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Structure and properties of the ground state of a two-level system arbitrarily coupled
to a boson mode including the counter-rotating terms
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The structure of the ground state of the Hamiltonian of a two-level system linearly coupled to a
single mode of a radiation Bose-like field is studied for arbitrary values of the coupling constant in-

cluding the counter-rotating terms. First of all the Hamiltonian is canonically transformed, intro-
during a new set of unitary operators in such a way that the eigenstates of the transformed Hamil-
tonian are exactly factorizable into eigenstates of the new pseudospin 2 and of the new field. The

ground state is then found by a variational procedure. The validity of the results obtained by this
approach is shown introducing a suitable class of canonical transformations by which it is possible
to see that this variational ground state differs from the exact one only for perturbative contribu-
tions for which we give explicit expressions. Furthermore, we present investigations on the proper-
ties of this system in its ground state based on the calculation of the covariance of suitable pairs of
operators. In this way we succeed in obtaining, among other things, a physically transparent mean-

ing for the mathematical variational condition which determines the ground state.

I. INTRODUCTION

It is well known that the simplest model that contains
the essential ingredients to understand the physical prop-
erties of a system of a few-level object interacting with a
radiation Bose-like field is that of a two-level object cou-
pled to a single-mode radiation field by an interaction
Hamiltonian which is linear both in the field and in the
object coordinates. This model, besides its simplicity, has
the value of being quite general; for example, in quantum
optics, it describes a two-level atom coupled to a single
linearly polarized quantized mode of the electromagnetic
field while in solid-state physics it has been used to
describe the interaction of a dipolar impurity (paraelectric
or paraelastic) with a crystal lattice or in connection
with the paramagnetic spin-phonon interaction that is a
spin —, in a static external magnetic field, interacting with
a single phonon mode. The Hamiltonian assumed to
represent this model has the following form:

H =fr@a a+2@(a+a )S„+Pic@OS, .

Here a and a are the Bose operators for the quantized
mode with frequency co of the radiation field, and S and
S, are, respectively, the x and z components of a
pseudospin- —, operator which describes the two levels of
the object separated by the energy Acro. e is the coupling
constant between the two-level system and the field and
can be defined as a real non-negative quantity; both its
analytical expression in terms of other more direct physi-
cal parameters and the range of values which can be as-
sumed depend on the particular system to which (1.1) is
applied. In spite of its apparent simplicity, exact closed
analytical expressions for the eigenvalues and the eigen-
vectors of (1.1) for arbitrary values of co, coo, and e are not

known. Swain has found a formal exact solution in
terms of infinitely continued fractions to the problem of
the diagonalization of Hamiltonian (1.1) but its usefulness
is greatly limited by the fact that results can be extracted
from it only by numerical analysis. Another exact numer-
ical treatment for the low-lying energy levels of (1.1) has
been given by Reik et al. using an interesting mathemati-
cal procedure. Shore and Sanders, using a Hamiltonian
as (1.1) to study the problem of an exciton hopping be-
tween two sites and coupled to a phonon field, have ob-
tained the ground-state energy of the system but, also in
this case, through numerical methods. More recently,
Graham and Hohnerbach, investigating the quantum
behavior of systems described by (1.1) related to their
nonintegrability in the classical limit, have obtained dia-
grams in which the lowest-lying energy levels are plotted
as a function of co/~o by a numerical diagonalization of
the time-independent Schrodinger equation corresponding
to (1.1). In order to obtain analytical results numerous ap-
proximations have been made on the Hamiltonian model
(1.1) according to the specific physical situation to be in-
vestigated. In quantum optics the most usual approxima-
tion is the rotating-wave approximation which corre-
sponds to the well-known Jaynes-Cummings model this
model can be used under the condition of weak coupling
(E « fKoo) and small detuning (

~

co —coo
~

&&coo) and
shows that the ground state of (1.1) is very similar, in this
case, to the empty state. The opposite limit to this ap-
proximation, that is, the strong-coupling case (e» fuuo),
has also been investigated in connection with several phys-
ical problems using a treatment of (1.1) by which it is pos-
sible to see that the ground state in this case is very dif-
ferent from that of the weak-coupling limit. The purpose
of this paper is to determine analytical expressions for the
eigenvalue and eigenvector of the ground state as well as
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of some excited states of (1.1) without making any restric-
tion on the value of the coupling constant. Here we shall
treat this problem in the case coo (co,' the only reason to do
this is the simplification obtained in the presentation of
our mathematical procedure which, however, can be gen-
eralized to the case cuo~co. Our method is based on the
use of two suitable canonical transformations by which we
succeed in rewriting the Hamiltonian (1.1) as a sum of
two terms in such a way that one of them can be con-
sidered, for any value of e, as a perturbation with respect
to the other one while the dominant term can be exactly
diagonalized.

II. DECOUPLING OF THE INTERNAL OBJECT
MOTION FROM THE FIELD DYNAMICS

%'e start by making some remarks on the matrix repre-
sentation of (1.1) on the basis of the simultaneous eigen-
states of the operators ++a and S,. Let us denote the
generic vector of this basis by

~

n, oz)—:
~

n)
~
o, ). It is

identified by the conditions a a
~

n ) = n
~

n ) and
S,

~
o, ) =(a, /2)

~
o, ) with cr, =+1. The excitation num-

ber operation N =a+e+S, + —, is diagonal in this basis
and its eigenvalues are all the natural numbers. On the
contrary, H is not diagonal in the basis ( ~

n, o, ) ) because
of the presence of the interaction term e(a+a+)S„; how-
ever, (n, o,

~

H
~

n', o,') vanish if the parity of the number
n+0.,/2+ —,

' is different from the parity of the number
m +o,'/2+1/2. This circumstance implies the possibili-
ty of dividing the total Hilbert space into the two sub-
spaces S i

=
I ~

n, cr, ): n+o, /2+ —, is oddI and

S+i = t ~

n, o, ): n +o', /'2+ —, is evenI is such a way that
H cannot connect them. It is interesting to observe that
within each subspace the value of o, is univocally deter-
mined by the knowledge of n and this suggests the possi-
bility of finding the eigenstates of H belonging to S with
w = + 1 using a purely bosonic m-dependent effective
Hamiltonian. To succeed in this objective let's consider
the excitation number parity operator P=e'; it is an
unitary operator, diagonal in the basis I ~

n, o, ) ) and, as
its only eigenvalues are 1, is also Hermitian. More pre-
cisely P

~

n, o., ) =w
~
n, o;) with w =+1 for any

~
n, cr, )

belonging to S+i and w = —1 for any
~
n, o., ) belonging

to S &. From these properties it immediately follows
that [P,H]=0, that is, P is a constant of motion. Then
the subdivision of the total Hilbert space into the direct
sum of S+& and S

&
is equivalent to looking for simul-

taneous eigenstates of H and P. As P= —2S, cos(era+a)
a generic vector belonging to S may be written as

) = g a„~ n, —w cos(urn ) )
n=0

cording to the parity of n is the transformation which
leads to the factorization of

~ g ). The operator which
accomplishes this coordinate transformation may be
chosen in the following form:

T ei (m/2)a ae —i~.sa a (2.2)

where u = ( cosy, sing, 0) is the rotation axis versor. Ap-
plying T ' to

~ g~) we obtain

T—(
~ q ) g i(m—/2)a a mu sa a&

n=0

)&
~
o, = —w cos( urn ) )

OO —iwy sin (nm/2(
~

)an
n=0

(2.3)

=(at+a)[ —, cosy —iS, sinycos(ira a)),
T 'S,T=S, cos(ira a) .

(2.5)

(2.6)

From (2.4), (2.5), and (2.6) immediately follows the expli-
cit expression of H(y) =T 'HT,

H((p) =fiona a

+2e(a+ a )[ —, cosy —iS, sing cos(7ra a ) ]

+fico+, cos(ira a) . (2.7)

(2.7) shows that [H(y), S,]=0 for any y so that the eigen-
vectors of H(iP) can be written as the product of an eigen-
state of S, and an eigenstate of the following bosonic
Hamiltonian:

H(y) =Eicosa a+@(a+a )[ cosy i cr, sin(P cos(7—ra a)]

From the properties of T it follows that by submitting H
to the canonical transformation T 'HT we shall obtain a
transformed Hamiltonian H whose eigenvectors can be
expressed in a factorized form. In other words, by this
canonical transformation we may realize exactly the pas-
sage from the system of a two-level atom coupled to a ra-
diation field, described by (1.1), to a system of a new pseu-
dospin —, interacting with a new bosonic field described
by the transformed Harniltonian where the internal
motion of the atom can be easily and exactly separated
from the field dynamics. In fact, using (2.2) we immedi-
ately obtain

(2.4)

a„n cr, = —ur cos ~n
n=0

(2.1) O+ cr, cos(era a), (2.8)

and is univocally determined by m and by the bosonic
field state g„oa„~n ). We are interested in finding an

operator which transforms
~ P ) into the product of a bo-

sonic field state and a spin state. It is easy to convince
oneself that a coordinate rotation about an arbitrary axis
perpendicular to the z axis through an angle ~ or 2m ac-

which depends parametrically on cr, . As T 'PT= —2S,
the possibility of classifing the eigenstates of (2.7) by o., is
equivalent to the possibility of classifing the eigenstates of
H by ta. Up to now no restriction has been imposed on p.
If, for some particular value of q&, H((P) assumes a more
tractable form, we may give this value to cp in order to
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work with a simpler Hamiltonian. It is easy to convince
oneself that the most convenient value of y is y=0 which
corresponds to rotating the coordinate system about the x
axis. Setting y=0 we finally obtain

E(il) =il 2—yi}+ ,
'

p—e

where

CO0

Oz

(3.7)

(3.8)

H=H(y)=%cuba a+e(a+a )+ o., cos(ira a) .
2

(2.9)

Hamiltonian (2.9) has been obtained in a very similar
form by Shore and Sanders and successively proposed
again by other authors '" without any modification. The
way through which we succeed in getting (2.9) clearly
shows that it is a member of the more general family
(2.8).

III. VARIATIONAL GROUND STATE OF 0
In this section we look for the ground state of 0 by us-

ing a variational approach. The unitary operator

V(~) =e~' -', (3.1)

There certainly exist a value of i} for which E(il) reaches
its absolute minimum. This value of g is among the roots
of the following equation:

dE(i)) =0 that is y=il(1 —pe " ) .
de)

(3.9)

The number and the sign of the solutions of Eq. (3.9) de-
pends on the value of y and P. It is easy to convince one-
self that, for

I P I
& 1, (3.9) has one and only one root for

any value of y and that this root is always a nonpositive
real number. If we denote this root by i}=i)(p, y) it may
be shown directly from (3.9) that when

I y I
increases

from 0 to + oo, il(p, y) monotonically decreases from 0 to
y & 0. From (3.9) we immediately deduce

n(I&I 1') rl( —I&—
I

r)
where g is a real number, is the creation operator for the
coherent radiation state

I
i) ), that is,

(3.2)

=
I & I ln( I & I,)')e '" ' ~ "

+~( —IPl, y)e-'"&- ~ »j (3.10)

If e=0 the ground state of (2.9) is
I
0) and then it has the

form (3.2) with i}=0; if, on the other hand, we consider
e~&Scop and Ace ~~%cup the ground state can be approxi-
mately written in the form (3.2) with i)= elfin I—t is.
then natural to use as a trial state for the ground state of
H the coherent state

I
il ) (3.2) taking the parameter il as

a variational parameter. The expectation value of 8 on
this state has the following form:

E(rj)=(0
I

Vt(il)[fiona a+e(a+a )

which clearly shows that

v(I@I r)&n( IPI.—) ) (3.1 1)

+ —, IPI(e ++e ),
where, to save some writing, we set

(3.12)

both being nonpositive numbers. Using (3.7) we may easi-
ly write

E+ E=i}+——i) —2y(i)+ —i) )

+ o, cos(m.a a)]V(il) IO)
AC00

2

=(g lir a'a+e(a+a')
I g)

n+=n(+ I&l 1'»
E+ E(i}+) . ——

From (3.9) it is not difficult to obtain

(3.13)

ACOp
o., cos ~a a

2
(3.3) =p (il+e + —i1 e )+2y(il+ —il ) .2 2 2 2 4&+ 2

cos(grata)= g (a ) (a)2( —1)

1=0 l!
We then have

(3.5)

We immediately have

( i} I
ficta a+ e(a+a )

I
i) ) =AQpg +2eg . (3.4)

To evaluate the mean value of cos(ira a) we first
transform this operator as follows:

Inserting (3.14) into (3.12) yields

E+ —E- =
I & I

(
I
f3

I

n' e "++—,'e

+ —,
' Ipfe "(1—2lpfil e " ).

—2 2

As 1 —2
I
p I il e ~0 we obtain

(3.14)

(3.15)

00 21
1 )i ~2l e

—2g

1 =p j'1

Using (3.4) and (3.6) in (3.3) we obtain

(3.6)

( i} I
cos(era a)

I i) ) = g ( —1) —,( i)
I

(at) (a)
I
i})

1=0

E+ )E
Thus, in the limit of this variational approach, we deduce
that the ground state of (2.9) belongs, for coo&co, to the
subspace with o, = —1, whatever the strength of the cou-
pling. When

I P I
& 1 the situation is more complicated

because now there exist values of i) for which Eq. (3.9) ad-
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mits three solutions. Generally speaking, a very serious
difficulty connected with any variational calculation is the
fact that, in the obvious absence of the exact solution of
the problem, it is almost impossible to judge the validity
of the results obtained by this approach. In particular,
even if it gives good values for the energy, the approxi-
mate state vector may preset certain completely
unpredictable erroneous features which may be very diffi-
cult to check. An important consequence of this fact is
that when we calculate the expectation value of an opera-
tor other than the Hamiltonian using the trial ket, we can-
not in general be sure of the physical validity of the result
obtained. In Sec. IV by the introduction of a suitable
class of unitary transformations, we shall show that the
trial ket (3.2), with il given by (3.9), gives a good approxi-
mation of the ground-state vector of (2.9) for

~
p

~

& 1.

fact, we shall show that, whatever the intensity of
~ y ~,

A
&

satisfies a general necessary condition in order that
conventional perturbation theory is applicable to it with
respect to A 0. To prove this let us begin by observing
that, being that E„+& E„=—fun from (4.5), the energy
spectrum of A ~ does not present any degeneration, in par-
ticular none in its ground-state eigenvalue. Thus, if per-
turbation theory is applicable to treat the effect of A

~
on

the ground state of A p, we can refer to the theory for the
nondegenerate case and this for any value of

~ y ~

.
The first-order correction Ep" to the energy Ep is sim-

ply equal to the mean value of ~& in the ground state of
Ck pe

E,")= (0~ ~, ~0) = a, ((o~e -'~' -' ~0) —e -'~
)

2

(4.7)
IV. CONNECTION BETWEEN THE VARIATIONAL

GROUND STATE AND THE EXACT ONE

To investigate the validity of our variational procedure
let us consider the following unitary transformation:

V(rj(P, y))—:V(rj) = "'(a~ —a) (4. 1)

As
—2

e
—2g(a —a) —2g —2ga 2ga=e e e

we easily have

(0
~

e
—2Ti(u — )

~

0) e —2' (0
~

e
—2Tia'e2ri

~

0)

(4.8)

obtained from (3.1) substituting for rI with the root of
(3.9). If we transform H by V(i) ) we easily have so that

=e —2 (4.9)

V '(g)HV(ri)—:A =A p+A i, (4.2) E,"'=0. (4.10)

where

Mp ——Acua a+Rcgg +2gg+ o-,e
—2 — 0 2~2

2

A ) ——(iricorI+e)(at+a)

(4.3)

cr,e "' " 'cos(ira a) — cr, e
2 2

(4.4)

From (4.3) we see that A o is in diagonal form and that its
eigenstates are the eigenstates

~

n ) of a a while its eigen-
values E„have the following expression:

The first-order correction
~ Po ') to the ground state

~
0)

of A o has the form

(m ~~, ~0)

From (4.4) and (4.8) we have for m&0,

(4.1 1)

Ace
(m ~ae& ~0)=(m (reee)~e)a)~ a, e e e ee 0),2

(4.12)
when m =1 (4. 12) gives

p
E„=nkco+fico7] +2eg+ o.,e

2
(4.5)

() l~&)0)=() (race)+e)a + a, e "(—2e)a)) 0)2

In particular the ground state of A p has energy Ep given
by

Eo =ficorI +2eg+ o,e " =ficuE(rI)
2

(4.6)

and then coincides with the variationally calculated ener-

gy ficoE(q) obtained from (3.7) setting rj =rI according to
(3.9). This coincidence is not limited to the energy eigen-
value; in fact, the ground state of A 0 is the radiation vac-
uum state which, transformed by V( r) ), gives just
V(T))

~

0), that is, the state variationally obtained from
(3.2) setting rI =T). Obviously the presence of A, in (4.2)
does not allow us to say that V(r))

~

0) is exactly the
ground state of H. However, it is possible to see that
there are very strong suggestions to believe that V(i))

~
0)

differs very little from the exact ground state of H; in

= ( I
~

(fico77+ e ficooc7, 7Je " )at —
~

0) =0

fico ( —2rI )
p e

2 v'm! (4.14)

(4.13)

using (3.9). Thus we see that the variational calculation
gives just that value of g which eliminates the mixing of

~

0) and
~

1) from A ~. When m & 1 we have from (4.12)

(m ~~ ~0)= cr e i (m ~e " ~0)
2~o,-i ( —2rj) (at)

g, e " m 0
2 II

RCOp CTi
e " ( —2T))

2 v'rn t
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Substituting (4.13) and (4.14) in (4.11) we obtain

2m@'m!
(4.15)

At this point we have to investigate the applicability of
the perturbation theory to our problem. To this end it is
usual to limit oneself to verify that the nondiagonal ma-
trix element of A

&
are much smaller then the correspond-

ing unperturbed energy differences. It is important to ob-
serve, however, that this condition is very weak because
not only it is obviously not sufficient for the convergence
of the perturbative method, but it is not even sufficient to
assure that the vector

I
0&+

I

i)'jo" & is normalized to first
order in A

&
~ To satisfy this last condition we must in

fact prove that

m =2

P
—Zg ( 2

—
)m

2m+'m!
(4.16)

which imply the most usual condition
l(mls il0&l « IE„Eol for —any m&0. We now

show that condition (4.16) is satisfied whatever the value
of 7). Setting 471 =

I

x I, condition (4.16) assumes the fol-
lowing form:

f(
I

x
I

) = g, ,
p'«1 .

m=2 m m
(4.17)

Then we have

0&f(x)& IPI

2
'

1 —e
2

4lx
I

(4.18)

(4.19)
The function g (x) is convergent to zero when x ~0 and
when x ~ ao and consequently, being non-negative, has an
absolute maximum which represent a superior limit for
f( I

x
I

). By using standard methods it is not difficult to
see that g(x) reaches its absolute maximum for x=5.63
and that g(5.63)=4&&10 . Then we have
f( I

x
I

) &4x10
I pl, that is,

2

The series in (4.17) is convergent for any x. Moreover,
since m & m+1 when m & 1, we have

ca —!x/
I

lm ao —x/
I

lm(
4 m'm!, 4 (m +1)m!

2

!„!e-"—1

is possible to obtain a closed exact expression for the
second-order correction Ep ' to the energy. We have

(2) 1(m I ~i
I
0& I

Ep —E(p) (p)
m =2

~ p2~e-~" ~ lx I

m =2 4 mme

It is easy to show that

(2) „2 Ace 4q~ 4g' e' —1 —t,
4 p t

(4.21)

(4.22)

The meaning of the results obtained in this section is that
the variationally ground state of H, that is, V(rI)

I
0&, al-

though approximate, differs from the exact one for contri-
butions which can be considered as perturbative for any
value of the coupling constant and for

I p I
& 1. Thus if

we denote by
I

itj & the lowest energy eigenstate of H
given by (1.1) belonging to S~, we may write

I ~ &=Tv(q .) Io&
I
~, = (4.23)

where the ellipse represents the perturbative correction,
i if w =+ 1 [(4.23) in this case gives the ground

state of H], and r) „=i)+, if w = —1. This cir-
cumstance makes legitimate an investigation on the physi-
cal properties of the system in its ground state based on
the calculation of the mean value of operators other then
the Hamiltonian. We shall consider this point in detail in
Sec. V.

V. PHYSICAL PROPERTIES
OF THE STATES

I C &

H = + q+ 2FoqS„+fir—i)OS,
2m

(5.1)

In this section we want to take advantage of the
knowledge of the ground state of (1.1) in accordance with
(4.23) to study the effects of the interaction between the
two-level system and the field mode on the dynamics of
these two subsystems as a function of e. To reach this ob-
jective we shall introduce suitable operators whose expec-
tation values on

I P & prove themselves to be very useful
to put into evidence the mutual influence of the two in-
teracting subsystems. In order to make simpler the physi-
cal meaning of the analytical results which we shall obtain
later, it is convenient to describe the field coordinates in
(1.1) referring to a mechanical harmonic oscillator. This
procedure is justified by the fact that, passing in the Ham-
iltonian

00 P
—2T/

( 2—)m

X &4IPI x10 «1, (4.20) from the variables q and p to the new variables a and a
using

since
I p I

& 1 whatever the value of g and then whatever
the intensity of the coupling. Condition (4.20), although
not sufficient to assure the convergence of the perturba-
tive series, is at least sufficient to say that

I
$0"& is much

smaller than
I
0& and this fact is usually accepted as a

strong reason to believe reasonable the application of per-
turbation methods in situations analogous to our case. It

1/2 1/2

(a+a ), p=i mesh (a —a),2m co 2

(5.2)

we obtain the Hamiltonian model (1.1) apart from a
dynamically inessential constant term provided that
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Fp ——c
2m co

1/2 1/2

(5.3)

Using (5.1) in the Heisenberg equation of motion for the
coordinate operator q of the harmonic oscillator, we im-
mediately get the following expression for the velocity and
acceleration operators:

A
&

———2FpSx, B]———Kq,
d ( —2FoS„)

B2 —p,dt

(5.10)

(5.1 1)

This implies that to know the quantum covariance of 3
and B may give useful indications of how 3 and B are
correlated. It is convenient to introduce the three follow-
ing pairs of operators:

[H,—q] = (5.4) A 3 ——fuooS„B3 ficoa——a . (5.12)

d2dq 1 dp 2

dt2 m dt

2FpS
(5.5)

The calculation of the covariance of the three pairs of
operators (5.10), (5.11), and (5.12) on the state

I + ) yields

Looking at (5.5) we may see that the first term in its
right-hand side is proportional to the operator associated
with the elastic force of the spring,

C~, a, =(F I2FoKqSx
I C ~=2meco g— (5.13)

—2 2

C&,a, = (C
I
2pFotooS»

I 4 ) =2wmtotoorI

F) ———kq, (5.6) (5.14)

while the second term must represent the operator associ-
ated with the force that the two-level system exerts on the
oscillator through their interaction. We shall denote this
force by F2, setting

F2 = —2FpSx (5.7)

and sometimes we shall refer to it as to the external force
on the harmonic oscillator. It is also useful to consider
the operator

dF2

dt
=2FocooS (5.8)

C„s——( , (AB+BA) ) —( A )—(B) . (5.9)

which describes the variation for unitary time of the
external force acting on the oscillator. In (5.8) S» is the y
component of the pseudospin operator S. All the opera-
tors introduced above change their sign when transformed
by P; this fact, together with the commutation between H
and P, implies that the expectation values of these opera-
tors, calculated on arbitrary eigenstates of P, are zero at
any time. To get informations on the properties of the
system in these states we then calculate the variances of
these operators obtaining, in general, results which are not
null. However, while the variances of q and p are easily
interpretable from a physical point of view, the first being
related to the mean modulus of the oscillator's elongation
and the second to its mean kinetic energy, the variance of
the operators —2FoS„and —d(2FoS„)ldt, although not
null, do not give any characteristic indication, being in-
dependent of the eigenstate of P used for the calculation.
These difficulties, related to the specific symmetry of our
Hamiltonian model, can be circumvented by calculating
the quantum covariance of suitable pairs of operators, say
3 and B, with 2 relative to the two-level subsystem and
B relative to the harmonic oscillator subsystem. It is use-
ful to remember' that the quantum covariance Czz of
two operators 2 and B on an arbitrary state, on which
their mean values are (A ) and (B), is defined in the fol-
lowing way:

(5.15)

dficoa a p
dt m

(5.16)

which represent the power exchanged by the harmonic os-
cillator subsystem;

To obtain (5.13) and (5.14) we have used the fact that in
every eigenstate of P (as

I +)) the mean values of the
operators (5.10) and (5.11) are null. From (5.13) and
(5.14) we easily deduce that, while the physical quantities
represented by F& and F2 are correlated whatever cou-
pling regime we consider, those represented by the opera-
tors (5.11) reach a maximum of correlation for

I
& 0.5 becoming less and less correlated when

I
&&0.5. Deductions very similar to the last one can

be inferred from (5.15) concerning the correlation between
the two subsystem's energy fluctuations. Moreover, (5.13)
clearly shows that in the state

I P ), with w =+1, the
external force on the oscillator and the elastic force have
opposite directions; (5.14), on the other hand, makes it
plain that the signs of the time derivative of F2 and of the
oscillator's velocity are opposite in the state

I P+&) and
equal in the state

I P &). The interest toward the calcula-
tion of the expectation values of the operators
( —Kq)( —2FoS ) and p [d( 2FoS )Idt], —given, respec-
tively, by (5.13) and (5.14) is twofold: on the one hand, as
we have shown, it gives useful indications on the behavior
of the correlation existing between the field dynamics and
the two-level dynamics in the ground state in the transi-
tion from the weak to the strong coupling; on the other
hand, as we shall see, it allows us to give a physical inter-
pretation of the mathematical variational condition on q
expressed by (3.9). To obtain this result let us start by
showing that the expectation values of ( —kq)( 2FoS„)—
and p [d( —2FoS„)ddt] on exact eigenstates of (5.1) are
not independent but are connected by an interesting physi-
cal condition. Let us consider, in fact, the following
operators:

(5.9) shows that if the physical quantities associated with
2 and B are not correlated on a given state then Czz ——O.

d(ficooS„) dFi
(2) =q

dt dt
(5.17)
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which gives the power exchanged by the two-level subsys-
tem;

d~kcoe~a

d (iricpa a)
dt2

m= —2FpS„
dt

p d( —2FpS )
+

m dt 7

(5.18) ~ d(2FpS„)
(5.23)

d'~cz~a
dt2

d —2Fo
m

dt

which describes the time derivative of the power ex-
changed by the harmonic oscillator subsystem. From
(5.18) we immediately deduce that this power may change
with time either in connection with changes in the har-
monic oscillator's velocity or in connection with changes
in the external force. Substituting (5.5) into (5.18) we
have

(5.23) clearly shows that if the oscillator velocity and the
time derivative of Fz are not correlated then

( ( g~ ~

2FpSxkg
~ g~ ) )e„=—Fp (5.24)

which should be compared with (5.13). Moreover, if there
exist suitable values of the parameters of the system such
that F& and F~ are not correlated, then necessarily we ob-
tain

2

(5.25)

2KFQS Fp p d ( —2FpS )
q+ +

m m m dt

(5.19)

Let us point out the physical meaning of the three opera-
tors which appear in the right-hand side of (5.19). The
operators

2KFpS„
(5.20)

and

FQ(2S„) FQ

m m
(5.21)

represent the contributions to the operator
d[ p(FQ2S„lm)—)ldt which stem from that part of the
acceleration operator due, respectively, to the harmonic
oscillator's restoring force and to the external force Fz
acting on the oscillator subsystem. The operator

that is, the oscillator s velocity and the time derivative of
Fz are remarkably correlated and always have opposite
signs. Comparing (5.25) with (5.14) and simultaneously
looking at (5.13) we see that for cop (cp and in the ground
state of (5.1) the system cannot reach conditions similar to
those expressed by (5.25) for any coupling regime. It is,
however, legitimate to ask whether an opposite behavior
should be expected when coo ~ co and for a suitable value of
the coupling strength, being impossible to exclude that for
such values of the parameters the contribution due to the
time derivative of Fz may exercise a remarkable influence
on the physical properties of the system. After this di-
gression let us return to our original problem which con-
sists of expressing the variational condition for the ground
state of (5.1) in terms of a physically clear relation among
expectation values of operators relative to the two in-
teracting subsystems. Let us note that the states

~ + )
have at t =0 the following properties:

(5.26)

(5.27)
d ( 2FQS„)—2cc)OFO

Syp
m

(5.22)

(5.28)

is due to the presence of the term ficopS', in the Hamiltoni-
an (5.1); this operator, in fact, does not commute with
F& ———2FpS and therefore is responsible for the appear-
ance in (5.16) of the time derivative of the external force
on the oscillator. Looking at the operators (5.20) and
(5.22) we immediately see that they are proportional to the
operators ( —kq)( —2FpS„) and p[d( —2FpS„)ldt] so
that we may see that Eq. (5.19) introduces a physical con-
nection between them. In particular, if we evaluate the
mean value of both sides of (5.19) on an exact simultane-
ous eigenstate of (5.1) and P, here denoted by

~ f„),„, we
immediately deduce the existence of the following simple
and physically transparent relation between the expecta-
tion values of these two operators:

—2 2

=2eco il +2@ —+2tocopipei) e =0, (5.29)

which can be considered as necessary conditions for the
stationariety of the state

~ P ). It is possible to show that
the conditions (5.26) and (5.27) can be satisfied from a
larger class of variational states than that examined in
Sec. III. The condition (5.28), on the contrary, is much
more restrictive; calculating, in fact, the mean value of
both members of (5.19) on the states

~ P ) at t =0 we
have
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where we have

2KFpS
q P =2@co rI

m

)
2e'ee

(5.30)

(5.31)

of H with P. In Sec. III we have shown variationally that
the lowest energy eigenstate of H and P for cop(co can be
written as

—( &/2) 1 —w

~ P ) =e " g (S„)"
~

n, o, ), (6.1)
n=O

while the eigenvalue of H on (6.1) has the form
d ( 2FOS—„)

P)=2weeeeeeg e
dt

—2 229—M

(5.32)

As Eq. (5.29) coincides with the variational condition (3.9)
for the unknown g, we immediately deduce that the
necessary condition (5.28) should not be satisfied by the
states (4.23) at the zeroth order if the parameter rl were
not just g . We may therefore say, having in mind
(5.29), that the variational condition (3.9) is interpretable
from a physical point of view in terms of a condition on
the expectation value of the time derivative of the power
exchanged by the harmonic oscillator subsystem. More-
over, using (5.30), (5.31), and (5.32), we may associate a
well-defined physical meaning with each one of the three
contributions appearing in (5.29) or (3.9) and this cir-
cumstance, in conclusion, implies that the states

~
+)

can satisfy (5.28) at the zeroth order only because there is
a balance among the covariances of pairs of suitable
operators relative to the two interacting subsystems.

VI ~ CONCLUSION

In this concluding section we wish to sum up the results
obtained in this paper and indicate some possible develop-
ments. We have taken up the problem of finding the
ground state of a two-level object interacting with a single
resonant or nonresonant mode of a Bose-like field without
making any assumption on the coupling regime and tak-
ing into account the counter-rotating terms. The reasons
which led us to reject the rotating-wave approximation in
this paper are two: the first one is that our principal ob-
jective consists in obtaining analytical results useful to
describe physical properties of all those systems which
have the common feature to be well represented by Hamil-
tonian (1.1) while it is well known that not all such sys-
tems could be accurately described by the Hamiltonian in
which only the rotating terms are taken into account; the
second one is that, also for those systems for which
neglecting the nonconserving energy terms introduces
quantitatively very small differences, only the complete
model (1.1) enables us to explain important physical ef-
fects such as the Bloch-Siegert shift' ' or the modifica-
tion of the Lande g factor, ' for which the counter-
rotating terms play an essential role. In Sec. II we have
presented a new canonical transformation by which we
succeed in transforming exactly H into H where the pseu-
dospin operators are immediately separable from the field
operators. The advantages of working on H rather than
on H are two: the first one is that we have at our disposal
an exact purely bosonic effective Hamiltonian, and the
other one is the certainty that, whatever the approxima-
tion made on treating H, we may take exactly into ac-
count the correlations existing in each stationary state of
H between the atom and the field due to the commutation

—2 2

Eg =%cog +2eg — we—W (6.2)

where r) is the root of Eq. (3.9). (6.1) and (6.2) give
right results both in the limit of weak coupling and in the
limit of strong coupling while for the intermediate case no
analytical comparison is possible. In Sec. IV we succeed
in establishing the most relevant result of this paper that
is a direct relation between the exact ground state of H
and our variational solution; precisely, we show that,
whatever the coupling regime, (6.1) can be considered as
the zeroth-order term of a perturbative series of which the
first-order term is explicitly calculated in (4.15); (6.2),
analogously, can be considered as the zeroth-order term of
a perturbative expansion for the exact ground-state energy
and, also in this case, we calculate and give in (4.22) the
first non-null term that is the second-order correction.
The importance of having established this connection con-
sists in the fact that we may believe convincingly those
physical predictions on the behavior of the system in-
ferred from the calculation of the mean values of the
operators different from the Hamiltonian. Following this
line of reasoning Sec. V is just devoted to an investigation
of how some physical properties of the system in the state

~ + ), with w = + 1, vary in the transition from the weak-
to the strong-coupling regime. To this end we have calcu-
lated and discussed from a physical point of view the co-
variance of the operators which represent the restoring
force of the harmonic oscillator and the external force on
the same oscillator and also the covariance of the opera-
tors which are associated with the momentum of the os-
cillator and the time derivative of the force exerted from
the two-level system on the oscillator. We have, more-
over, brought to light that the mean values of the opera-
tors ( —Kq)( —2FOS„) and p[d( —2FOS„)ldt j, evaluated
on exact eigenstates (5.1), are not independent but that, on
the contrary, there exist a physically transparent relation
between them. It is precisely this circumstance that per-
mitted us to show that the variational condition (3.9)
which determines the form of the variational ground state

~ P ) can be interpreted in terms of a condition on the
mean value of the time derivative of the power associated
with the harmonic oscillator or, equivalently, in terms of
a balance among the expectation values of suitable opera-
tors relative to both the subsystems. The assumption

~

13
~

( 1 under which we have obtained the results in this
paper must be considered, above all, as a mathematical
condition imposed to simplify the analytical deductions.
It is, in fact, possible to develop suitably the technique
used here in such a way as to treat not only the case

~
P

~
& 1 but also to extend it to the multimode model

which recently has been considered with much interest as
a model useful for describing phenomena of macroscopic
quantum coherence with dissipation. '
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