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Rydberg states with anisotropic ion cores: Stark effect
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We have measured the Stark spectra of 5d3~281 autoionizing states in barium. Because of the an-
isotropic 5d ion core, the Stark manifolds at higher fields are considerably more complex than those
for the analogous 6snl bound states. The electrostatic coupling of the Rydberg electron with the an-
isotropic core gives rise to relatively large fine-structure splittings. For nonpenetrating orbitals
( I+y & l„„),jK coupling is a useful representation and the number of fine-structure components due
to this interaction with the core increases the number of eigenstates (2j„„+1)-fold. We present a
theoretical model for the calculation of Stark spectra in jK coupling. Results for barium are in
quantitative agreement with the experimental observations for both m. and o. polarizations up to
fields where there is extensive overlap between adjacent n manifolds. These fine-structure effects
occur for any states with nonisotropic cores (j„„&2), i.e., the states of most atoms except for

bound singly excited states of alkali-metal and alkaline-earth-metal atoms.

I. INTRODUCTION

In the past decade extensive measurements have been
made of the Stark effect on bound Rydberg levels of
alkali-metal and alkaline-earth-metal atoms. ' For high
nl states, which are hydrogenic, a so-called "Stark mani-
fold" is observed in which the energies of the levels fan
out approximately linearly as a function of field. Devia-
tion from this hydrogenic behavior depends on the size of
the quantum defect of the state, which decreases rapidly
with I. Thus s- and p- state energies have a nonhydrogen-
ic quadratic-field dependence until they anticross with a
state in a linear manifold. Higher-I states tend to be
quasihydrogenic. Also, for a given M symmetry, where
M is the total magnetic quantum number, levels do not
cross, and frequent avoided crossings are observed as the
field is increased.

In the following discussion we refer to the orbital and
total angular momentum of the ionic core as I, and j„
respectively, and the orbital angular momentum of the
Rydberg electron outside the ionic core as I. In the cases
mentioned in the above paragraph, I, =0, j,= —,. The fine
structure in these cases, due to the spin-orbit interaction
of the Rydberg electron, is generally quite small and has a
small effect on the Stark manifolds. In atoms with

j, & —, , additional fine structure arises from the electro-
static interactions between the Rydberg electron and the
ionic core, which are due to the nonspherical symmetry of
the core (quadrupole and higher moment interactions, and
tensor polarizability of the core). This fine structure is
generally substantially larger than the spin-orbit fine
structure, and often comparable to or larger than the
quantum defects for the higher-I Rydberg states. The
analysis below builds on the work in Refs. 3—6.

This fine structure has two principal effects on the
Stark manifold: (l) It breaks the quasidegeneracy of the
higher 1 levels at low fields. The field dependence of the
manifold does not become linear until a field is reached
where the Stark shifts exceed the fine-structure splittings.
(2) The most dramatic effect of the fine structure is that it
gives rise to many more components in the Stark mani-
fold. These come from the different possible couplings of
the angular momenta associated with the electrostatic in-
teraction between the Rydberg electron and the anisotro-
pic core.

From a given lower level, most of the fine-structure lev-
els are observable only at higher fields. Thus, as the field
is increased, more and more components appear. Two or
more components appear to grow or split off from a sin-
gle component at lower field. The effect of this can be
seen by comparing the computed barium-energy Stark
spectra as seen in Fig. l [n =8 (Rydberg electron); j,= —,

'

(isotropic core)] with Fig. 2 [n =8 (Rydberg electron);
j, = —, (anisotropic core)]. The Stark manifolds for j, & —,

'

are sufficiently more complex than the j, = —,
' case that we

have chosen to examine an n =8 manifold with j,= —,.
The n —15 manifold examined in the I, =0 cases' would
be too complex for straightforward analysis. The fact
that the levels we have studied are autoionizing is inciden-
tal; our focus in this paper is the effect of the core aniso-
tropy on the atomic structure, as manifested in a Stark
field. The theoretical model should apply equally well to
bound levels with anisotropic cores.

II. THEORETICAL TREATMENT

The electrostatic interaction between the "core" elec-
tron and the Rydberg electron is greatly simplified in the
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Fk ( k&(r —(k+1)& (2a)

The angular part of the interaction is

fk ——(JMP
~

C'"'(8,$).C'" (8„$,)
~

J'M'P'& . (2b)

Corrections to F" due to wave-function overlap (core
penetration) are discussed in Appendix A. (r, & is related
to the k'" multipole of the ionic core (e.g., quadrupole for
k =2). Hydrogenic values are commonly used for
(r '"+''&. Terms in the sum over k in Eq. (1) are non-
vanishing only for k even and k (2I, . The k =0 term in-
fluences the average energy, and does not contribute to
fine structure. For atoms with isotropic cores, only the
k =0 term exists. In the nonpenetrating orbital case
(1 & l, ), the exchange interaction can generally be neglect-
ed.

In addition to the electrostatic interaction between the
"unperturbed" one-electron orbitals given in Eq. (1), there
also exists a polarization energy associated with the dis-
tortion of the orbitals due to the electrostatic interaction.
The so-called scalar polarizability n affects the average
energy of a multiplet; it is usually the dominant constitu-
ent of the quantum defect for nonpenetrating orbitals.
The anisotropic polarizability y„ in contrast, affects only
the fine structure of a multiplet, and not the average ener-
gy.

The angular part of both the quadrupole and anisotro-
pic polarizability is given by the same second-rank tensor

C' '(a)p)=C' '(8),P)) C' (8p, gp),

where a&2 is the angle between the two electron vectors
r &, r2, and (8;,P; ) are the spherical angles for each vector.
As described in Appendixes A and B, and in Ref. 3, Eqs.
(7) and (8), the lowest-order electrostatic fine-structure
splittings about the mean energy are given in atomic units
by

(3)

where (r, & is the mean-square radius of the core, related
to its quadrupole moment, and y, is the anisotropic polar-
izability of the core. The mean values (r & and (r
of the Rydberg electron can be approximated by the hy-
drogenic formulas

nonpenetrating orbital approximation. The electrostatic
"direct" interaction energy is given by

even

g fkF",
k

where, in the limit that the Rydberg electron does not sig-
nificantly penetrate the core,

The evaluation of the angular part fk is best accom-
plished by choosing an angular-momentum coupling
scheme well suited to the problem. The subspace P in Eq.
(2b) should consist of quantities that are relatively good
quantum numbers, so that off-diagonal terms are small.
For a "non-penetrating" Rydberg orbital around a noniso-
tropic core, jK coupling is often the most judicious
choice. Validity criteria for jK coupling are described
below.

Treatment of the Stark effect for Rydberg levels with
nonspherical cores is straightforward in the jK representa-
tion, first introduced by Racah. j is the total angular
momentum of the core, which we refer to as j,. The K's
are the result of different possible couplings between j,
and l:

I

I —j. I
&« II+j.

I

.

The number of K's is equal to 2j, + 1 (or 21+ 1 if I &j, ).
K is the vector sum of all the angular momenta except for
the spin of the outside "Rydberg" electron. The total an-
gular momentum is J=K+ —,. jK coupling is also re-
ferred to as "pair" coupling; when jK coupling is valid,
the two values of J associated with a given K are very
close in energy, forming a pair.

jK coupling is a useful approximation when the fine-
structure splitting of the ionic core is large compared to
both the direct and exchange energy of the Rydberg elec-
tron with the core, and the exchange energy is in turn
small compared to the direct energy. Thus if the split-
tings among different fine-structure components of a
given ni Rydberg state are small compared to the fine-
structure splitting of the ion core, jK coupling is a good
approximation. One must also exclude cases in which
configuration interaction due to an interloper or a "cross-
ing" with Rydberg series having a different core perturbs
the energy of the level by an amount significant compared
to the fine-structure splitting of the ion core. With the
exception of the very lowest members of the series, Ryd-
berg levels are usually well described by jK coupling.
Since the Rydberg fine structure scales -n and even
more strongly with l, one normally need not go far up the
Rydberg scale before jK coupling is a good approxima-
tion.

jK coupling is useful in the present. case of a non-
penetrating orbit around an anisotropic core because the
fact that it is nonpenetrating means that the spin-orbit in-
teraction of the Rydberg electron is usually small com-
pared to the spin-orbit interaction of the core and to the
noncentral electrostatic interaction between the Rydberg
electron and the core. The latter is diagonal in jK cou-
pling to the extent that spin-orbit coupling and exchange
are negligible compared to the direct interaction, which is
usually the case for nonpenetrating orbitals.

The angular part of the coupling is given by f2, which
in jK coupling is given by Racah:

Z3

n (I +1)(l+ —,
'

)I
(4a) 6h +3h —2j, (j,+1)I(1+1)

4j, (j, + 1)(21—1)(21+3) (Sa)

Z ( —, )[3n —l(1+1)]
n'(1+ —,

' )(I+1)(I+ —,
' )l(l —,

' )—where

h = —,[K(IC+ 1)—j,(j,+ 1)—l (I + 1)]—=j, I . (sb)
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Note that f2 depends only on j, of the core and not on 1, .
However, it is important to note that Eqs. (2)—(5) apply
only to two-electron coupling, i.e., a single Rydberg elec-
tron is interacting with one electron (or hole) in the open
shell of the core. The above expression for fz is some-
what different from Eq. (11) of Ref. 3, which does not in-
clude the effect of the fine structure of the core. This ef-
fect is important for the atomic problem. A derivation of
Racah's result for f2 [Eq. (5)] is given in Appendix B.

The field coupling between two levels is equal to the
field F times the expectation value of the electric dipole
operator z =Po". Using the Wigner-Eckart theorem, it
can be expressed (in atomic units) as

(HF ) = (rMJ
I

FPO'
I
rM'J')

J 1 J'
F( 1) '

M 0 M (rJIIP Ilr'J'&

(6)

The reduced dipole operator matrix element is given by

(aJIIP" lla'J') =( —1) ' '1

)& (nl
I
r

I

n'1')

J K
[J&J K~K ]

j, 1 K
X

1 K' l'

where [J]—=2J+1, [J,J']=[J][J'], etc. , and 1 is the
larger of I, l'. Standard notation for the 3-j and 6-j sym-
bols has been used. The selection rules are

6K=0, +1 (no K=0~K'=0),
l'=I+1,
bj, =0 (also b,l„bS,=0),
EM=0 .

Analytical expressions for the 3-j symbol are given in Ap-
pendix C.

Computation of the Stark spectrum is done in four
steps: (1) Compute the zero-field energies by determining
the mean energy from the quantum defect 5(l), and the
electrostatic fine-structure splitting from Eq. (3). (2)
Evaluate the angular matrix elements in Eqs. (6) and (7).
(3) Evaluate the radial matrix element in Eq. (7) using the
Coulomb approximation. ' (4) Diagonalize the energy
matrix.

The above steps are sufficient to yield the eigenenergies
in the presence of a field. In order to obtain spectra that
can be compared in detail with experiment, we must also
compute: (5) the oscillator strengths from a given lower
level and (6) the field-induced enhancement or suppression
of the autoionizing widths for each level. Details of these
calculations, especially (5) and (6), are discussed below.

The basis states include the nlKJ states of the n mani-
fold of interest, plus the nearest manifold below and the
two above (because they are closer in energy), plus states

from higher n, low l, with sufficiently large quantum de-
fect that they fall in this energy range (in zero field).
Specifically, we include those states with n *=n —6I such
that ( n —1.5) & n

*
& ( n +2.2), where n is the principal

quantum number of central interest. The total number of
basis states is approximately 4n (4j, +1). In our case of
n = 8, j,= —, , we included 228 basis states.

The above procedure yields the eigenenergies in the
presence of the field, and the expansion coefficients for
the eigenstates g1 in terms of the zero-field basis states p;:

QJ (F)= g a;J.(F)p; .

The observable in the experiment is the photoion spec-
trum due to laser excitation from some lower state go.
For the neutral atom considered here the autoionization
decay rate of the excited levels is much larger than their
radiative decay rate so that the ion-yield spectrum should
be proportional to the photoabsorption spectrum. The
electric dipole transition probability AJ for photoabsorp-
tion from $0 to the autoionizing level 11j& is

2

~J = X a;, (Wol IP" 'I IP; & (9)

where (P'") is evaluated using Eq. (7). The radial matrix
elements in Eq. (7) were evaluated using the Coulomb ap-
proximation. This is a poor approximation for a valence
state like the 5d 'So lower level in our experiment. For
such a state, indeed especially for states involving
equivalent electrons, representing the effect of electron
correlations by a quantum defect is a crude approximation
at best. The result is that the relative intensities computed
from Eq. (9) are only good to within a factor of about 2 or
3 at lower fields, and significantly worse at higher fields,
where extensive mixing occurs. The field-dependent rela-
tive intensities can be particularly sensitive to errors in the
radial matrix elements because of the interferences that
occur in Eq. (9). This approximate treatment is still quite
useful in comparing with experimental spectra, however,
because it can still give a rough idea of which components
become observable at a given field. To improve signifi-
cantly on this would require, at the least, a careful MCHF
characterization of the 'So state, which, due partly to the
equivalent electrons, has not yet been successfully accom-
plished.

Unfortunately, accurate estimates of both (r, ) and r,
in Eq. (3) cannot be obtained from spectroscopic data
alone. This is because the functional dependence on n, for
a given 1, of (r ) and (r ) [see Eq. (4)] is nearly the
same except for the lowest value of l, for which the Ryd-
berg model begins to break down. (Due to the dependence
of the quantum defects on I, it is generally not practical to
extract values of (r, ) and r, using spectroscopic data
from different 1 levels. ) Also, higher-order terms in Eq.
(3) are not likely to be negligible; octupole and diabatic
anisotropic polarizability [O(r )] terms may be signifi-
cant. For a detailed analysis of the different contributions
to the fine structure, one requires not only spectroscopic
data but also accurate theoretical estimates or supplemen-
tary data, such as polarizability data. We determined the
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"effective" value of (r, ),rr for the Ba+ 5d3/p core from
published zero-field fine-structure splittings. We define(.,').„by

b E= fk—(j„t,k ) (r ) (r, ),f'r . (10)

I /(F) =2m g a;/(F) V;(F =0)

Here we have simply applied Eq. (8) together with the re-
lation I ~(F) =2r/

~

V(F) ~, where V/ =(P/(F)
~

r ~q'
~ gF )

is the configuration-interaction matrix element of the
field-dressed state with the continuum Pz. We can infer
the magnitude of the V s from the I s, but not their
phase. We chose the phases of all the V s to be equal in
generating the theoretical spectra shown in the results
below. Different choices of phases resulted in observable
but small differences in line shapes in the spectra; the
overall qualitative features of the spectrum remain much
the same, except in isolated regions at some fields where
spurious interferences can occur. The values of the V s
have, of course, no influence on the eigenenergies.

To summarize the principal approximations of our

This is an approximation to Eq. (3), which already does
not include the octupolar interactions (which also exist for
d states). However, the semiempirical value of (r, ),rr af-
fords the best single-parameter estimate of the electrostat-
ic interactions givin~ rise to fine structure. The effective
value of (r, ), 8.4ao, was obtained by fitting Eq. (10) to
the zero-field energies of the Sd&/2ng states (of different
IC) published by Camus et al. ,

" for n =5 to 8.
Quantum defects were used to model the "average ener-

gies" E„~. The average energies or "center of gravity" of
each n, / multiplet was found by subtracting out the fine-
structure splitting of the fine-structure components, using
Eq. (10). The energies E„~ are then determined in the usu-
al way by E„~=A (1—1/nP ), n~" n ———5~. If the fine
structure is not first "removed, " different members of a
n, l multiplet will yield widely varying values of the
single-channel quantum defect. The energies were taken
from Refs. 11 and 12. The quantum defects for the
5d3/2nl states for l =0, 1, 2, 3, and 4 were in this way es-
timated to be 4.17, 3.72, 2.53, 0.0913, and 0.0268, respec-
tively. The quantum defect for the 5d Sp state was
2.7160.

The focus of this paper is the effect of the anisotropic
core on the Rydberg Stark manifOl, and for this purpose
the fact that the levels are autoionizing is secondary.
Nevertheless, we have taken some measures to model the
autoionizing rates (widths), and the effect of the field
upon them. We estimated the zero-field widths by
measuring the width of the 5d3/28f ( 1= 1) level (I =1.7
cm ') and the scaling of the zero-field widths of the other
5d3/2nl levels were estimated from data in Refs. 11 and
12. The field effect could be treated as in Ref. 13, the
prediagonalization being accomplished in step 4 referred
to above. However, the observed profiles are relatively
symmetric, so that for our purposes direct transitions to
the continuum may be ignored, and the width in the pres-
ence of a field should be adequately approximated by

model for the Rydberg Stark spectra for atoms having an
anisotropic core: (i) We use the Coulomb approximation
to evaluate the dipole matrix elements (this is expected to
be quite accurate for the field coupling between Rydberg
levels, and quite inaccurate for the photoexcitation rates
between the 5d 'So state and the Rydberg levels). (ii) We
estimate the electrostatic interactions arising from the an-
isotropy of the ionic core (quadrupole and octupole in the
case of a d core, and anisotropic core polarizability) as an
effective quadrupole term. (iii) For autoionizing levels,
we assume that all the (zero-field) electrostatic couplings
VE between the Rydberg levels and the continua have the
same phase.

In spite of these approximations, we see in Sec. III that
the fine-structure spectrum that arises from the core an-
isotropy, which becomes manifest in an electric field, is
reasonably well described by our model. While the
theoretical approach involves parameters such as mul-
tipole moments of the core and quantum defects, these are
not "adjustable" parameters. They are estimated by zero-
field spectroscopic data, as described above.

III. EXPERIMENT

The experimental arrangement is the same as in Ref.
13, except that different final states were chosen. A radi-
atively heated oven at 610 C generated a barium vapor
that was collimated to form an atomic beam of —10
atoms/cm in a background gas pressure of 2 &( 10 Torr.
The temperature of the oven was servo-stabilized to
+0. 1 C. Using a spherical mirror, three lasers were over-
lapped in the region of the beam. The barium atoms were
stepwise excited via 6s 'Sp~6s6p P

&
~5d 'Sp

~5d3/281 (see Fig. 3). The latter states lie in the continu-
um above the 6s

~ /z Ba+ threshold and the l =3 ( J= 1 )

autoionizing width was measured to be 1.7 cm . The
three Nd: YAG pumped dye lasers (where YAG represents
yttrium aluminum garnet) were of the near-grazing-
incidence type with prism beam expanders and a band-
width of 0.15 cm '. In the above excitation scheme, pho-
tons from the first two lasers lack sufficient energy to
one-photon ionize the intermediate 5d 'Sp state, so that
no background ionization was observed. The energy of
the final laser was kept low to prevent spurious broaden-
ing due to depletion of the 5d 'Sp level. The final of the
three lasers was scanned over the spectral region of in-
terest at each field. Ions were collected through a mesh-
covered hole in the center of one of the two 4-in. -diam.
discs, between which the atomic beam passed; the dc field
was applied between the discs. The ions impinged on the
first dynode of a linear-array EMI electron multiplier D-
233B. The amplified current pulse was fed into one chan-
nel of a gated digital-to-analog converter, a signal propor-
tional to the amplitude of the final laser was fed into a
second channel, and the average of these channels over 20
laser shots was stored by the computer at each computer-
scanned wavelength. The photo-ion signal was normal-
ized against the final laser intensity at each wavelength.
The sine bar of the scanning dye laser was calibrated us-
ing a wavemeter and was checked against Ar r lines using
opto-galvanic detection in a hollow cathode.
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O

FICJ. 3. Laser excitation scheme. The final laser was scanned
over the spectral region of interest.

IV. RESULTS AND DISCUSSIQN

The experimental spectra obtained at different fields
shown in Fig. 4 correspond to ~ polarization (linearly po-
larized laser field parallel to the dc field). Because the in-
termediate state is J =0, M =0, the ~ polarization corre-
sponds to an M =0 final state.

A Stark map showing the energies of all the eigenstates

in this spectral region as a function of field is shown in
Fig. 5. In the energy spectrum shown, only one resonance
is observable from the 5d 'So intermediate state at zero
field. This is the 5d3/28f (J= 1) which in jK coupling
has the "labels" j,= —,', I =3, E = —,, and J= 1. Usually a
given j,lJ level will correspond to two E states, E =J+ —,',
but only those E's exist that also satisfy

~

l —j, ~

&K &
~

1+j, ~, which in the present case means
that the lowest E value is —,.

The predominant feature of the 5d3&z8l Stark manifold
is the gradual proliferation of observed levels as the field
is increased. In absorption from the 5d 'So level, only
the Sd3~28f (J= 1, K= —, ) level is observed at zero field.
At low fields ( &20 kV/cm), the levels that dipole couple
to this level appear. As the field is further increased, each
of these levels appears to split up into more components,
until there are approximately 2n(2j, +1) components ob-
served for each Stark manifold, not all of which are
resolved. This "procreative" manifold originates from the
coupling of the angular momentum of the Rydberg elec-
tron with that of the ion core. This coupling is due to the
core anisotropy and arises via the r I2 interaction and an-
isotropic polarizability.

The widths of most of the components are observed to
increase at the larger fields. This is especially pronounced
at fields above which the adjacent n manifolds begin to
overlap, i.e., for F(a.u. )) (3n ) '=50 kV/cm for n =8.
At such fields the narrow high-l states (l) l, ) mix (via
anticrossings) extensively with the broader low-l states,
leading to the broadening of the high-l states. '

Results from the theoretical model described above are
shown for vr polarization in Fig. 6. The qualitative

OO

Cl

LLJ O-
CD

C3

O—

W

UJ

A

A

50
I

200
l 1

100 150 250

(NAVE NUMBER) —45OOO (cm ()

300

Fy~. 4. Experimental photo-ion spectra from the 5d' 'So state of Ba I at different electric fields, with ~ polarization (laser field

parallel to applied dc field), in the region of the Sd3/28l autoionizing levels.
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FIG. 5. M =0 theoretical Stark map in the region of the 5d3/281 autoionizing levels of Ba I. This figure is a "detail" of Fig. 2,
drawn on the scale of the experimental data. As seen in Fig. 4, most of these levels are only observed at higher fields. The M =1 en-

ergy spectrum is almost identical.

features of the experimentally observed procreative Stark
manifolds are reproduced in the theoretical spectra. In
most cases the computed energies at fields (60 kv/cm
are off by small but observable amounts, which we at-
tribute to the fact that we have not included the octupole
term in Eq. (1), and to the fact that we have not explicitly
included anisotropic polarizability effects.

The spectral dependence on M is subtle but well de-
fined. In Fig. 7 (experimental) and Fig. 8 (theoretical) the
M = 1 spectra obtained with o. polarization are presented.

In Fig. 9 (experimental) and Fig. lo (theoretical) the n and
o. spectra are superposed for a smaller region of the spec-
trum. It is clear that the dominant effect of m versus 0
polarization is to enhance different subcomponents of a
given fine-structure component.

Considering that only the lowest-order term in Eq. (1)
has been used in estimating the fine-structure splitting,
the quantitative agreement with the experimental spectra
is quite satisfactory, at least for fields below -50 kV/cm,
beyond which there is extensive overlap between adjacent

60—O

IOO l50 200 250
(WAVE NUMBER) —45000 (cm )

300

FIG. 6. Theoretical photo-ion spectra from the 5d 'So state of Ba I at different electric fields, with m polarization, in the region of
the 5d3/28l autoionizing levels. The dashed line indicates the range of experimental observation.
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FIG. 7. Experimental photo-ion spectra from the 5d 'Sp state of Ba I at different electric fields, with o. polarization (laser field

perpendicular to applied dc field).

n manifolds. This includes the effect of the laser polari-
zation with respect to the external dc field.

In conclusion, we note that the electrostatic coupling of
a Rydberg electron with a nonisotropic ion core gives rise
to a large number of fine-structure levels. As an applied
electric field is increased, an increasing number of these
levels become observable via dipole transitions from a
given lower level, giving rise to a procreative Stark mani-
fold. This problem can be efficiently treated in jK cou-

pling. We emphasize that this fine structure, and the as-
sociated Stark effects, occurs not only for autoionizing
levels, but for any states with nonisotropic cores (j, & —, ),
i.e., practically all levels of most atoms except for bound
singly excited states of alkali-metal and alkaline-earth
metal atoms. We note in closing that there is a clear need
for the development of a useful method for computing
tensor polarizabilities, with inclusion of nonadiabatic ef-
fects.

100
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150 250
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FIG. 8. Theoretical photo-ion spectra from the 5d 'So state of Ba I at different electric fields, with o. polarization.
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The correction 5 will be small compared to F when the
outer electron (labeled here as 2) does not significantly
penetrate the orbital of the inner electron (labeled here as
1). This condition is usually satisfied if the orbital angu-
lar momentum of the "outer" electron exceeds that of the
"inner" electron. 6 can be estimated using quantum-
defect-theory approximations of the wave functions.

In the nonpenetrating orbital approximation, the direct
Slater integral is thus approximated by

APPENDIX A. MULTIPOLE APPROXIMATION
TO THE SLATER INTEGRALS

FOR NONPENETRATING ORBITALS

The electrostatic energy matrix, which gives the radial
part of the kth order of the I/r)z interaction, is

k

E,"'z = 1 J 1,2 „, 1', 2')d'i|d' ~ z .
p p

' k+1 (A 1)

Assuming in the usual way that the wave functions
i

1,2)
are product wave functions

~

1)
i
2), whose antisymmetry

properties are contained in the exchange Slater integrals
6, we can write the diagonal part of the direct interac-
tion as

Fk &„k ) (
—(k+1) ) (A7)

APPENDIX B: EVALUATION OF fk
IN jE COUPLING

where the subscripts ( and & refer to the core and Ryd-
berg electron, respectively. Hydrogenic forms of
(r '"+") are frequently used. The kth moment of the
ionic core, (r ( ), can be estimated, for example, by com-
putation or by fine-structure measurements. This rela-
tionship of F" to the kth moment of the core has given
rise to the multipolar description of the F"'s; for example,
F is often referred to as the quadrupolar interaction.
Equation (A7) is just what one obtains from Eq. (Al) in
the nonpenetrating orbital limit, where r2 ) r

&
for all r2.

gfkF"
k

where the direct Slater integral is

(A2)
The energy matrix elements of the two-electron interac-

tion 1/r&2, in the antisymmetrized product form of the
wave function, give rise to the well-known direct and ex-
change integrals. The diagonal parts of the direct in-
tegrals have the form

(A3)
(Bl)

where d'r =r dr. Thus

Fk („k)&

—(k+I) ) (A4)

The multipolar approximation to the radial Slater in-
tegrals are discussed in Appendix A. The angular part of
the diagonal direct interaction is contained in fk ..

where the brackets in (A4) indicate the usual expectation
values, and the correction term 5 is given by

fk = (aia2JM
i

C'"'(1) C'"'(2)
~ aia2JM ), (B2)

b,"= f (2
~
r2

~

2)d'r2 f (1
i r) '" "

i
1)d'r,

—f (1
)

r",
(
1)d'r, f (2

(
r, '"+"

(
2)d'r, .

(A5)

Applying the Dirichlet integral equality, we can also ex-
press 5 as

(A6)

where C' '(1) and C'"'(2) are kth order Racah tensors
that operate only on the subspace of ia, ) and

~
a2),

respectively.
The f" depend on the two-electron coupling scheme. In

jK coupling, K=j+1 is the product of coupling j, the to-
tal angular momentum of the core electron, and l, the or-
bital angular momentum of the outermost Rydberg elec-
tron. (IC is then coupled to the spin, —,', of the outer elec-
tron for J, the total angular momentum of the two-
electron system. ) For clarity, in the following we label
quantum numbers of the core with the subscript c; unsub-
scripted quantities refer to the outer electron. Applying
(C6) we can write
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FIG. 9. Portion of experimental photo-ion spectra, with ~ (solid line) and o. (dotted line) polarization superposed.

&(l„—,j)„l[K]JM
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k j,

The Racah tensor C'"' does not act on the spin ( —,
'

), so that we may apply (C7) to get
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FIG. 10. Portion of theoretical spectra with m. (solid line) and o. (dotted line) polarization superposed.
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&(1„—,' )j„1[K]JM
~

C'"'(1) C'"'(2)
~
(1,', —,

' )j,', I'[K']J',M'&

K+ I + t —1/2

C

consistent with Eq. (7.19) of Ref. 15. Taking the diagonal elements and applying (C3), (C4), and (C5), we see that for the
particular case k =2 this simplifies to

f 6h + 3h —2j, (j, + 1)l(l + 1)
(B5)

4j~(j, + 1)(21—1)(21+3)

where h = —,[K(K+1)—j(j+1)—l(1+1)],a result first given by Racah.

APPENDIX C: SOME REQUIRED RACAH ALGEBRA

Expressions from Edmonds' for the 3-j and 6-j symbols referred to in the text can be expressed in the following con-
densed form:

M

[J(J+ 1)(2J+1)]'~'

J —I
J) (4J) —1)

J 1 J' J M
—M 0 M

J'=J+1,

(Cl)

(C2)

a b c
1 )a +b+c

2 c b

b c 1/2
b+, + &~& 1 (2b —1)(2b +3)(2c —1)(2c +3)

4 b (b + 1)(2b + 1)c(c + 1)(2c + 1)

Also,
1/2

1(1+1)(21+ 1)
(21 —1)(21+3)

Two well-known relations, used to derive expressions in Appendix 8, are

J b a
& abJM

~

A'"'. B'"'
~

a'b'J'M'
& =5 ~ ( —1)' + + ', , '&a

~ ~

A'"'~ ~a & & b
~

~B'"'~ ~a &,k a' b'

6h +3h 2b(b+1—)c(c+1)
[(2b —1)b (b + 1)(2b + 1)(2b +3)(2c —1)c(c + 1)(2c + 1)(2c +3)]'

where h = T~[a(a+1) b(b—+1)—c(c+1)]. It can also be shown that

(C3)

(C4)

(C5)

(C6)

where A' ' operates only on the subspace a, and B' ' only on the subspace b. The double bars indicate reduced matrix
elements

where again A' ' operates only on the subspace a.

b a J
L

(C7)

'Permanent address: Center for Radiation Research, National
Bureau of Standards, Gaithersburg, MD 20899.

~M. G. Lit tman, M. L. Zimmerman, T. W. Ducas, R. R.
Freeman, and D. Kleppner, Phys. Rev. Lett. 36, 788 (1976);
M. L. Zimmerman et al. , J. Phys. B 11, L11 (1978); D.
Kleppner et al. , Sci. Am. 244, 130 (1981).

M. L. Zimmerman et al. , Phys. Rev. A 20, 2251 (1979).
E. E. Eyler and F. M. Pipkin, Phys. Rev. A 27, 2462 (1983).

4R. D. Knight and L. Wang, Phys. Rev. A 32, 896 (1985).
5S. M. Jaffe, R. Kachru, H. B. van Linden van den Heuvel, and

T. F. Gallagher, Phys. Rev. A 32, 1480 (1985).
E. S. Chang and H. Sakai, J. Phys. B 15, L649 (1981).

7H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One
and Two-Electron Atoms (Plenum, New York, 1977).

G. Racah, Phys. Rev. 61, 537 (1942).
9R. D. Cowan, The Theory of Atomic Structure and Spectra

(University of California Press, Berkeley, California, 1981).
' The Coulomb approximation for radial dipole matrix elements

was taken from the "Zimmerman code, " details of which are
discussed in Ref. 2.



3338 D. E. KELLEHER AND E. B. SALOMAN 35

P. Camus, M. Dieu)in, A. El Himdy, and M. Ayrnar, Phys.
Scr. 27, 125 (1983).
R. D. Hudson and V. L. Carter, Phys. Rev. A 2, 643 (1970).

' E. B. Saloman, J. W. Cooper, and D. E. Kelleher, Phys. Rev.
Lett. 55, 193 (1985).

~4V. I. Mishin, G. G. Lombardi, J. W. Cooper, and D. E.

Kelleher, Phys. Rev. A 35, 1664 (1986).
t5B. W. Shore and D. H. Menzel, Principles of Atomic Spectra

(Wiley, New York, 1968).
i6A. R. Edmonds, Angular Momentum in Quantum Mechanics,

2nd ed. (Princeton University Press, Princeton, New Jersey,
1960).


