive.
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